
Chapter 2

Primitive Recursion

The theory of computability originated not with concern for genuine computers
but out of foundational issues pertaining to the consistency of mathematics,
for if one contradiction is provable then everything is provable. Concern for
consistency was not a mere, skeptical exercise, for Bertrand Russell had just
shown that Gottlob Frege’s foundational system for mathematics was incon-
sistent. Frege had assumed that “the set of all x such that Φ(x)” exists for
each well-defined formula Φ(x) of set theory in which the variable x occurs free.
Russell showed that the existence of the set of all x such that x /∈ x leads imme-
diately to contradiction, even though x /∈ x seems to be a well-formed formula
of set theory. For suppose {x : x /∈ x} ∈ {x : x /∈ x}. Then by the membership
condition, {x : x /∈ x} /∈ {x : x /∈ x}. Similarly, if {x : x /∈ x} /∈ {x : x /∈ x},
then by the membership condition {x : x /∈ x} ∈ {x : x /∈ x}. So in either
case a contradiction results. The usual sort of response is to try to excise the
contradiction from set theory, leaving everything else more or less intact. But
if obvious assumptions led to contradiction before, why can’t the remaining ex-
istence assumptions do so again, particularly when unimaginable things (like a
well-ordering of the real numbers) are assumed to exist without showing how to
construct them using more basic existence assumptions.

A more radical approach was proposed by “finitists”, who urged a “back-to-
basics” approach in which mathematics should be developed from a thin basis
of functions so simple that they shouldn’t lead to trouble the way assump-
tions about the existence of infinite sets had. One interpretation of the finitist
program is that all mathematics should be developed from the much more con-
strained assumption that the primitive recursive functions exist. The primitive
recursive functions are a simple collection of intuitively computable functions
that can be constructed out of very simple functions and that plausibly capture
much of number theory (as we shall see).

The primitive recursive functions interest us for a different reason: they will
serve as our “springboard” into the general theory of computable functions.
Intuitively, they correspond to functions that can be computed with an under-
standing in advance about how far one must search for an answer. General

3



4 CHAPTER 2. PRIMITIVE RECURSION

computability includes functions in which you only need to search finitely far
but you don’t know in advance how far that might be. It’s sort of like the
difference between saying “go to the next town” as opposed to saying “go five
kilometers”.

We will be developing the theory of computability rigorously, from scratch
so that there is no guesswork left for you when we are done. The development of
the primitive recursive functions is the first step in that development. Nothing
will be thrown away later.

2.1 Zero-ary functions

Usually, a function is assumed to have at least one argument:

f(x) = y.

But why be closed-minded about it? It turns out to streamline a lot of the
theory of computability if we allow for the possibility of computable functions
with no argument. Needless to say, such functions are all constant functions, if
their values are defined at all:

f() = y.

Think of a computable zero-ary function as the result of running a computer
with no input. Whatever it returns is the value of the zero-ary function it
computes!

In set theory, one says that the n-ary function f : Xn → Y is literally the
set

{((x1, . . . , xn), y) : (x1, . . . , xn) ∈ Xn ∧ y ∈ Y ∧ f(x1, . . . , xn) = y}.

This still makes sense in the zero-ary case:

{((), y) : () ∈ X0 ∧ y ∈ Y ∧ f() = y}.

2.2 Basic functions

2.2.1 Zero-ary zero function

Our only basic zero-ary function is the zero-ary constant zero function. o′() = 0.

2.2.2 Unary zero-function

The usual zero function takes a single argument and returns zero no matter
what. o(x) = 0.

2.2.3 Successor

s(x) = x + 1.



2.3. BASIC OPERATIONS ON FUNCTIONS 5

2.2.4 Projection

(picking out an argument): pi
k(x1, . . . , xk) = xi.

2.2.5

Next we consider effective ways of building new functions out of old ones. Note
that these are operations on functions, not numbers.

2.3 Basic operations on functions

2.3.1 Composition

If f has arity m and each gi has arity k ≥ 0 then C(f, g1, . . . , gm) denotes the
unique k-ary function h such that for each k-ary ~x:

h(~x) = f(g1(~x), ..., gm(~x)).

Notice that the arity of g might be zero, in which case composition is not very
interesting, since the only possibility is C(g) = g.

2.3.2 Primitive Recursion

If f has arity k +2 and g has arity k, for k ≥ 0, then R(g, f) denotes the unique
(k + 1)-ary function h such that for each k-ary ~y:

h(0, ~y) = g(~y);
h(x + 1, ~y) = f(h(x, ~y), x, ~y).

Had we not allowed for zero-ary functions, we would have to add in a special
nuisance case for defining unary primitive recursive functions, for in that case
the arity of g is zero (check).

2.4 The set of primitive recursive functions

Prim = the least set X such that:

1. The basic functions are in X, and

2. X is closed under C and R.



6 CHAPTER 2. PRIMITIVE RECURSION

2.5 Primitive Recursive Derivations

Each function f in Prim can be defined from the basic functions using operators
C and R. We may think of the basic functions invoked as leaves in a tree whose
non-terminal nodes are labelled with C and R. Nodes labelled by C may have
any number of daughters and nodes labelled by R always have two daughters.
We may think of this tree as a program for computing the function so defined.
We will do several proofs by induction on the depth of this tree. This is similar
to doing inductive proofs in logic on the depth of embedding of the logical
connectives in a formula.

2.6 Primitive Recursive Relations

A relation R(x) is primitive recursive just in case its characteristic function χR

is primitive recursive:

χR(x) = 1 if R(x),
χR(x) = 0 if ¬R(x).

We will simplify notation by letting the relation stand for its own character-
istic function when no confusion results.

χR(x) = R(x).

2.7 A Stockpile of Primitive
Recursive Functions

This looks like a pretty simple programming language. But only a few primitive
recursions are required to produce most functions you would ever care about.
It is a beautiful thing to see how explosively it happens (cf. Cutland, p. 36).

2.7.1 Unary constant functions

The constant function ci(x) returns i on each input x. Observe that

c0(x) = o(x);
cn+1(x) = s(cn(x))

= C(s, cn)(x).

Hence:

c0(x) = 0;
cn+1(x) = C(s, cn)(x).



2.7. A STOCKPILE OF PRIMITIVE RECURSIVE FUNCTIONS 7

Notice, this is a recursive definition of a family of primitive recursive func-
tions ci(x), not a primitive recursive definition of a single primitive recursive
function c(i, x). In the lingo, a definition that puts a parameter into the argu-
ment list of a function is said to be uniform in that parameter. Thus, c(i, x) is
uniform in i, whereas ci(x) is not.

2.7.2 Zero-ary constant functions

The 0-ary constant function c′i() returns i on no arguments, and hence amounts
to the constant i. Observe that

c′0(0) = o′();
c′n+1() = s(c′n())

= C(s, c′n)().

2.7.3 Addition

I am going to go through this example in complete detail, showing the heuristic
procedure for arriving at an official primitive recursive derivation of a function.

Start with the ordinary, obvious recursion in ordinary mathematical nota-
tion.

y + 0 = y;
y + (x + 1) = (y + x) + 1.

Rewrite + and successor in prefix notation:

+(0, y) = y;
+(x + 1, y) = s(+(x, y)).

This is not the required form for primitive recursion. We need a unary
function g(y) on the right hand side of the base case and a ternary function
f(+(x, y), x, y) on the right hand side in the inductive case. Compose in pro-
jections to get the argument lists in the required form:

+(0, y) = p1
1(y);

+(x + 1, y) = s(p1
3(+(x, y), x, y)).

Now be painfully literal about composition being an operator on a fixed list
of arguments to arrive at the required form for primitive recursion:

+(0, y) = p1
1(y);

+(x + 1, y) = C(s, p1
3)(+(x, y), x, y)).

Now apply the primitive recursion operator:

+ = R(p1
1, C(s, p1

3)).

I’ll let you verify that the following derivations work:



8 CHAPTER 2. PRIMITIVE RECURSION

2.7.4 Multiplication

· = R(o, C(+, p1
3, p

3
3))

= R(o, C(R(p1
1, C(s, p1

3)), p
1
3, p

3
3)).

Notice that the second line simply substitutes in the derivation tree for +,
given just above. Remember, a real derivation tree doesn’t have any functions
occurring it it other than basic functions. Any other functions appearing simply
abbreviate their own derivation trees. Nonetheless, once a function’s derivation
tree is written down, there is no harm in using such an abbreviation, which is
what I shall do from now on.

2.7.5 Exponentiation

How many nested primitive recursions occur in the following derivation tree
when abbreviations are eliminated?

Exp = R(c1, C(·, p1
3, p

3
3)).

2.7.6 Decrement

Dec(x) = 0 if x = 0 and Dec(x) = x − 1 otherwise. We get this by a sneaky
application of R.

Dec(0) = o′();
Dec(x + 1) = x

= p2
2(Dec(x), x).

Thus,

Dec = R(o′, p2
2).

2.7.7 Cutoff Subtraction

This is just like addition, except that successor is replaced with decrement.

y−̇0 = y;
y−̇(x + 1) = Dec(y−̇x).

Hence:

−̇ = R(p1
1, C(Dec, p1

3, p
3
3)).



2.7. A STOCKPILE OF PRIMITIVE RECURSIVE FUNCTIONS 9

2.7.8 Factorial

0! = 1;
(x + 1)! = x! · (x + 1);

so
! = R(c′1, C(·, p1

2, C(s, p2
2)).

I think we have all seen enough of official derivations. Now that you have
the idea, I will just write the obvious recurrence equations, leaving the formal
translation to you.

2.7.9 Signature

sg(0) = 0;
sg(x + 1) = 1

2.7.10 Reverse signature

sg(0) = 1;
sg(x + 1) = 0.

2.7.11 Absolute difference

|x− y| = (x−̇y) + (y−̇x).

2.7.12 Identity

χ=(x, y) = sg(|x− y|).

2.7.13 Ordering

χ>(x, y) = sg(x−̇y).

2.7.14 Min

min(x, y) = x−̇(x−̇y).

2.7.15 Max

max(x, y) = x + (y−̇x).



10 CHAPTER 2. PRIMITIVE RECURSION

2.7.16 Remainder when x is divided by y

Incrementing the numerator x increments the remainder until the remainder is
incremented up to y, when the remainder drops to 0 because another factor of
y can be taken out of x.

rm(0, y) = 0;
rm(x + 1, y) = rm(x, y) + (y > rm(x, y) + 1).

2.7.17 Quotient

qt(x, y) = the greatest lower bound of x/y in the natural numbers, which is
often denoted dx/ye. The idea here is that we get a bigger quotient each time
the numerator x is incremented to include another factor of y.

qt(0, y) = 0;
qt(x + 1, y) = qt(x, y) + (y = rm(x, y) + 1)).

2.7.18 Divisibility

x|y is the relation “x divides y evenly”.

x|y = sg(rm(x, y)).

Exercise 2.1 Provide full formal definitions (i.e., in terms of C, R, and the
basic functions only) for three of the functions listed from signature on.

2.8 Derived Primitive Recursive Operators

Wait a minute! The construction rules are tedious (think about using sg as
a conditional branch). Wouldn’t it be better to prove that Prim is closed
under more operators? Then we could use these as operators to construct more
primitive recursive functions in a more natural way instead of always putting
them into this clunky form. Closure laws are very desirable— if we find more
operators the collection is closed under, we have more ways of “reaching” each
element of the class from basic objects). The collection Prim is closed under
each of the following operators:

2.8.1 Substitution of a constant

If f(x1, . . . , xi, . . . , xn + 1) is primitive recursive, then so is h(x1, . . . , xn) =
g(x1, . . . , k, . . . , xn). The idea is that we can compose in appropriate projections
and a constant function:

h(x1, . . . , xn) = g(p1
n(x1, . . . , xn),

. . . , ck(pi
n(x1, . . . , xn),

. . . , pn
n(x1, . . . , xn)).



2.8. DERIVED PRIMITIVE RECURSIVE OPERATORS 11

2.8.2 Finite Sums

Let {fz : z < n} be a collection of unary functions. Think of

gx(y) =
∑
z<x

fz(y)

as a function of y, for fixed x. Then we may think of summation as an x-ary
operation on the first x functions in the indexed set:

∑
x
(f0, . . . , fx−1)(y) =

∑
z<x

fz(y).

We can establish that operation
∑

z<x preserves primitive recursiveness
as follows:

∑
z<0

fz(y) = 0;

∑
z<x+1

fz(y) =
∑
z<x

fz(y) + fx(y).

2.8.3 Bounded Sum

The preceding construction is non-uniform in x. There is also a uniform version
of bounded summation on a single function. Let f be a binary function. We
may think of bounded summation as a unary operation on f as follows:

(
∑

(f))(z, y) = (
∑
z<x

(f))(y) =
∑
z<x

f(z, y)

as a function of x and y. To see that this operation preserves primitive recur-
siveness, write:

∑
z<0

f(z, y) = 0;

∑
z<x+1

f(z, y) =

[∑
z<x

f(z, y)

]
+ f(x, y).

2.8.4 Finite Products

Similar to the sum case.
∏
z<0

fz(y) = 1;

∏
z<x+1

fz(y) =
∏
z<x

fz(y) · fx(y).



12 CHAPTER 2. PRIMITIVE RECURSION

2.8.5 Bounded Product

Similar to bounded sum.
∏
z<0

f(z, y) = 1;

∏
z<x+1

f(z, y) =

[∏
z<x

f(z, y)

]
· f(x, y).

2.8.6 Definition by Cases

Let the Pi be mutually exclusive and exhaustive primitive recursive relations.
From now on, such relations will be identified with their characteristic functions,
so that Pi(x) may be viewed as a Boolean-valued function.

∑

z<k+1

gz(x) · Pz(x) =





g1(x) if P1(x);
g2(x) if P2(x);

...
gk(x) if Pk(x).

2.9 Logical Operators

2.9.1 Conjunction

P (x) ∧Q(x) = P (x) ·Q(x).

2.9.2 Negation

¬P (x) = sg(P (x)).

2.9.3 Disjunction

P (x) ∨Q(x) = max(P (x), Q(x));
= max(P (x), Q(x)).

2.9.4 Conditional

P (x) → Q(x) = ¬P (x) ∨Q(x).

2.9.5 Biconditional

P (x) ↔ Q(x) = P (x) → Q(x) ∧Q(x) → P (x).



2.9. LOGICAL OPERATORS 13

2.9.6 Bounded Universal quantifier

(∀z < x) P (z, ~y) =
∏
z<x

P (z, ~y).

2.9.7 Bounded Existential quantifier

(∃z < x) P (z, ~y) = sg(
∑
z<x

P (z, ~y)).

2.9.8 Bounded Minimization

g(x, y) = minz≤x[f(z, y) = 0];
= “the least z ≤ x such that f(x, y) = 0”.

By this we mean that if no root of f is found up to the bound, we return the
bound to keep the function total. If the value returned under search bound n is
strictly less than n, then a root of f was found, so we don’t increment when the
search bound is raised to n + 1. If the value returned under search bound n is
identical to n, then either we (coincidentally) found a root at the last minute,
or we stopped because we hit the bound. So we have to check, further, if the
bound is a root in that case. Thus, we increment just in case the previous search
hit the bound and the bound is not a root.

minz≤0(f(z, ~y) = 0) = 0;
minz≤x+1(f(z, ~y) = 0) = minz≤x(f(z, ~y) = 0) +

+[minz≤x(f(z, ~y) = 0) = x ∧ f(x, ~y) > 0];
minz≤x(P (z, ~y)) = minz≤xsg(χP (z, ~y)).

2.9.9 Bounded Maximization

maxz≤x (P (x, ~y)) = x−̇minz≤x

(
P (x−̇z, ~y)

)
.

2.9.10 Iteration

f0(y) = y;
fx+1(y) = f(fx(y)).

Exercise 2.2 Show that for each unary primitive recursive function, there is a
unary, monotone primitive recursive function that is everywhere greater. Recall
that a unary,monotone function f satisfies x < y ⇒ f(x) < f(y).

Exercise 2.3

1. Prove closure of Prim under any one of the operators.

2. Provide full formal definitions for any three of the logical operators.



14 CHAPTER 2. PRIMITIVE RECURSION

2.10 Some Number Theoretical Constructions

With our new operations we are on Easy Street. The Prime number predicate
is programmed just by writing its logical definition! How’s that for a handy
computer language?

2.10.1 Primality

Prime(x) = 1 < x ∧ (∀z < x) (z = 1 ∨ ¬(z|x)).

2.10.2 The first prime after x

This one uses Euclid’s theorem that there exists at least one prime p such that
for any x, x < p ≤ x! + 1. Why is that? Well, x! + 1 has some prime factor
≤ x!+1 by the uniqueness and existence of prime factorizations (the fundamental
theorem of arithmetic). But x! + 1 has no factor ≤ x, since each such divisor
leaves remainder 1. Hence, x! + 1 has a prime factor x < p ≤ x! + 1.

h(x) = minz≤x!+1(Prime(z) ∧ x < z).

2.10.3 The xth prime

p(0) = 2;
p(x + 1) = h(p(x)).

2.10.4 Exponent of the xth prime in the prime factoriza-
tion of y

How do we know it’s unique? How do we know the search bound is high enough?
(Show by induction that 2y > y. 2 is the lowest possible prime factor of y, so
we’re safe.)

[y]x = maxz<y(p(x)z|y).

2.11 Gödel Numbering Finite Sequences

Let ~x be an n-ary sequence. Define

2.11.1 The Gödel coding of ~x

For each number n ≥ 1, the prime factorization of n is a finite product of form

Πi≤mp(i)ki .

We know from the fundamental theorem of arithmetic that the prime factoriza-
tion exists and is unique, for each number n ≥ 1. Think of the prime factoriza-
tion of n as encoding a finite sequence as follows:



2.11. GÖDEL NUMBERING FINITE SEQUENCES 15

1. The first prime whose exponent is zero in the prime factorization deter-
mines the length of the coded sequence.

2. The exponents of earlier prime factors are one greater than the item in
the corresponding position in the coded sequence.

There is just one flaw: zero encodes no sequence since each prime factorization
is a product and the empty product is 1. So we will take n to encode a sequence
just in case the prime factorization of n + 1 encodes the sequence according to
the preceding scheme. Now 0 codes () because 0 + 1 = Πi≤0p(i)0.

Hence 5 encodes (0, 0) because 5+1 = 6 = 20+130+1, but so does 12 because
12 = 20+130+15070+1 because the “halt sign” (a 0 exponent) occurs in position
2.

There is no question of this coding being primitive recursive, since it is
polyadic (it takes arbitrary, finite numbers of arguments) and no primitive re-
cursive function is polyadic. But we can primitive recursively decode such code
numbers as follows.

To decode a number n as a sequence, we have to remember to subtract one
from each exponent in the prime factorization of n + 1. The standard notation
for the xth position in the sequence coded by the following:

2.11.2 Decoding

(y)x = the item occurring in the xth position in the sequence coded by y.

To keep the function total, we take the first position to be position 0.

(y)x = [y + 1]x−̇1.

2.11.3 Length of decoded sequence

(number of consecutive prime factors of x)
Using the convention that every position in the sequence corresponds to a prime
factor, we can simply search for the first non-factor of the code number. Since
we count prime factors starting with 0, this corresponds to the length of the
coded sequence.

lh(x) = minz≤x¬(p(z)|x).

Now define: n is a Gödel number of ~x just in case ~x = ((n)0, . . . , (n)lh(n)).
There will be infinitely many Gödel numbers for each finite sequence, but each
such number codes a unique sequence due to the existence and uniqueness of
prime factorizations (the fundamental theorem of arithmetic).

It will sometimes be useful to choose the least such Gödel number for a
sequence. That is given by

〈x0, . . . , xn〉 = Πi≤np(i)xi+1.

Then we have
(〈x0, . . . , xn〉)i = xi,

for each i ≤ n.



16 CHAPTER 2. PRIMITIVE RECURSION

Exercise 2.4 Bijective Binary Sequence Encoding
Define the binary primitive recursive function

〈x, y〉 =
1
2
[(x + y)(x + y + 1)] + x.

1. This coding is evidently primitive recursive. Show that it is a bijection
N2 7→ N. Hint: this is just a polynomial expression for the obvious enu-
meration procedure. Think of the pairs as being presented in an N ×N
array with 〈0, 0〉 at the upper left. Given 〈x, y〉, recover the code number
by counting pairs, starting at 〈0, 0〉, along diagonals, from the lower left to
the upper right. It’s pretty clear from the picture that there will be a 1-1
correspondence between pairs and the length of the paths to them, but that
isn’t yet a proof. One way to proceed is this:

(a) Show that

1
2
[
(x + y)(x + y + 1)

]
=

∑

t≤x+y

t

= the number of pairs 〈z, w〉 occuring in
diagonals to the lower left of 〈x, y〉.

(b) Show that x = the number of pairs remaining to be counted to the
upper right of 〈x, y〉.

2. Show that the decoding functions are also primitive recursive.

3. Use the preceding results and codings to produce n-ary primitive recursive
encodings and decodings.

2.12 Fancy Recursion

One reason codings are nice is that they give us new and more elegant forms of
recursion for free. The basic idea is that the coding allows primitive recursion
to simulate the fancy form of recursion by looking at successive code numbers
of the current “computational state” of the fancy form of recursion.

Exercise 2.5 Simultaneous Recursion (Péter)
SRi(g1, . . . , gk, f1, . . . , fk) is the unique function hi such that:

hi(0, y) = gi(y);
hi(n + 1, y) = fi(h1(n, y), . . . , hk(n, y), n, y).

Notice that k is constant. Use the k-ary sequence encoding of exercise 1.4 to
show that Prim is closed under the SR operator.



2.13. BREAKING THE PRIMITIVE RECURSION BARRIER 17

Exercise 2.6 Course of Values Recursion (Péter)
Suppose that s1(x), . . . , sk(x) ≤ x.
Then CV R(g, f, s1, . . . , sk) is the unique function h such that:

h(0, y) = g(y);
h(n + 1, y) = f(h(s1(n), y), . . . , h(sk(n), y), n, y).

Use the Gödel coding to show that the set Prim is closed under the CV R oper-
ator.

Exercise 2.7 Fibonacci Sequence
Show that the following function is primitive recursive:

f(0) = 1;
f(1) = 1;

f(x + 2) = f(x) + f(x + 1).

2.13 Breaking the Primitive Recursion Barrier

We have lots of examples of recursion operations that yield nothing new. This
may lull you into assuming that every kind of recursion can be massaged into
primitive recursion by means of suitable codings. But that would be a mis-
take, for there is an intuitively effective recursion operator that generates non-
primitive recursive functions.

2.13.1 Double recursion

R(g1, g2, g3, g4) is the unique h such that:

h(0, y, z) = g1(y, z);
h(x + 1, 0, z) = g2(h(x, c, z), x, z);

h(x + 1, y + 1, z) = g4(h(x + 1, y, z), h(g3(h(x + 1, y, z), x, y, z), x, z), x, y, z).

Double recursion allows one to apply a variable number of primitive recursions
depending on the value of x. To see this, observe that:

• For a given value of x, the third clause decrements y down to 0.

• When y reaches 0, you hit the second clause, which decrements x to x− 1
and restarts the primitive recursion with y set to some fixed constant c.

• Finally, when x is decremented down to 0, we hit the first clause, which
is the base case.

Since double recursion can simulate arbitrary numbers of primitive recursions, it
is fairly intuitive that a double recursive function ought to be able to grow faster
than any given primitive recursive function. If the function uses n primitive
recursions at stage n, then for each number of primitive recursions, after some
time it does something that would require at least one more primitive recursion.



18 CHAPTER 2. PRIMITIVE RECURSION

2.13.2 The Ackermann function (1928)

The Ackermann function is historically the first example of an intuitively effec-
tive function that is not primitive recursive. (cf. Rogers, p. 8). The Ackermann
function grows so fast that some skeptical finitistic mathematicians have de-
nied that it is computable (or that it even exists). This sounds crazy until one
considers that the exact values for small arguments can only be defined (in a
book length definition) by the function itself! The Ackermann function may be
defined as follows:

1. a(0, 0, z) = z;

2. a(0, y + 1, z) = a(0, y, z) + 1;

3. a(1, 0, z) = 0;

4. a(x + 2, 0, z) = 1;

5. a(x + 1, y + 1, z) = a(x, a(x + 1, y, z), z).

Exercise 2.8 The Ackermann function is more intuitive than it looks at first.
This will be apparent after you do the following.

1. Show that the Ackermann function really does result from applying DR to
primitive recursive functions. Don’t let all those clauses scare you!

2. Find simple primitive recursive definitions of each of the functions gi(x, y) =
a(i, x, y). Prove that you are correct.

3. Relate this fact to the point made about uniformity when we introduced
bounded sums as an operator.

4. What are g0, g1, and g2?

2.13.3 The Péter Function

The Péter function is also not primitive recursive. It is a simplified version of
Ackermann’s function and is called the Ackermann function in Cutland (p. 46).

p(0, y) = y + 1;
p(x + 1, 0) = p(x, 1);

p(x + 1, y + 1) = p(x, p(x + 1, y)).

2.14 Even Fancier Recursion

One can generalize the idea of double recursion by adding recursive variables and
piling on new recursion conditions. So while double recursion does a variable
number of nested primitive recursions, triple recursion allows for a variable
number of double recursions, and so forth. Each time we get something new.


