
24



Chapter 4

The Partial Recursive
Functions

You have seen that more and more nested recursion yields more and more func-
tions, ad infinitum. And lest one suspect that there is a concept of “mega-
recursion” that captures effectiveness altogether, you have seen how such func-
tions could be effectively indexed (add a new clause for mega-recursion) and
then effectively diagonalized to yield an intuitively computable function that
is not mega-recursive. The only solution is to not leave “targets” everywhere
in the Cantorian table of function values for the impending diagonalization to
strike. (Think of the children’s game BattleshipTM. It’s easy to win if every
ship of your opponent has to sit on the diagonal of the grid!)

The moral is that the only way to effectively enumerate all effectively enu-
merable functions is to avoid diagonalization by allowing for some functions that
are not defined on some arguments. In the mathematical BattleshipTMgame,
these partial computable functions leave gaps that save them from diagonal
arguments.

In computational terms, these undefined values correspond to the program
or description of the function going into an “infinite loop” or running off the
end of an unbounded search. Infinite loops and partial functions are the price
that must be paid for a computer language capable of computing all intuitively
computable total functions. To catch all the flounder, you have to put up with
catching some old tires.

4.1 Partial Functions

First, consider some concepts pertaining to partial functions in general. The
notation is not standardized, so choices must be clarified at the outset.

1. A relation R on A×B is just a subset of A×B.

2. We write R(a, b) to mean (a, b) ∈ R.

25



26 CHAPTER 4. THE PARTIAL RECURSIVE FUNCTIONS

3. dom(R) = {a ∈ A : (∃b ∈ B)((a, b) ∈ R)}.
4. range(R) = {b ∈ B : (∃a ∈ A)((a, b) ∈ R)}.
5. A function f : A → B is a single-valued relation in A×B.

6. If x 6∈ dom(f) then we say that f(x) is undefined.

7. A function f is total with respect to some set A (usually understood from
context) just in case dom(f) = A.

8. A standard convention is to denote total functions with lower-case Latin
letters like f, g, h and partial functions with lower-case Greek letters like
φ, ψ.

The following points are very important.

1. One writes φ(x) ' y to mean that (x, y) ∈ φ. One is not entitled in the
theory of partial functions to assume that closed terms like f(6) denote.
Since the logical proof rules you learned in logic class that govern function
symbols and identity presuppose that function symbols in the language
denote total functions, this means that the notation φ(x) ' y must be
eliminated as shown before such proof rules are applied in a proof.

2. The composition operator on partial functions must be re-interpreted so
that if any function in a composition fails to return a value, the whole
composition is undefined as well. More precisely, the whole composition

C(ψ, φ1, . . . , φn)(~x)

is undefined just in case any one of the component applications φ1(x) is
undefined or they are all defined but

ψ(φ1(~x), . . . , φn(~x))

is undefined.

3. Similarly, the primitive recursion R(g, f)(n, ~x) is undefined if any inter-
mediate value involved in the computation of R(g, f)(n, ~x) is undefined.

4.2 minimization

There are many ways to introduce partial yet calculable functions. One such
way is to close Prim under the minimization operator M , where M(φ) denotes
the unique, partial function:

(µx)φ(x, ~y) ' 0,

which returns the least x such that φ(x, ~y) ' 0 and φ(z, ~y) is defined and nonzero
for all z < x. Note that whenever an “infinite loop” is hit among the successive



4.3. THE ZEN OF DOVETAILING 27

computations φ(0, ~y), φ(1, ~y), φ(2, ~y), . . . the whole minimization crashes. You
may think of minimization as a stupid, “serial” computational search that goes
off the deep end if any successive computation doesn’t halt or if there is no x
such that φ(x, ~y) ' 0. As in the case of bounded minimization, let

(µx)R(x, ~y) ' (µx)[sg(χR(x, ~y)) ' 0].

4.3 The Zen of Dovetailing

Suppose you want to find a, b such that R(a, b, ~z) is true. It would be a bad idea
to check a = 0 for all possible values of b prior to checking a = 1, for it may
be that R(0, n, ~z) is false for all n, but that R(1, 1, ~z) is true, in which case the
search would run on forever before finding the pair a = 1, b = 1.

It is a curious historical fact that while medieval Western philosophy was
employed by the Church to come up with static demonstrations of timeless
Church dogmas, Zen masters in medieval Japan made their way in the world by
giving fencing advice to samurai warriors. Since samurai wore thin armor and
carried extremely lethal blades, life or death could be measured in fractions of
a second. In a field of expert enemies, it would be a (truly) fatal error to focus
on one enemy to the exclusion of the others. This fatal focus of attention on an
isolated feature of battle was called a “suki” or “gap”. Zen Buddhists recognize
“suki” as a special symptom of the general human sin of trying to conceptualize
and partition reality into objects of desire. There is a Zen koan, or parable,
about the “thousand armed” Kannon. If Kannon were to fixate on one task
prior to beginning the others, her arms would be useless; but since she avoids
“suki” and works on all problems with all arms at once (parallel computation)
she can achieve marvels of kindness.

In a similar spirit, you can use the n-ary primitive recursive encoding to
avoid needless infinite loops in multi-dimensional searches. Instead of searching
for the first component and then for the second, search for the code number of a
pair whose components satisfy the relation. Then return the desired component
of the number we find.

a(~z) ' ((µw)R((w)0, (w)1, ~z))0;

b(~z) ' ((µw)R((w)0, (w)1, ~z))1.

Searching in parallel by minimization over a coded tuple is called dovetailing
because infinite searches are interleaved together to avoid infinite loops. This
is the basic programming technique in recursive function theory and is involved
in almost every interesting construction. It will come into play shortly.

4.4 The Partial Recursive Functions

Although composition and primitive recursion produce total functions from total
functions, once minimization is applied, partial functions end up in the mix, so



28 CHAPTER 4. THE PARTIAL RECURSIVE FUNCTIONS

one must employ the extended notions of composition and primitive recursion
introduced above, which apply to partial functions.

Let Part denote the least set X such that

1. the basic functions o, s, pi
k are all in X;

2. X is closed under the operators C,R, M .

Evidently, all primitive recursive functions are partial recursive (why?).
Since primitive recursive functions are total, there are total, partial recursive
functions, so this standard terminology is awkward, but mathematicians are
creatures of habit regarding terminology, however unfortunate.

minimization clearly generates functions not in Prim. It is an interesting
question whether minimization also takes over some of the work done by primi-
tive recursion inside of Prim. The answer is that primitive recursion contributes
nothing after the G/”odel decoding function (x)y is defined, so that if (x)y were
a basic function, primitive recursion could be dropped from the definition of
Part altogether.

Proposition 4.1 Part is the least set X such that

1. the basic functions o, s, pi
k are all in X;

2. the decoding function (x)y is in X;

3. X is closed under operators C, M .

Exercise 4.1 Prove the preceding proposition. Hint: show that any function de-
fined by means of R can be defined by means of M , using the decoding functions.
Suppose that f(x,−→y ) is defined by R(g, h). To compute f(x,−→y ), use minimiza-
tion to search for a code number of the value sequence (f(0,−→y ), . . . , f(x,−→y ).
Then read off the last item in the sequence from the code number.

The same coding idea can be applied to show that Part is closed under dou-
ble recursion, triple recursion, etc. That suggests that virtually any kind of
recursion you might define in terms of partial recursive functions yields par-
tial recursive functions and “explains” why allowing for unbounded searches
transcends the power of primitive recursion.

4.5 Recursive Relations

A relation R(−→x ) is recursive iff the characteristic function of R is partial recur-
sive. Since characteristic functions are always total, it follows that the charac-
teristic function is total recursive.



4.6. INDEXING THE PARTIAL RECURSIVE FUNCTIONS 29

4.6 Indexing the Partial Recursive Functions

Suppose there were an effective indexing gk
i of the intuitively total, effectively

computable functions of each arity k. Then you could construct the intuitively
effective and total binary function h(x, y) = g1

x(y). Then g(x) = h(x, x) + 1
is intuitively total and effectively computable and differs from each intuitively
computable, total function (since all of them are caught by the enumeration).
Contradiction. So if Tot is to include all intuitively effectively computable
functions, Tot cannot be effectively enumerated. So if we are to effectively
enumerate all such functions, we must also include some non-total, effectively
computable functions. That is why computability theorists assign code numbers
to functions in Part rather than merely to those in Tot. As was described
earlier, the “holes” in partial recursive functions avoid the diagonal argument
just rehearsed— the same argument that showed that some intuitively effectively
computable functions are not primitive recursive.

To index Part, you simply need to add a single clause for minimization to
the earlier indexing of Prim. The arity of the function minimalized should be
one plus the arity k of the function we want to obtain. To reflect the fact that
the indexed functions may end up being partial, we write φk

x instead of fk
x .

lh(x) = 0 ⇒ φk
x =





o′ if k = 0;

C(o, p1
k) otherwise;

lh(x) = 1 ⇒ φk
x =





o′ if k = 0;

C(s, p1
k) otherwise;

lh(x) = 2 ⇒ φk
x =





o′ if k > (x)0;

p
min((x)0+1,k)
k otherwise;

lh(x) = 3 ⇒ φk
x = C(φlh((x)1)

(x)0
, φk

((x)1)0
, . . . , φk

((x)1)lh((x)1)−̇1
);

lh(x) = 4 ⇒




o′ if k = 0;

R(φk−̇1
(x)0

, φk+1
(x)1

) otherwise;

lh(x) ≥ 5 ⇒ φk
x = M(φk+1

(x)0
).

4.7 The “Universal Machine” Theorem

In the case of primitive recursive functions, the function

h(n, x1, . . . , xk) = fk
n(x1, . . . , xk)

is not primitive recursive, (recall exercise 3.6). Since the effectiveness of the
enumeration implies that h is intuitively effective, this showed that Prim doesn’t
contain all intuitively computable, total functions. If Part is to contain all



30 CHAPTER 4. THE PARTIAL RECURSIVE FUNCTIONS

intuitively effective partial functions, then it had better be the case that the
partial function

υ(n, x1, . . . , xk) ' φk
n(x1, . . . , xk)

is partial recursive. Better yet, one would like a single “interpreter” that can
handle argument lists of all arities, by means of sequence coding:

υ(n, x) ' φlh(x)
n ((x)0, . . . , (x)lh(n)−̇1).

The arity parameter k is dropped because the code number of the argument list
effectively “tells” the program how many inputs to expect. The function υ is
called the universal function for the indexing φk of Part, since it can simulate
the performance of φk

n if it is given the index n.
In computer science, programming languages are implemented in one of two

ways. “Compiled” languages are translated directly into the machine code that
runs directly on the hardware in question. “Interpreted” languages are not
translated into machine code. They are “simulated”, step by step, by a program
written in machine code. Sometimes an interpreter is called a “virtual machine”.
It is amusing to consider that the universal function is actually an interpreter
written in our partial recursive formalism that interprets a bizarre programming
language in which each program is simply a natural number.

It remains to show that the universal function is partial recursive. In-
tuitively, interpret quaternary relation U(n, t, y, x) to say that the computa-
tion directed by a program with index n returns output y on input sequence
((x)0, . . . , (x)lh(x)−̇1) after consuming no more than t “resources”. Under this
interpretation, it follows that for each n, t, y, x,

φk
n((x)0, . . . , (x)lh(x)−̇1) ' y ⇐⇒ (∃t)U(n, t, y, x),

for a computation that halts always halts after some finite “resources”. A rela-
tion satisfying the preceding biconditional is said to be universal for the indexing
φk. Universal relations are also called Kleene predicates.

Given a universal relation for φk, it is easy to define the universal function ψ
by dovetailing the search for the output y with the search for a suitable resource
bound t and then returning the component that represents the output.

υ(n, x) ' ((µz)U(n, (z)0, (z)1, x)1.

Since a resource bound and output exist if the computation halts with that
output, and since the predicate will be shown to be primitive recursive, the
minimization is guaranteed to find the pair and return the correct output. If
the simulated computation never halts, there is no output, so the minimization
runs forever.

It remains only to exhibit a total recursive characteristic function for

U(n, t, y, x).

In fact, something stronger is true: there exists a primitive recursive universal
relation for the indexing φk. In the following definition, the “resource bound”



4.7. THE “UNIVERSAL MACHINE” THEOREM 31

will concern the sizes of code numbers of tuples of outputs of intermediate
computations. The tuples will be counted “simultaneously” in the case of com-
position and “diachronically” in the case of recursion and minimization. Since
only minimization can produce new “infinite loops”, bounding it’s travels by t
is the essential trick in the construction. Strictly speaking, this is a course-of-
values recursion (on which variable?), so aren’t you happy you already know
that course-of-values recursion is a primitive recursive operator?

U(n, t, y, i) = [lh(n) = 0 ∧ y = 0] ∨
[lh(n) = 1 ∧ (lh(i) = 0 → y = 0) ∧ (lh(i) > 0 → y = (i)0 + 1)] ∨
[lh(n) = 2 ∧ . . . your ideas here] ∨
[lh(n) = 3 ∧ (∃z ≤ t)[lh(z) = lh((n)1) ∧
(∀w < lh((n)1))U(((n)1)w, t, (z)w, i) ∧ U((n)0, t, y, z)] ∨
[lh(n) = 4 ∧ . . . your ideas here] ∨
[lh(n) = 5 ∧ . . . your ideas here] ∨
[lh(n) > 5 ∧ . . . your ideas here] ∨

Exercise 4.2 Complete the preceding definition.

So it has been shown that:

Proposition 4.2 (Kleene Normal Form) There exists a primitive recursive
relation U such that for each n, x,

φlh(x)
n ((x)0, . . . , (x)lh(x)−̇1) ' ((µz) U(n, (z)0, (z)1, x))1.

The right-hand-side of the equation is said to be in Kleene Normal Form. The
theorem says that every partial recursive function can be written in Kleene
normal form. Kleene normal form is interesting, because the full power of min-
imization can be obtained by applying it just once over a primitive recursive
relation. Complicated interleaving of minimization with recursion and compo-
sition can safely be ignored!

Not only that. The definition of U is very simple in the sense that its
derivation tree doesn’t involve many primitive recursions. The moral is that
minimization is an extremely powerful construction. Adding to it just a tiny bit
of “seed material” from primitive recursion yields all partrial recursive functions.

The universal machine theorem is a weak corollary of the Kleene normal
form theorem.

Proposition 4.3 (Universal Machine Theorem)

(∃u)(∀n, k, x) (φlh(x)
n ((x)0, . . . , (x)lh(x)−̇1) = φ2

u(n, 〈~x〉)).



32 CHAPTER 4. THE PARTIAL RECURSIVE FUNCTIONS

Proof. Just set φ2
u(n, 〈~x〉) = ((µz)U(n, (z)0, (z)1, 〈~x〉))1, and observe that

the right-hand side is a partial recursive derivation tree. a

4.8 The s-m-n Theorem

Despite the nearly kinky name, the s-m-n theorem is a pretty tame fact. You
already know how to show that total recursive functions are closed under sub-
stitution of constants, for given binary partial recursive function φ2

i (x, y),and a
natural number n, the function

ψ(x) = φ2
i (n, x)

= φ2
i (cn(x), x)

= C(φ2
i , cn, p1

1).

is partial recursive. So since every partial recursive function has an index, there
exists j such that ψ(x) = φj(x). But notice that this construction is “non-
uniform” in the sense that we haven’t effectively computed j from i and n.

In a modern, functional programming language, one simply substitutes con-
stants for variables in an argument list, so if M(x, y) is the given program, the
new program that results when 25 is put in for x is just M(25, y). In such a
language, that is the (almost trivial) procedure for finding a program that does
what a given program would have had a given argument been given. But when
your programs are just numbers, it isn’t that easy. In our “programming lan-
guage”, a program is just a number i. One can write φi(25, y), but that is not a
program in our programming system; it is an open formula of mathematics. Our
version of M(25, y) is a partial recursive index j such that φj(y) = φi(25, y).
So the problem of effectively substituting a constant into a program amounts in
our system to finding a total recursive function s(i, n) such that:

φ1
s(i,n)(x) = φ2

i (n, x).

More generally, you could simultaneously substitute constants for m ≥ 0 out of
m+n ≥ 0 variables in an m+n-ary partial recursive function. The substitution
procedure has to know what m and n are in order to know what program to
produce, so it is called sn

m.

Proposition 4.4 seriess-m-n Theorem Let m, n ≥ 0. There exists a prim-
itive recursive function sn

m(n, ~x), where ~x is m-ary, such that for each n-ary
~y,

φn
sn

m(i,~x)(~y) ' φm+n
i (~x, ~y).

Notice that nothing here precludes m = n = 0, in which case:

φn
s0
0(i)

() ' φ0
i (),



4.8. THE S-M-N THEOREM 33

so s0
0 function is just the identity function, since substituting no constants in an

empty argument list doesn’t change the zero-ary function given. More interest-
ingly, our indices for zero-ary functions allow us to substitute constants for all
variables to produce an index of a zero-ary function.

φ0
s0

m(i,~x)() ' φm
i (~x).

Hence, computing s0
m(i, ~n) denotes the formal result of providing inputs ~n to

program i without actually starting the computation. Maybe an output will be
produced and maybe not. On the other hand, φi(~n) denotes the outcome of this
computation, if there is one, which is another matter entirely.

This prosaic business about a procedure for substituting constants into a
function turns out to be extremely important, for the the universal theorem
and the s-m-n property essentially codify everything about our indexing that
is essential for computability theory. So by simply assuming the universal and
s-m-n theorems as axioms, you can ditch all the fussy details once and for all!
But not until after you prove it for our numbering and show that it has the
pivotal significance just claimed for it.

So how does one prove it? Well, you want:

φn
sn

m(i,~x)(~y) ' φm+n
i (cx1(p

1
n(~y)), . . . , cxm(p1

n(~y)), p1
n(~y), . . . , pn

n(~y)).

First, you have to define a primitive recursive function proj such that for all
n-ary ~x,

φn
proj(i,n)(~x) ' xi.

But that’s easy, since the indexing φk doesn’t care about arity:

proj(i, n) = proj(i)
= 〈i, 0〉.

Next, you need to be able to compute the index of a constant function from the
constant. Easy, but annoying.

Exercise 4.3 Define a primitive recursive function const such that for all x,

φn
const(n)(x) ' n.

And you have to write a primitive recursive program that knows how to
return the index of a composition from the indices of the functions involved.

Exercise 4.4 Define a primitive recursive function comp such that for all j,
and m-ary i,

φk
comp(j,~ı) = C(φk

i1 , . . . , φ
k
im

).

Exercise 4.5 Now it’s easy to use the above to define sn
m(i, ~x).


