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Exercise 1 (3.2.1.iii, vi) For (iii), observe that: A € Mod(I'UA) iff for each ¢ € T,
A = ¢ and for each v € A, A = ¢ iff A € Mod(T') and A € Mod(A) iff A €
Mod(I") N Mod(A).

N.B. Van Dalen’s notation Mod(I')N Mod(A) is naughty because Mod(T") is not a set.
But as long as we understand by A € Mod(I')N Mod(A) nothing more than A € Mod(I")
and A € Mod(A), there is no harm.

For (vi), suppose that A € Mod(I') U Mod(A). Then A € Mod(I') or A € Mod(A).
So either (i) for each ¢ € T', A = ¢, or (ii) for each p € A, A |= 1. Observe that
I'NACT and 'NA C A. So whether (i) is true or (i) is true, for each ¢ € I'capA,
AE ¢, so A€ Mod(T'NA).

The converse fails. Here is a really easy counterexample. Let p,q be distinct propo-
sitional variables. Let T' = {p} and let A = {q}. Then TNA =0, so every structure is
a model of T N A. Let A make p false.

Exercise 2 (3.2.6) Following Van Dalen’s advice, suppose that T axiomatizes the class
of well-orderings (with respect to language <). Add constants {c¢; : i € w} to the
language and let

" =TU{ciy1 <c¢i:i<w}.

Now apply compactness (theorem 3.2.1) as Van Dalen applied it in the proof of the
upward Lowenheim-Skolem theorem (Theorem 8.2.4). That is, let A C T be finite.
Then there exists some maximum k such that ¢; occurs in A. Let

Fk:FU{CH_l <Ci:i§k)}.
Then T'),, has a model, namely
Nk = (N,<,Co,...,ck) = (N,<,0,...,k—l).

Since A C Ty, N, = A. So by compactness (Theorem 3.2.1), there exists B such that
B |=T"*. But B has an infinite descending chain because I'* says so. Contradiction. So
the class of all well-orderings is not characterized by any first-order theory.

Exercise 3 (3.2.8) Let I' consist of the axioms:
1. YxP(z,x);
2. Vx,y, 2P(z,y) N P(y, 2) — P(x, 2);

3. YaIyP(z,y).



Suppose for reductio that A has finite domain and A = T'. Let R be the denotation
of P in A. Say that sequence 3 = (agp,aq,...,a,) is a chain of length n in R if and
only if for each i such that 0 < i < n, R(a;,ai+1). Claim: For each chain in R
of length n > 0, R(ag,an). The base case is trivial since n > 0. Consider chain
8 = (ap,ai,...,an,ant1). By the IH, R(ag,ay). Since (8 is a chain, R(ay,ant1).
Since A makes axiom 2 true, R(ag,ant1). Say that a chain of length n is a cycle if,
furthermore, R(an,ag) (if n = 0, then understand that a, = ag). Suppose that R has
cycle B of length n. Then by the claim, R(ag,an) and R(an,ap), so since A satisfies
aziom 2, R(ag,ap) and, hence, fails to satisfy axiom 1. Contradiction. So R has no
cycle. Suppose that A satisfies axiom 3. Start at arbitrary ag € |A| and keep extending
the chain from ag according to axiom 3. Since |A| is finite, eventually the same domain
element occurs twice. That is a cycle in R. Contradiction.

Exercise 4 (3.2.12) As suggested, prove the contrapositive. LetTy CTy C ... C T, C

.and let T* = |J; T;. Note that the inclusions are proper, so the nested theories always
get larger. Suppose for reductio that T™ is finitely axiomatizable. Then by Lemma 3.2.9,
T is aziomatized by a finite subset A C T™ since, trivially, T* axiomatizes itself. There
exists n such that A C T,. Then cn(A) = T,,. But since A axiomatizes T™, it is also
the case that ¢cn(A) = T*. Hence, T,, = T*. Hence, for each i >n, T; = T,.

Exercise 5 (bonus, 3.2.18) This is a bit of real mathematics that is almost an im-
mediate consequence of the completeness theorem, which makes it clear that the theorem
has some real mathematical content. The argument again proceeds like the argument
of the upward Lowenheim-Skolem theorem, using compactness (which is an immediate
consequence of the completeness theorem).

Name each node of the graph G by a constant. Add non-identity statements for all
the constants. Specify the edges in the graph with binary predicate R and make sure
to add in R(b,a) whenever you put in R(a,b) and never put in R(a,a). Add the 3-
coloring postulates specified in the exercise and call the resulting theory I'q. Now let G
be a graph. Suppose that each finite sub-graph of G is 3-colorable. A sub-graph G' C G
is the restriction G|S of G to some subset S of nodes (constants), so it corresponds to
the theory I'qs in which each statement R(a,b) involving a constant missing from S
is deleted from U'g. So each theory U is satisfiable if S is finite. Let A be a finite
subset of I'. There exists finite S such that A C T'gis, so A has a model. So by
compactness (Theorem 3.2.1), I'c has a model. So G is 3-colorable.



