1

Propositional Logic

1.1 Propositions and Connectives

Traditionally, logic is said to be the art (or study) of reasoning; so in order
to describe logic in this tradition, we have to know what ‘reasoning’ is. Ac-
cording to some traditional views reasoning consists of the building of chains
of linguistic entities by means of a certain relation ‘... follows from ..., a view
which is good enough for our present purpose. The linguistic entities occurring
in this kind of reasoning are taken to be sentences, i.e. entities that express a
complete thought, or state of affairs. We call those sentences declarative. This
means that, from the point of view of natural language our class of acceptable
linguistic objects is rather restricted.

Fortunately this class is wide enough when viewed from the mathemati-
cian’s point of view. So far logic has been able to get along pretty well under
this restriction. True, one cannot deal with questions, or imperative state-
ments, but the role of these entities is negligible in pure mathematics. I must
make an exception for performative statements, which play an important role
in programming; think of instructions as ‘goto, if ... then, else ..., etc. For
reasons given below, we will, however, leave them out of consideration.

The sentences we have in mind are of the kind ‘27 is a square number’,
‘every positive integer is the sum of four squares’, ‘there is only one empty
set’. A common feature of all those declarative sentences is the possibility of
assigning them a truth value, true or false. We do not require the actual deter-
mination of the truth value in concrete cases, such as for instance Goldbach’s
conjecture or Riemann’s hypothesis. It suffices that we can ‘in principle’ as-
sign a truth value.

Our so-called two-valued logic is based on the assumption that every sen-
tence is either true or false, it is the cornerstone of the practice of truth tables.

Some sentences are minimal in the sense that there is no proper part which
is also a sentence. e.g. 5 € {0,1,2,5, 7}, or 242 = 5; others can be taken apart
into smaller parts, e.g. ‘c is rational or ¢ is irrational’ (where ¢ is some con-
stant). Conversely, we can build larger sentences from smaller ones by using

6 1 Propositional Logic

connectives. We know many connectives in natural language; the following list
is by no means meant to be exhaustive: and, or, not, if ... then ..., but, since,
as, for, although, neither ... nor In ordinary discourse, and also in infor-
mal mathematics, one uses these connectives incessantly; however, in formal
mathematics we will economise somewhat on the connectives we admit. This
is mainly for reason of exactness. Compare, for example, the following two
sentences: “w is irrational, but it is not algebraic”, “Max is a Marxist, but he
is not humourless”. In the second statement we may discover a suggestion of
some contrast, as if we should be surprised that Max is not humourless. In the
first case such a surprise cannot be so easily imagined (unless, e.g. one has just
read that almost all irrationals are algebraic); without changing the meaning
one can transform this statement into “r is irrational and = is not algebraic”.
So why use (in a formal text) a formulation that carries vague, emotional un-
dertones? For these and other reasons (e.g. of economy) we stick in logic to a
limited number of connectives, in particular those that have shown themselves
to be useful in the daily routine of formulating and proving.

Note, however, that even here ambiguities loom. Each of the connectives
has already one or more meanings in natural language. We will give some
examples:

1. John drove on and hit a pedestrian.

. John hit a pedestrian and drove on.

. If T open the window then we’ll have fresh air.
. If I open the window then 1 + 3 = 4.

.If 1+ 2 =4, then we’ll have fresh air.

. John is working or he is at home.

7. BEuclid was a Greek or a mathematician.

Sy T N

From 1 and 2 we conclude that ‘and’ may have an ordering function in time.
Not so in mathematics; “xr is irrational and 5 is positive” simply means that
both parts are the case. Time just does not play a role in formal mathematics.
We could not very well say “r was neither algebraic nor transcendent before
1882”. What we would want to say is “before 1882 it was unknown whether
7 was algebraic or transcendent”.

In the examples 3-5 we consider the implication. Example 3 will be gener-
ally accepted, it displays a feature that we have come to accept as inherent to
implication: there is a relation between the premise and conclusion. This fea-
ture is lacking in the examples 4 and 5. Nonetheless we will allow cases such
as 4 and 5 in mathematics. There are various reasons to do so. One is the
consideration that meaning should be left out of syntactical considerations.
Otherwise syntax would become unwieldy and we would run into an esoteric
practice of exceptional cases. This general implication, in use in mathemat-
ics, is called material implication. Some other implications have been studied
under the names of strict implication, relevant implication, etc.

Finally 6 and 7 demonstrate the use of ‘or’. We tend to accept 6 and to
reject 7. One mostly thinks of ‘or’ as something exclusive. In 6 we more or

1.1 Propositions and Connectives 7

less expect John not to work at home, while 7 is unusual in the sense that we
as a rule do not use ‘or’ when we could actually use ‘and’. Also, we normally
hesitate to use a disjunction if we already know which of the two parts is the
case, e.g. “32 is a prime or 32 is not a prime” will be considered artificial (to
say the least) by most of us, since we already know that 32 is not a prime. Yet
mathematics freely uses such superfluous disjunctions, for example “2 > 2”
(which stands for “2 > 2 or 2 = 2”).

In order to provide mathematics with a precise language we will create an
artificial, formal language, which will lend itself to mathematical treatment.
First we will define a language for propositional logic, i.e. the logic which
deals only with propositions (sentences, statements). Later we will extend our
treatment to a logic which also takes properties of individuals into account.

The process of formalization of propositional logic consists of two stages:
(1) present a formal language, (2) specify a procedure for obtaining valid or
true propositions. '

We will first describe the language, using the technique of inductive def-
initions. The procedure is quite simple: First give the smallest propositions,
which are not decomposable into smaller propositions; next describe how com-
posite propositions are constructed out of already given propositions.

Definition 1.1.1 The language of propositional logic has an alphabet consist-
ing of

(i) proposition symbols : pe, p1, P2y ...,

(%) connectives : A, NV, —, =, <, L,

(#) auxiliary symbols : (,).

The connectives carry traditional names:

A - and - conjunction

vV -or - disjunction

— ~if ..., then ... - implication

- - not - negation

— - iff - equivalence, bi-implication
L - falsity - falsum, absurdum

The proposition symbols and L stand for the indecomposable propositions,
which we call atoms, or atomic propositions.

Definition 1.1.2 The set PROP of propositions is the smallest set X with
the properties

(i) p,eX(ieN), Le X,

() g e X = (0AY), (pVY), (p—), (pey) €X,

(t3) p € X = () € X.

The clauses describe exactly the possible ways of building propositions. In
order to simplify clause (#) we write ¢, % € X = (plt) € X, where (I is one

8 1 Propositional Logic

of the connectives A, V, —, <.

A warning to the reader is in order here. We have used Greek letters ¢, 9
in the definition; are they propositions? Clearly we did not intend them to be
so, as we want only those strings of symbols obtained by combining symbols
of the alphabet in a correct way. Evidently no Greek letters come in at all!
The explanation is that ¢ and 1 are used as variables for propositions. Since
we want to study logic, we must use a language to discuss it in. As a rule
this language is plain, everyday English. We call the language used to discuss
logic our meta-language and ¢ and ¢ are meta-varigbles for propositions. We

could do without meta-variables by handling (ii) and (iii) verbally: if two"

propositions are given, then a new proposition is obtained by placing the
connective A between them and by adding brackets in front and at the end,
etc. This verbal version should suffice to convince the reader of the advantage
of the mathematical machinery.

Note that we have added a rather unusual connective, 1. Unusual, in
the sense that it does not connect anything. Logical constant would be a
better name. For uniformity we stick to our present usage. 1 is added for
convenience, one could very well do without it, but it has certain advantages.
One may note that there is something lacking, namely & symbol for the true
proposition; we will indeed add another symbol, T, as an abbreviation for the
"true” proposition.

FEramples.

(P7 — po), ((L Vps2) A (—p2)) € PROP.
p1opr, L, ((— A& PROP

It is easy to show that something belongs to PROP (just carry out the
construction according to 1.1.2); it is somewhat harder to show that something
does not belong to PROP. We will do one example:

- 1¢ PROP.

Suppose = L€ X and X satisfies (i), (ii), (iii) of Definition 1.1.2. We
claim that Y = X — {== 1} also satisfies (i), (ii) and (iii). Since L,p; € X,
also L,p; €Y. If p,9p € Y, then ¢, € X. Since X satisfies (i) (pOy) € X.
From the form of the expressions it is clear that (ph) # == L (look at the
brackets), so (p[¢)) € X — {~— L} = Y. Likewise one shows that ¥ satisfies
(iii). Hence X is not the smallest set satisfying (i), (ii) and (iii), so == L
cannot belong to PROP.

Properties of propositions are established by an inductive procedure anal-
ogous to definition 1.1.2: first deal with the atoms, and then go from the parts
to the composite propositions. This is made precise in

1.1 Propositions and Connectives 9

Theorem 1.1.3 (Induction Principle) Let A be a property, then A(p)
holds for all ¢ € PROP if

(2) A(pi), for all t,and A(L),

(i) A(p), A(¥) = A((pl])),

(i) A(p) = A((=p))-
Proof. Let X = {¢ € PROP | A(yp)}, then X satisfies (i), (ii) and (iii) of
definition 1.1.2. So PROP C X, i.e. for all ¢ € PROP A(yp) holds. 0O

We call an application of theorem 1.1.3 a proof by induction on . The
reader will note an obvious similarity between the above theorem and the
principle of complete induction in arithmetic.

The above procedure for obtaining all propositions, and for proving proper-
ties of propositions is elegant and perspicuous; there is another approach, how-
ever, which has its own advantages (in particular for coding): consider propo-
sitions as the result of a linear step-by-step construction. E.g. ((—po) —L)
is constructed by assembling it from its basic parts by using previously con-
structed parts: pg ... L ... (—po)...((—po) —L). This is formalized as follows:

Definition 1.1.4 A sequence @q,...,pn is called a formation sequence of @
ifon = and for alli <n ; is atomic, or

i = (p;0¢k) for certain j,k <1, or

i = (—p;) for certain j < i.

Observe that in this definition we are considering strings ¢ of symbols
from the given alphabet; this mildly abuses our notational convention.
Ezamples. (a) L,p2,p3,(L Vpa),(-(L Vps)),(—ps) and ps,(—p3) are bo‘?h
formation sequences of (—p3). Note that formation sequences may contain
‘garbage’.

(b) p2 is a subformula of ((p7 V (-p2)) — p1); (p1 —L) is a subformula of
(((p2 V (p1 Apo)) « (p1 —1)).

We now give some trivial examples of proof by induction. In practice we
actually only verify the clauses of the proof by induction and leave the con-
clusion to the reader.

1. Each proposition has an even number of brackets.
Proof. (i) Each atom has 0 brackets and 0 is even.

(i) Suppose ¢ and ¢ have 2n, resp. 2m brackets, then (p¢) has
2(n 4+ m + 1) brackets.

(iii) Suppose ¢ has 2n brackets, then (—¢) has 2(n + 1) brackets. 0
2. Each proposition has o formation sequence.
Proof. (i) If ¢ is an atom, then the sequence consisting of just ¢ is a formation

sequence of .
(ii) Let @o,...,¢n and vy, ...,%, be formation sequences of ¢ and 1,

10 1 Propositional Logic

then one easily sees that ©g,...,0n, Yo,.-.;¥m, (Enll,) is a formation

sequence of ().
(iii) Left to the reader. O

We can improve on 2:

Theorem 1.1.5 PROP is the set of all expressions having formation se-
quences.

Proof. Let F be the set of all expressions (i.e. strings of symbols) having
formation sequences. We have shown above that PROP C F.

Let ¢ have a formation sequence ¢y, ...,pn, we show ¢ € PROP by
induction on n.

n =10 : @ = py and by definition ¢ is atomic, so ¢ € PROP.

Suppose that all expressions with formation sequences of length m < n
are in PROP. By definition ¢, = (¢;0p;) for 1,5 < n, or ¢, = (—g;) for
i < m, or ¢y, is atomic. In the first case ¢; and p; have formation sequences
of length 4,5 < n, so by induction hypothesis ¢;,¢; € PROP. As PROP
satisfies the clauses of definition 1.1.2, also (¢;l¢;) € PROP. Treat negation
likewise. The atomic case is trivial. Conclusion F' C PROP. [

Theorem 1.1.5 is in a sense a justification of the definition of formation
sequence. It also enables us to establish properties of propositions by ordinary
induction on the length of formation sequences.

In arithmetic one often defines functions by recursion, e.g. exponentiation
is defined by 20 = 1 and z¥+! = z¥ . z, or the factorial function by 0! = 1 and
(z+D!=x!-(x+1).

The jusitification is rather immediate: each value is obtained by using the
preceding values (for positive arguments). There is an analogous principle in
our syntax. :

Ezample. The number b(p) of brackets of ¢, can be defined as follows:

b(p) = 0 for ¢ atomic,
b((pl)) = b(p) +b(¥) +2,
b((=p)) = b(p) +2.

The value of b(p) can be computed by successively computing b(¢) for its
subformulae 1. O

‘We can give this kind of definitions for all sets that are defined by induc-
tion. The principle of “definition by recursion” takes the form of “there is
a unique function such that ...”. The reader should keep in mind that the
basic idea is that one can ‘compute’ the function value for a composition in a
prescribed way from the function values of the composing parts.

1.1 Propositions and Connectives 11

The general principle behind this practice is laid down in the following
theorem.

Theorem 1.1.6 (Definition by Recursion) Let mappings Hn : A? — A
and H-, : A — A be given and let Hyy be a mapping from the set of atoms
into A, then there exists exactly one mapping F': PROP — A such that

F(p) = Ha:(¢p) for ¢ atomic,
F((p)) = Ha(F(p), F(¥)),
F((-)) = H-(F(p)).

In concrete applications it is usually rather easily seen to be a correct princi-
ple. However, in general one has to prove the existence of a unique function
satisfying the above equations. The proof is left as an exercise, cf. Exercise
11.

Here are some examples of definition by recursion:

1. The (parsing) tree of a proposition ¢ is defined by

T(v) = o for atomic ¢
T((yOy)) = APD¢)
T(p) T(¥)
() = I (—)
T(p)
Ezamples. T ((p1 — (L V(-ps))); T(~(=(p1 A (-p1))))
(pr — (LV (=p3))) (=(=(p1 A (-p1))))
(L V(=ps)) (=(p1 A (-p1)))
" (-p2) (71 A (-p1)
I
(—p1)
p3 yal
Pt

A simpler way to exhibit the trees consists of listing the atoms at the bot-
tom, and indicating the connectives at the nodes.

12 1 Propositional Logic

T(p1) : v T(p2) -

p3 n

2. The rank r(p) of a proposition ¢ is defined by

r{¢p) = 0 for atomic ¢,

r((¢0)) = max(r(e),r(¥)) + 1,

r((~¢)) =r(p)+1.
We now use the technique of definition by recursion to define the notion of
subformula.

Definition 1.1.7 The set of subformulas Sub(p) is given by

Sub(p) = {p} for atomic ¢ »
Sub(p10p2) = Sub(p1) U Sub(p2) U {p10¢2}
Sub(—p) = Sub(p) U {—p}

We say that v is a subformula of ¢ if ¥ € Sub(y).

Notational convention. In order to simplify our notation we will economise on
brackets. We will always discard the outermost brackets and we will discard
brackets in the case of negations. Furthermore we will use the convention that
A and V bind more strongly than — and < (cf. - and + in arithmetic), and
that — binds more strongly than the other connectives.

Examples. —pV ¢ stands for ((—¢) V @),

=(===pA L) stands for (=((=(=(=p)))A 1)),

eV stands for (0 V) — @),

¢ — ¢V (¢ — x) stands for (¢ — (¢ V (¥ — X))
Warning. Note that those abbreviations are, properly speaking, not propo-
sitions.

In the proposition (p; — p1) only one atom is used to define it, it is how-
ever used twice and it occurs at two places. For some purpose it is convenient
to distinguish between formulas and formula occurrences. Now the definition
of subformula does not tell us what an occurrence of ¢ in %) is, we have to add
some information. One way to indicate an occurrence of ¢ is to give its place
in the tree of 9, e.g. an occurrence of a formula in a given formula % is a pair
(¢, k), where k is a node in the tree of 1. One might even code k as a sequence
of 0’s and 1’s, where we associate to each node the following sequence: {) (the

1.1 Propositions and Connectives 13

empty sequence) to the top node, (so,...,S,—1,0) to the left immediate de-
scendant of the node with sequence (s, ..., sp—1) and (so,...,8p—1,1) to the
second immediate descendant of it (if there is one). We will not be overly
formal in handling occurrences of formulas (or symbols, for that matter), but
it is important that it can be done.

The introduction of the rank function above is not a mere illustration of
the ‘definition by recursion’, it also allows us to prove facts about propositions
by means of plain complete induction (or mathematical induction). We have,
so to speak, reduced the tree structure to that of the straight line of natural
numbers. Note that other ‘measures’ will do just as well, e.g. the number of
symbols. For completeness sake we will spell out the Rank-Induction Principle:

Theorem 1.1.8 (Induction on rank-Principle) If for all ¢ [A(y) for all
1 with rank less than r(p)] = A(p), then A(yp) holds for all ¢ € PROP

Let us show that induction on ¢ and induction on the rank of ¢ are
equivalent.!
First we introduce a convenient notation for the rank-induction: write ¢ < 1
(p 2 9) for r(p) < r(¥) (r(p) < (). So Vi X pA(y) stands for “A(y)
holds for all 4 with rank at most r(y)” '
The Rank-Induction Principle now reads

V(T < pAW) = A(p)) = YoA(p)

We will now show that the rank-induction principle follows from the induction
principle. Let VoV < o A(Y) = A(yp)) (t)
be given.In order to show VYpA(p) we have to indulge in a bit of induction
loading. Put B(y) := Vi < ¢ A(%). Now show VypB(p) by induction on .

1. for atomic ¢ Vi < pA(%)) is vacuously true, hence by (f) A(p) holds.
Therefore A(t)) holds for all 4 with rank < 0. So B(y)

2. ¢ = p1ps. Induction hypothesis: B(y1), B(p2). Let p be any proposition
with r(p) = r(p) = n + 1 (for a suitable n). We have to show that p and
all propositions with rank less than n + 1 have the property A. Since
(@) = max(r(p1), r(p2))+1, one of 1 and @2 has rank n — say ;. Now
pick an arbitrary ¢ with 7(1) < n, then ¢ < ¢;. Therefore, by B(y;),
A(3). This shows that Vi < pA(¥), so by () A(p) holds. This shows

B(yp)
3. ¢ = —wp;. Similar argument.

An application of the induction principle yields Vo B(yp), and as a consequence
Vo A(p).

For the converse we assume the premisses of the induction principle. In or-
der to apply the rank-induction principle we have to show (}). We distinguish
the following cases:

! The reader may skip this proof at first reading. He will do well to apply induction

on rank naively.

14 1 Propositional Logic

1. ¢ atomic. Then (1) holds trivially.

2. ¢ = ©10ps. Then 1,2 = ¢ (see exercise 6). Our assumption is Vb <
wA(Y), so A(p1) and A(pa). Therefore A(p).

3. ¢ = —wpy. Similar argument.

This establishes (). So by rank-induction we get Vo A(p).

Exercises

1. Give formation sequences of
(=p2 = (p3 V (p1 < p2))) A —p3,
(pr — = 1) « ((pa A—p2) — p1),
(((p1 = p2) — p1) = p2) — p1.

2. Show that ((—¢ PROP.
3. Show that the relation “is a subformula of” is transitive.

4. Let @ be a subformula of 4. Show that ¢ occurs in each formation sequence

of Y.

5. If ¢ occurs in a shortest formation sequence of ¥ then ¢ is a subformula

of 9.

6. Let r be the rank function.
(a) Show that r{¢) < number of occurrences of connectives of ¢,
(b) Give examples of ¢ such that < or = holds in (a},
(c) Find the rank of the propositions in exercise 1.
(d) Show that r(¢) < () if ¢ is a proper subformula of 1.

7. (a) Determine the trees of the propositions in exercise 1,
(b) Determine the propositions with the following trees.
—

-

y4! yal

1.2 Semantics 15

8. Let #(T'(¢)) be the number of nodes of T(). By the “number of connec-
tives in ¢” we mean the number of occurrences of connectives in . (In
general #(A) stands for the number of elements of a (finite) set A) .

(a) If ¢ does not contain L, show: number of connectives of ¢+ number
of atoms of ¢ < #(T'(p)).

(b) #(sub(p)) < #(T(¢)).

(c) A branch of a tree is a maximal linearly ordered set.
The length of a branch is the number of its nodes minus one. Show
that 7(y) is the length of a longest branch in T'(y).

(d) Let ¢ not contain L. Show: the number of connectives in ¢ + the
number of atoms of ¢ < 27(@)+1 _ 7,

9. Show that a proposition with n connectives has at most 2n+1 subformulas.
10. Show that for PROP we have a unique decomposition theorem: for each
non-atomic proposition ¢ either there are two propostions ¢ and 4 such
that o = [y, or there is a proposition ¢ such that o = —p.
11. (a) Give an inductive definition of the function F, defined by recursion
on PROP from the functions Hyy, Ho, H-, as a set F™* of pairs.
(b) Formulate and prove for F* the induction principle.
(¢) Prove that F* is indeed a function on PROP.
(d) Prove that it is the unique function on PROP satisfying the recur-
sion equations.

1.2 Semantics

The task of interpreting propositional logic is simplified by the fact that the
entities considered have a simple structure. The propositions are built up from
rough blocks by adding connectives.

The simplest parts (atoms) are of the form “grass is green”, “Mary likes
Goethe”,“6—3 = 2”, which are simply true or false. We extend this assignment
of truth values to composite propositions, by reflection on the meaning of the
logical connectives.

Let us agree to use 1 and 0 instead of ‘true’ and ‘false’. The problem we
are faced with is how to interprete [y, —¢, given the truth values of ¢ and
Y. .

We will illustrate the solution by considering the in-out-table for Messrs.
Smith and Jones.

Conjunction. A visitor who wants to see both Smith and Jones wants the
table to be in the position shown here, i.e.

16 1 Propositional Logic

- in| out “Smith is in” A“Jones is in” is true iff
Smith) x “Qmith is in” is true and “Jones is in” is true.
Jones | x

We write v(p) = 1 (resp. 0) for “p is true” (resp. false). Then the above
consideration can be stated as v(@AvY) = 1 iff v(p) = v(¥) = 1, or v(p AYP) =
min(v(y), v(¥))-

One can also write it in the form of a truth table:

INER B!
0lojo
1101

One reads the truth table as follows: the first argument is taken from the
leftmost column and the second argument is taken from the top row.

Disjunction. If a visitor wants to see one of the partners, no matter which
one, he wants the table to be in one of the positions

in | out in | out in |out
Smith| x Smith X Smith| x
Jones X Jones | X Jones | x

In the last case he can make a choice, but that is no problem, he wants to
see at least one of the gentlemen, no matter which one.
In our notation, the interpretation of V is given by

vieVvy)=1 iff v(p)=1 or v(y)=1
Shorter: v(¢p V 9) = max(v(p), v(¥))-

viofjl
In truth table form: 010]1
111

Negation. The visitor who is solely interested in our Smith will state that
“Smith is not in” if the table is in the position:

in {out
Smith %

So “Smith is not in” is true if “Smith is in” is false. We write this as
v(~p) =1 iff v(p) = 0, or v(-p) =1 —v(p).

In truth table form: 011

1.2 Semantics 17

Implication. Owur legendary visitor has been informed that “Jones is in if
Smith is in”. Now he can at least predict the following positions of the table

in | out in | out
Smith] x Smith X
Jones| x Jones X
in [out
If the table is in the position Smith| x
Jones X

then he knows that the information was false.
in { out
The remaining case, |Smith X |, cannot be dealt with in
Jones| x

such a simple way. There evidently is no reason to consider the information
false, rather ‘not very helpful’, or ‘irrelevant’. However, we have committed
ourselves to the position that each statement is true or false, so we decide to
call “If Smith is in, then Jones is in” true also in this particular case. The
reader should realize that we have made a deliberate choice here; a choice that
will prove a happy one in view of the elegance of the system that results. There
is no compelling reason, however, to stick to the notion of implication that
we just introduced. Various other notions have been studied in the literature,
for mathematical purpose our notion (also called ‘material implication’) is
however perfectly suitable.

Note that there is just one case in which an implication is false (see the
truth table below), one should keep this observation in mind for future appli-
cation — it helps to cut down calculations.

In our notation the interpretation of implication is given by v(p — 9) = 0 iff
v() =1 and v(yp) = 0.

—101]1
Its truth table is: 01141
110]1

FEquivalence. If our visitor knows that “Smith is in if and only if Jones is in”,
then he knows that they are either both in, or both out. Hence v(p < %) = 1

iff v(p) = v(¥).

«—| 01
The truth table of « is: 0|1f(0
1101

Falsum. An absurdity, such as “0 0”, “some odd numbers are even”, “I
am not myself”, cannot be true. So we put v(1) = 0.

18 1 Propositional Logic

Strictly speaking we should add one more truth table, i.e. the table for T,
the opposite of falsum.

Verum. This symbol stands for manifestly true propostion such as 1 =1; we
put v(T) =1 for all v.

We collect the foregoing in

Definition 1.2.1 A mapping v: PROP — {0,1} is a valuation if

v(p AY) = min(v(p),v(¥)),

v(p V) = max(v(p),v(¥)),

vip—9)=0 & v(p)=1andv(y)=0,

vpey)=1 & v(p) =),

v(-p) =1-v(p)

v(l) = 0.

If a valuation is only given for atoms then it is, by virtue of the definition

by recursion, possible to extend it to all propositions, hence we get:

Theorem 1.2.2 Ifv is a mapping from the atoms into {0,1}, satisfying v(L
) = 0, then there exists a unique valuation [-],, such that [p], = v(p) for
atomic .

It has become common practice to denote valuations as defined above by
[], so will adopt this notation. Since [-] is completely determined by its values
on the atoms, [¢] is often denoted by [¢],. Whenever there is no confusion
we will delete the index v.

Theorem 1.2.2 tells us that each of the mappings v and [-], determines
the other one uniquely, therefore we call v also a valuation (or an atomic
valuation, if necessary). From this theorem it appears that there are many
valuations (cf. Exercise 4).

It is also obvious that the value [¢], of ¢ under v only depends on the
values of v on its atomic subformulae:

Lemma 1.2.3 If v(p;) = v/(p:) for all p; occurring in @, then [©], = [plo -
Proof. An easy induction on ¢. O

An important subset of PROP is that of all propositions ¢ which are al-
ways true, i.e. true under all valuations.

1.2 Semantics 19

Definition 1.2.4 (i) ¢ is a tautology if [¢], = 1 for all valuations v,

(1) = @ stands for ‘p is a tautology’,

(ii) Let I' be a set of propositions, then I' |= ¢ iff for all v: ([1], = 1 for all
bel)=[pl =1

In words: I" |= ¢ holds iff ¢ is true under all valuations that make all ¢ in I"
true. We say that ¢ is semantical consequence of I". We write I" [~ ¢ if I' |= ¢
is not the case.

Convention. 1,...,¢n =9 stands for {¢1,...,0,} = .

Note that “[¢], = 1 for all v” is another way of saying “[¢] = 1 for all
valuations”.
Ezamples. (i) Fe—9p; F-mp—9 EoViyey Ve,

(i) o ¥ EoAY po—YEY o9, Y e

One often has to substitute propositions for subformulae; it turns out to
be sufficient to define substitution for atoms only.

We write @[t /p;] for the proposition obtained by replacing all occurrences
of p; in ¢ by 1. As a matter of fact, substitution of ¢ for p; defines a mappmg
of PROP into PROP, which can be given by recursion (on).

Definition 1.2.5 ¢[¢¥/p;] @ if ¢ atomic and ¢ # p;
Yif p=p;
(p102) 10/ pi] = p1[9p/pi| Ol /pi]
(o)/pl = —oly/p].
The following theorem spells out the basic property of the substltutlon of
equivalent propositions.

Theorem 1.2.6 (Substitution Theorem) If = ¢ « @9, then
= Y1 /p] © Ylp2/p|, where p is an atom.

The substitution theorem is actually a consequence of a slightly stronger

Lemma 1.2.7 o1 < @a]v < [$[p1/p] = Plp2/plls and
E (p1 < @2) = (Ylp1/p] < Ylp2/p])

Proof. Induction on 1. We only have to consider [p; < 2], = 1 (why?).

— 9 atomic. If 9 = p, then ¥[p;/p] = ¢; and the result follows immediately.
If 4 # p, then Plios/p] = ¥, and [¥lp1/p] o Ylpa/plle = [>]y = 1.

- 9 = Y1llpe. Induction hypothesis: [1;[01/p]]o = [¥i[p2/P]|]o. Now the
value of [(1L002)[:/pllv = [¥1[9:/P)O2[0i/p]], is uniquely determined
by its parts [1;{gs/pll, hence [(¥1TW2){io1/Pllo = [($1002) o2/ pllo-

~ 1) = —npy. Left to the reader.

20 1 Propositional Logic

The proof of the second part essentially uses the fact that = ¢ — o iff
[elv < [¥]v for all v(cf. Exercise 6). O

The proof of the substitution theorem now immediately follows . O

The substitution theorem says in plain english that parts may be replaced
by equivalent parts.

There are various techniques for testing tautologies. One such (rather slow)
technique uses truth tables. We give one example:

(p = 9) = (- — —p)
w0 P —h - = (g =) o (- — —p)
00 1 1 1 1 1
01 1 0 1 1 1
10 01 0 0 1
110 0 1 1 1

The last column consists of 1’s only. Since, by lemma 1.2.3 only the values
of ¢ and ¢ are relevant, we had to check 22 cases. If there are n (atomic)

parts we need 27 lines.
One can compress the above table a bit, by writing it in the following form:

(p =) & (% —)
010 1 1 11

011 1 0 11
100 1.1 00
111 1 0 10

Let us make one more remark about the role of the two 0-ary connectives,
L and T. Clearly, £ T < (L—1), so we can define T from 1. On the other
hand, we cannot define L from T and —; we note that from T we can never
get anything but a proposition equivalent to T by using A, V, —, but from L
we can generate | and T by means of applying A, V, —.

Exercises

1. Check by the truth table method which of the following propositions are
tautologies
(a) (me VYY) & (¥ —)
(b) ¢ — (% — 0) = (9 — ¥) = (o = 0))
(c) (p =) &
(d) ~(¢ — ~¢)
(e) (p—= (W —0)) = ((pAY) —0)
(£) ¢ V ~p (principle of the excluded third)

(8) L (0 A)
(h) L— ¢ (ez falso sequitur quodlibet)

1.3 Some Properties of Propositional logic 21

2. Show (a) ¢ = ¢;
byoEvand g l=o=¢k=o;
O Fv—veoEY

3. Determine ¢[~po — p3/po] for ¢ = p; A po — (po — p3);
© = (p3 < po) V (P2 = —po).

4. Show that there are 28°¢ valuations.

5. Show [[90 Aply = [[‘P]]v : ﬂ"ﬂv:
II‘P \% 'd’]]'u = [[‘P]]v + [["p]]v - [[90]]1; : l[w]]vy
o — Yl =1- [[(P]]v + [l - [W]]v,
[[(P - 1»0]]1) =1- H[Qo]]v - [[/‘M]vl

6. Show [o = ¢lu =1 & [y], < [4]o-

1.3 Some Properties of Propositional logic

On the basis of the previous sections we can already prove a lot of theorems
about propositional logic. One of the earliest discoveries in modern proposi-
tional logic was its similarity with algebras.
Following Boole, an extensive study of the algebraic properties was made by a
number of logicians. The purely algebraic aspects have since then been studied
in the so-called Boolean Algebra.

We will just mention a few of those algebraic laws.

Theorem 1.3.1 The following propositions are tautologies:

(PVY)Vo ooV HVe) (pAP)Ac e pAGAs)
associativity

eVheoyPpVe pAYePAp
commutativity
PV A0) o (VP A(pVE) oA Vo) e (@AY)V(pAa)
distributivity
~(eVY) o mp A (e AY) o —p V)
De Morgan’s laws
PV pApep

idempotency

double negation law

22 1 Propositional Logic

Proof. Check the truth tables or do a little computation. E.g. De Morgan’s
law: [(eV)l=1efpvy]=0&p]=R]=0&[-]=[¥]=1+
[~ A =] = 1.

So [-(¢ V ¥)] = [~ A] for all valuations, i.e = =(p V) < —p A .
The remaining tautologies are left to the reader. O

In order to apply the previous theorem in “logical calculations” we need a
few more equivalences. This is demonstrated in the simple equivalence
= @ A (@ V) « ¢ (exercise for the reader). For, by the distributive law
EoA(eVe) = (@A) V(eADp)and = (pAp) V(9 Ap) < oV (pAY), by
idempotency and the substitution theorem. So =@ A (pV¢) < 9V (¢ A.'zp).
Another application of the distributive law will bring us back to start, so just
applying the above laws will not eliminate !

We list therefore a few more convenient properties.

Lemma 1.3.2 If o — ¢, then =AY« ¢ and
FoVyp oy

Proof. By Exercise 6 of section 1.2 }= ¢ — 1 implies [p], < [¢], for all v, So
[A ¢ly = min([¢]o, [¥].) = [¢le and [V 9]u = max([p]o, [¥].) = [[¢]l]5

for all v.

Lemma 1.3.3 (a)=¢ = FeAYpeoy
b)Ee = E-oViey
()= LV p oy
(AET A=

Proof. Left to the reader. O

The following theorem establishes some equivalences involving various con-
nectives. It tells us that we can “define” up to logical equivalence all connec-
tives in terms of {V,}, or {—,—}, or {A,—}, or {—, L}.

That is, we can find e.g. a proposition involving only V and -, which is equiv-
alent to @ « ¥, etc.

Theorem 1.3.4 (a) = (p = ¥) & (p = ¢Y) A (¥ —),
(b) = (=) & (—p V),
(c) =@V e (~p—),
(d) =@V o —(-p A1),
(e) = pANp o =(mpV 1),
(f) =—p = (p—L1),
(9) F Lo o Ao

1.3 Some Properties of Propositional logic 23

Proof. Compute the truth values of the left-hand and right-hand sides. 0

We now have enough material to handle logic as if it were algebra. For
convenience we write ¢ & 1 for = < 1.

Lemma 1.3.5 18 an equivalence relation on PROP,i.e.

@ (reflexitivity),
Y = Y=o (symmetry),
prYandyY~=o = @m0 (transitivity).

Proof. Use = ¢ « ¢ iff [¢], = [¢]y for all v. g

We give some examples of algebraic computations, which establish a chain
of equivalences.

LlEp—-@—oo0)]elpAy—oad,
= (Y —o)m-p V(P — o), (1.34(b))
V(Y —0) =V (Vo) (1.3.4(b) and subst. thm.)
—pV (Vo) (—pV-1) Vo, (ass.)
(mpV) Vo ma(pAY) Vo, (De Morgan and subst. thm.)
(pAY)Vor (pAY) — o, (1.3.4(b))
So - (1 — 0) ~ (9 A W) = 0.
We now leave out the references to the facts used, and make one long
string. We just calculate till we reach a tautology.
2. 2. = (p— o) & (-9 — o),
Yo mp R YV R PV op R eV R —
3.3 =0— (¥ —y),
e —p)mpV(WVe)m(—p V)V .

¥
4

o~
~
~
~

We have seen that V and A are associative, therefore we adopt the convention,
also used in algebra, to delete brackets in iterated disjunctions and conjunc-
tions; i.e. we write 1 V @2 V @3 V @y, ete. This is alright, since no matter
how we restore (syntactically correctly) the brackets, the resulting formula is
determined uniquely up to equivalence.

Have we introduced all connectives so far? Obviously not. We can eas-
ily invent new ones. Here is a famous one, introduced by Sheffer: |1 stands
for “not both ¢ and 3”. More precise: |1 is given by the following truth table

. [{0]1
Sheffer stroke 0111
1/1/0

Let us say that an n-ary logical connective $ is defined by its truth table,

or by its valuation function, if [$(p1,...,pn)] = f([p1],-.-,[pn]) for some
function f.

24 1 Propositional Logic

Although we can apparently introduce many new connectives in this way,
there are no surprises in stock for us, as all of those connectives are definable

in terms of V and —:

Theorem 1.3.6 For each n-ary connective § defined by its valuation func-
tion, there is a proposition T, containing only p1,...,Pn, V and -, such that
}Z T <> $(p1, e ,pn).

Proof. Induction on n. For n = 1 there are 4 possible connectives with truth
tables

$1 $2 $3 $4
0f{o0 0|1 010 0
110 11 111 1
One easily checks that the propositions —~(pV —p), pV —p, p and —p will meet
the requirements.

Suppose that for all n-ary connectives propositions have been found.

Consider $(p1,. . - ,Pn,Pn+1) With truth table:

Of =

D1 P2 Pn Pyt $(P1,- -, Py Pryi)
00 0 O 11
.0 1 12
0 1 .
.1 1
0 .

1
................................... where i < 1.
1 0

0 .

1 0
. 0 .

1 1 0
1 1 font+1

We consider two auxiliary connectives $; and $2 defined by
$1(p27 .. ,pn+1) = $(J—,P2» o 1p7'l-+1) and
$2(p27 ce 7Pn+1) = $(T’p27 s 7Pn+1), where T=-1
(as given by the upper and lower half of the above table).
By the induction hypothesis there are propositions ¢; and oy, containing

only pa,...,Pnt1, V and — so that = $;(pe, ..., Pnt1) < 0u
From those two propositions we can construct the proposition 7:

7:=(p1 — 02) A (=p1 — 01).

1.3 Some Properties of Propositional logic 25

Claim |=8(p1,.. ., Ppy1) & 7.

If [p1]o = O, then [p1 — o2, = 1, s0 [7]y = [-p1 — o1]v = [o1]s =
|[$1(P2, o3 Pnt1)]o = [$(p1, P2, ... »Prt1)]v, using ;] =0= [L]o-

The case [p1], =1 is similar.
Now expressing — and A in terms of V and - (1.3.4), we have [r'] =
[$(p1,--.,Pn+1)] for all valuations (another use of lemma 1.3.5), where 7/ =~ 7
and 7’ contains only the connectives V and —. O

For another solution see Exercise 7.

The above theorem and theorem 1.3.4 are pragmatic justifications for our
choice of the truth table for —: we get an extremely elegant and useful theory.
Theorem 1.3.6 is usually expressed by saying that V and - form a function-
ally complete set of connectives. Likewise A, - and —, - and L, — form

functionally complete sets.
In analogy to the } and [] from algebra we introduce finite disjunctions

and conjunctions:

Definition 1.3.7

A(\‘Pi = ¥o \X/%‘ =%o

i<0 i<0
/X\‘Pi=/)(\<m/\90n+1 \X/‘Pi:\X/SDiV‘Pn+1
i<n+1 i<n i<n+1 i<n

Definition 1.3.8 If ¢ = /X\ \X/ ij, where ;5 is atomic or the negation of
i<n j<m;
an atom, then ¢ is a conjunctive normal form. If p = \X/ /X\ pij, where p;;
i i<n j<m;
s atomic or the negation of an atom, then ¢ is a disjunctive normal form.

The normal forms are analogous to the well-known normal forms in alge-
bra: az?+byz is “normal”, whereas z(az + by) is not. One can obtain normal
forms by simply “multiplying”, i.e. repeated application of distributive laws.
In algebra there is only one “normal form”; in logic there is a certain duality
between A and V, so that we have two normal form theorems.

Theorem 1.3.9 For each ¢ there are conjunctive normal forms @™ and dis-
Junctive normal forms ¢V, such that = ¢ < ¢ and |= @ — V.

Proof. First eliminate all connectives other than 1, A, V and —. Then prove
the theorem by induction on the resulting proposition in the restricted lan-
guage of L, A, V and —. In fact, L plays no role in this setting; it could just
as well be ignored.

(a) ¢ is atomic. Then " = @Y = .

26 1 Propositional Logic

(b) ¢ = ¥ A g. Then ¢" = ¢ Ac”. In order to obtain a disjunctive nor-
mal form we consider ¥V =\ i, 0V .= Y oj, where the 1;’s and o;’s are
conjunctions of atoms and negations of atoms.

Now p =t Ao=ypYAcY = (i Noj).

2%
The last proposition is in normal form, so we equate Y to it.

(c) ¢ =4 V 0. Similar to (b).

(d) ¢ = —¢. By induction hypothesis ¥ has normal forms ¢V and P,
=N VY N Y = AV Yy = NV P, where ¢ = —iby; if
¥;; is atomic, and ty; = —:1,[123- if 9;; is the negation of an atom. (Observe
——hy; & 1hy;). Clearly A\ VY ;; is a conjunctive normal form for . The dis-

junctive normal form is left to the reader.
For another proof of the normal form theorems see Exercise 7. O

When looking at the algebra of logic in theorem 1.3.1, we saw that V and A
behaved in a very similar way, to the extent that the same laws hold for both.
We will make this ‘duality’ precise. For this purpose we consider a language
with only the connectives V, A and —.

Definition 1.3.10 Define an auziliary mapping * : PROP — PROP recur-
stvely by * = - if p is atomic,

(p A =" VT,

(V) =¢" AY~,

(-p)* =t
Ezample. ((po A —p1) V p2)* = (po A=p1)* Aps = (05 V (=p1)") A —p2 =
(—po V —p}) A =p2 = (—po V ~—p1) A —p2 & (—po V p1) A —pa.
Note that the effect of the *-translation boils down to taking the negation

and applying De Morgan’s laws.

Lemma 1.3.11 [¢*] = [~¢]

Proof. Induction on . For atomic ¢ [¢*] = [~¢].
[A9)] =1le* v] =[w V=] = [~(e AP
[(¢ Vv ¥)*] and [(—¢)*] are left to the reader. a

Corollary 1.3.12 | ¢* < —p.

Proof. Immediate from Lemma 1.3.11. O

So far this is not the proper duality we have been looking for. We really
just want to interchange A and V. So we introduce a new translation.

1.3 Some Properties of Propositional logic 27

Definition 1.3.13 The duality mapping ¢ : PROP — PROP is recursively
defined by w? = for v atomic,
(o A)E = pt v e,
(o V) = Ayl
(-p)? = =yt

Theorem 1.3.14 (Duality Theorem) ¢ & 9 & = o ¢,

Proof. We use the * -translation as an intermediate step. Let us introduce the
notion of simultaneous substitution to simplify the proof:

o[T0,- . Tn/Pos - - -, Pp] is obtained by substituting 7; for p; for all i < n simul-
taneously (see Exercise 15). Observe that ¢* = @%[-po,...,=pn/Do, - - -, Pn),
80 90*[_'170, LR —'pn/pOa vee)p‘n] = ‘Pd[—‘_‘PO: ERR) —'—'pn/p(h e 7pn]7 where the
atoms of ¢ occur among the py, ..., p,.

By the Substitution Theorem = ¢? < ¢*[-py,..., P, /Do, - ,Dn)]. The
same equivalence holds for 1.

By Corollary 1.3.12 |= ¢* + -, |= 9* < 1. Since = ¢ « 1, also =
—p < —1p. Hence |= ¢* & 1*, and therefore = ¢*[-po, . .., =Pn/Po, - . -, 0n]
¢*[_'p0v LERE _‘pn/pOa s ’pn]

Using the above relation between ¢? and ¢* we now obtain E o o 9l
The converse follows immediately, as ¢ = ¢. 0

The duality Theorem gives us one identity for free for each identity we
establish.

Exercises

1. Show by ‘algebraic’ means

(¢ =) & (-9 — ~), Contraposition,

(¢ = D) AN (¥ — o) = (¢ — 0), transitivity of —,
(0 = (b A1) — g,

(p =) — -,

~(p A =),

o= (P —pAY),

((p = ¥) — @) — . Peirce’s Law .

TTTTTTT

2. Simplify the following propositions (i.e. find a simpler equivalent proposi-

tion).
(@ @@—v)Ap, B (e=P)V-p, () (p—) — 1,
(d) o = (¢ A1), (&) (pAY) Vo, (E)(w(p—* P) — .

3. Show that { -} is not a functionally complete set of connectives. Idem
for {—, v} (hint: show that each formula ¢ with only — and V there is a

28

10.

11.

12.

. Let the binary connective # be defined by

1 Propositional Logic
valuation v such that [¢], =1).

Show that the Sheffer stroke, |, forms a functionally complete set (hint:
E-peelo).

Show that the connective | (¢ nor 1), with valuation function [p|¥] =1
iff [¢] = [4] = 0, forms a functionally complete set.

Show that | and | are the only binary connectives $ such that {$} is func-
tionally complete.

. The functional completeness of {V, =} can be shown in an alternative way.

Let $ be an n-ary connective with valuation function [$(p1,...,pn)] =
f(Ipil,- - -, [pn])- We want a proposition 7 (in V,—) such that [r] =
(T, - - Tpal)-

Suppose f([pi],---,[pn]) =1 at least once. Consider all tuples
([p1], - - - » [pn]) with f([p1],---,[pn]) = 1 and form corresponding con-
junctions 1 A P2 A ... A Pn such that 5; = p; if [;s] = 1, py = —p; if
[p:] =0 . Then show = (BL APAA ... ABL)V ...V (DY ADEA ... ADE) &
$(p1,- - -,Pn), Where the disjunction is taken over all n-tuples such that
flpil,-- -, [pn]) = 1.

Alternatively, we can consider the tuples for which f([p1],...,[pr]) =
0. Carry out the details. Note that this proof of the functional complete-
ness at the same time proves the Normal Form Theorems.

. Let the ternary connective $ be defined by [$(¢1,02,03)] = 1 &

[e1] + [e2] + [ps] > 2 (the majority connective). Express $ in terms
of V and —.

o
—

o
j—y

i
0
1

Express # in terms of V and —.

Determine conjunctive and disjunctive normal forms for ~(¢ < 1),

(=) =) =9, (o= (@AY A (Y = (A 9)).

Give a criterion for a conjunctive normal form to be a tautology.

Prove /X\ w; V /X\ Py = /X\ (i V ;) and
i<n j<m i<n
Jj<m

1.3 Some Properties of Propositional logic 29
Wi n\ vs~ W (0i)
i<n i<m 1 <n
j<m

13. The set of all valuations, thought of as the set of all 0 — 1—sequences,

14.

15.

forms a topological space, the so-called Cantor space C. The basic open
sets are finite unions of sets of the form {v | [p;,], = ... = [pi, Jo = 1 and
el = ... = [pj.]o =0}, ik # jp for k< n; p < m.
Define a function [] : PROP — P(C) (subsets of Cantor space) by:
ol ={vilelo =1} '
(a) Show that [¢] is a basic open set (which is also closed),
(b) [Vol =[] U [¥]; [Av] =[] N [W]; [-¢] = [¢]",
QFeeld=CL=0F¢—veldC[¥]
Extend the mapping to sets of propositions I'" by
[I1={v] [¢]o = 1for all ¢ € I'}. Note that [I'] is closed.
(A I'Eee[IC e

We can view the relation = ¢ — 1 as a kind of ordering. Put ¢ C ¢ =
Fe—yandfEy— o

(i) for each ¢, such that ¢ C 9, find o with ¢ T o T ¢,

(i) find @1, 2,¢s3,... such that o1 C o C s C s C ...,

(iii) show that for each ¢, with ¢ and v incomparable, there is a least
o with ¢, C o.

Give a recursive definition of the simultaneous substitution

@[, -+, ¥n/P1,...,Pn] and formulate and prove the appropriate analogue
of the Substitution Theorem (theorem 1.2.6).

