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Chapter 12

Empirical Inqury Without
Certainty

Problems in Σ0
1 are computationally verifiable, problems in Π0

1 are computation-
ally refutable, and problems in ∆0

1 are computationally decidable. What about
problems in Σ0

2,Π
0
2, and ∆0

2? Should we just turn our backs on them because
they lie beyond the realm of either positive or negative certainty?

Natural science faces a similar difficulty. We all believe that there are only
finitely many kinds of fundamental particles because that is how many our
current theories posit and we haven’t seen any more than that. But there may
be infinitely many kinds that appear at ever higher energies that haven’t been
observed at close hand yet. Is there any sense in which one could be said to
find the truth about such empirically abstruse questions, which lie beyond the
scope of absolute verification and refutation?

Human nature being what it is, you might expect scientists to be lulled
into complacency that no new particles will be found during the long dry spells
in which no new particles are observed. When new particles are discovered,
there are sensational headlines about physics being shaken to the core until the
recalcitrant particles are domesticated in the next round of textbook theories.
That happened, for example, in 1974, when Samuel C. C. Ting discovered the
unexpected “J” particle, which violated the extant quark model and precipitated
the postulation of the conserved quantity “charm”. Then after a quiescent
period, the old psychological complacency begins to reassert itself until the
next discovery of new particles, etc. So if there are just finitely many particles,
eventually they will all be discovered and the ensuing complacency is never
again disturbed, so we arrice at stable opinion that there are just finitely many
particles. But if there are infinitely many, possibly appearing after ever longer
dry spells, then opinion will be punctuated infinitely often by periods during
which it is suspected that new particles will keep appearing forever. In other
words, the natural human attitude converges to 1 ⇐⇒ it is true that there are
but finitely many particles. One may then say that our native tendency toward
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102 CHAPTER 12. EMPIRICAL INQURY WITHOUT CERTAINTY

credibility verifies the finiteness hypothesis in the limit.
Similarly, one may say that the hypothesis expressing an infinite variety

of particle types is refutable in the limit in the sense that some method
converges to 0 ⇐⇒ the hypothesis is false.

It would be nicer, of course, if you could converge to the truth value of the
hypothesis whatever it happens to be. Say that a method decides a hypothesis
in the limit ⇐⇒ it converges to the right answer whatever it happens to be.
Then even though it would be possible to say when science has found the right
answer, one would be assured that eventually it will produce and stick with the
right answer, after an arbitrary number of mistakes and retractions of earlier
answers.

Unfortunately, the hypothesis that there are at most finitely many particle
types is not decidable in the limit, for let an arbitrary method be given. A
skeptical demon can withhold new particles until the given method converges to
“finitely many particle types” (if the method refuses to, then no further particles
appear and it fails to converge to the truth). Then new particles are presented
according to some schedule until the method takes the bait and converges to
“infinitely many particle types” (again, it the method refuses to, then infinitely
many particles appear and the method fails to converge to the truth). So in
the limit of inquiry, the method changes its mind infinitely often, so it fails to
converge to the truth.

Why not apply the same concepts of fallible convergence to the truth to
formal or mathematical questions that defy absolute refutation or verification?
To do so, one must entertain fallible formal methods that find the right answer
without halting. That sounds odd, but only in light of the persistent, but
mistaken assumption that formal questions (relations of ideas) must always
issue in certainty. That assumption is clearly false of questions such as whether
Wi is infinite, which is neither effectively verifiable nor effectively refutable.
Come to think of it, this question is formally quite analogous to the question
whether there are infinitely many kinds of subatomic particles. If you were to
do computational experiments on φi to determine if it halts on infinitely many
inputs, the situation would be just as ambiguous as is the physicist’s position
with respect to particles, for experiments that result in halting might come ever
farther apart.

Think of a fallible formal method as a computable means for producing
successive guesses. This may be viewed as a two-place recursive function f ,
where f(x, t) denotes the tth successive guess by f about the right value to
output on input x. Call f a guessing function. The idea is that the guessing
function my have some setbacks, but eventually it stabilizes to the right output
for input x. Accordingly (Gold 1965), say that ψ is limiting partial recursive
iff

(∃ total recursivef)(∀x, y) ψ(x) ' y ⇐⇒ (∃t)(∀t′ ≥ t) f(x, t) = y.

Thus, ψ is limiting recursive just in case f eventually stabilizes the value of ψ
and refuses to stabilize to any value if ψ(x) ↑. Let Limpart denote the set of
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all limiting partial recursive functions. A function is limiting recursive just
in case it is a total limiting partial recursive function.

Then in direct analogy to the definitions of computational verifiability, refutabil-
ity, and decidability, define:

S is computationally verifiable in the limit ⇐⇒ S has a limiting
partial recursive verification function.

S is computationally refutable in the limit ⇐⇒ S has a limiting
partial recursive refutation function.

S is computationally decidable in the limit ⇐⇒ S has a limiting
recursive characteristic function.

So now it makes perfectly good sense to have a fallible method for converging
to the formal truth, just as in the empirical case. Decidability is still two-sided
verifiability:

Proposition 12.1 S is computably decidable in the limit iff S is both com-
putably refutable in the limit and computably verifiable in the limit.

Exercise 12.1 Prove the preceding proposition.

Recall that the empirical hypothesis “infinitely many particle types” is refutable
in the limit but not decidable in the limit. Similarly, one may now show that
the question whether Wi is infinite has a similar standing in the formal domain.

Proposition 12.2 The formal problem Inf is formally refutable in the limit
but is not formally decidable in the limit.

Proof. Judging from the discussion of particles, the obvious strategy for
the guessing function is to be pessimistic about Wx being infinite when no
“new” items are discovered in Wx and to be optimistic each time a new item is
discovered in Wx. The idea can be implemented as follows.

f(x, 0) = 0;

f(x, t+ 1) = (∃y ≤ n+ 1)
(

(a) U(x, t+ 1, (y)0, 〈(y)1〉) ∧
(b) (∀t′ ≤ t) ¬U(x, t′, (y)0, 〈(y)1〉)

)
.

Suppose that Wi is finite. Then there exists t0 such that

(∀w ∈Wx)(∃t′, y ≤ n0) U(x, t′, (y)0, 〈w〉).

Furthermore,

(∀w /∈Wx)(∀t)(∀y ≤ t+ 1) ¬U(x, t+ 1, (y)0, 〈(y)1〉).

So for all t′ ≥ t0, either (a) fails at t′ or (b) fails at t′. So limt→∞f(x, t) = 0,
as required.
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Suppose that Wi is finite. Then there are infinitely many m at which both
(a) and (b) hold. Hence, Inf is computably refutable in the limit.

To see that Inf is not computably decidable in the limit, let total recursive
guessing function f be given. You can use the recursion theorem to implement
the obvious demon strategy against f . The demonic index d should add a new
element to Wd at resource bound t if f(d, t) = 0 and should refuse to add a new
element to Wd at resource bound t otherwise. This is pretty much the strategy
employed by the empirical demon in the particle example. To implement this
strategy, first one must effectively count the number of times f returns 0.

countn(i, 0) = (f(i, 0) = n);
countn(i, t+ 1) = countn(i, t) + (f(i, t+ 1) = n).

Then define
ψ(i, x) ' (µz) count0(i, z) = x.

Apply the s-m-n theorem in the usual way to obtain total recursive g such that

φg(i)(x) ' ψ(i, x).

Apply the Kleene recursion theorem to produce the demonic fixed-point d such
that

φg(d) = φd.

Thus:
φd(x) ↓ ⇐⇒ (∃t) count0(i, t) ≥ x.

So if there are infinitely many t at which f(d, t) = 0, then Wd is infinite and f
fails to converge to 1. And if there are but finitely many t at which f(d, t) = 0,
then Wd is finite and f fails to converge to 0. So f fails to decide Inf in the
limit. a

Exercise 12.2 By arguments closely analogous to those just given, show that
Tot is refutable in the limit but not decidable in the limit. In addition to the
proof, explain the respective strategies of the guessing method and of the compu-
tational demon informally.

So it is clear that fallibility and convergence are just as applicable to formal
questions as to empirical questions.

The theory of computability is filled with suggestive and useful analogies.
You already know that

S is computably verifiable ⇐⇒ S ∈ Σ0
1;

S is computably refutable ⇐⇒ S ∈ Π0
1;

S is computably decidable ⇐⇒ S ∈ ∆0
1.

You might already suspect the following, natural extension of these results.
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Proposition 12.3

S is computably verifiable in the limit ⇐⇒ S ∈ Σ0
2;

S is computably refutable in the limit ⇐⇒ S ∈ Π0
2;

S is computably decidable in the limit ⇐⇒ S ∈ ∆0
2.

Proof. I prove just the first statement, leaving the other two to you. Suppose
that S is computably verifiable in the limit. Let guessing function f witness
this fact. Then

x ∈ S ⇐⇒ (∃t)(∀t′ ≥ t) f(x, t′) = 1.

Since f(x, t′) is recursive, the quantifier prefix of the preceding statement wit-
nesses that S ∈ Σ0

2.
Conversely, suppose that S ∈ Σ0

2. So for some recursive relation R, you have

x ∈ S ⇐⇒ (∃n)(∀m) R(x, n,m).

So if x ∈ S, there is some n in virtue of which x ∈ S. Construct a guessing
function f according to the following idea. Function f provisionally concludes
that x ∈ S in virtue of 0 until some m is found such that ¬R(x, 0,m). At
that point, f loses confidence and concludes that x /∈ S. Thereafter, f regains
confidence that x ∈ S in virtue of 1 until some m is encountered such that
¬R(x, 1,m), and so forth. So think of the current n in virtue of which f thinks
that x ∈ S as f ’s current reason for concluding that x ∈ S. The current reason
is the first unrefuted reason, in the following sense:

reason(x, 0) = 0;
reason(x, n+ 1) = reason(x, n) + (∀m ≤ n+ 1) R(x, reason(x, n),m).

The function reason is total recursive since it is defined by primitive recursive
operations over a recursive relation. Then define the total recursive function

f(x, 0) = 1;
f(x, t+ 1) = (reason(x, t) = reason(x, t+ 1)).

So f is total recursive since it is defined in terms of primitive recursive operators
over a total recursive function. Then

x ∈ S ⇐⇒ (∃n)(∀m) R(x, n,m)
⇐⇒ (∃n)(∀m ≥ n) reason(x, n) = reason(x,m)
⇐⇒ (∃n)(∀m ≥ n) reason(x,m) = reason(x,m+ 1)
⇐⇒ (∃n)(∀m ≥ n) f(x,m) = 1.

So f verifies S in the limit. a

Exercise 12.3 Prove the remaining two statements in the preceding proposi-
tion. Hint: use the first statement to prove the second statement and exercise
12 to prove the third statement.
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Corollary 12.4 The guessing function f in the preceding theorem can be chosen
to be primitive recursive.

Proof. The relation R can be chosen to be primitive recursive and then since
only primitive recursive operators are applied in the definition of f , we have
that f is also primitive recursive. a


