80-310/610 Logic and Computation Exercise Set 11 Kevin T. Kelly

Exercise 1 (2.5.2.i) Let $x \notin FV(\psi)$. Let $T_1 \subseteq T_2 \subseteq \ldots \subseteq T_n \subseteq \ldots$ Let $T^* = \bigcup_i T_i$. First, one must show that T^* is a theory, which means that T^* is closed under derivability. Suppose that $T^* \vdash \phi$. Then there exists derivation $(\Gamma \mathcal{D} \phi)$, where Γ is a finite subset of T^* . So there exists k such that $\Gamma \subseteq T_k$. But T_k is a theory, so T_k is closed under derivability, so $\phi \in T_i \subseteq T^*$. Hence, T^* is closed under derivability.

Next, one must show that if each T_i is consistent, then T^* is consistent. For the contrapositive, suppose that T^* is inconsistent. Then $T^* \vdash \bot$. So there exists a derivation $(\Gamma \mathcal{D} \bot)$ where Γ is a finite subset of T^* . So there exists k such that $\Gamma \subseteq T_k$. So $T_k \vdash \bot$, so T_k is not consistent. So it is not the case that each T_i is consistent.

Exercise 2 (Bonus) Let $T = cn\{\exists x \exists y (P(x, y))\}$, which is consistent (e.g., one element domain in which P is interpreted by reflexive relation R(a, a)). For some new constant c the Henkin sentence $(\exists x \exists y P(x, y)) \rightarrow \phi(c, y)$ is in T^* . Then $(T^*)^*$ contains

$$((\exists x \exists y (P(x,c) \lor P(x,y))) \to (\exists y P(c',c) \lor P(c',y)),$$

where c' is not in the vocabulary of T^* . Since T is consistent, so is T^* by Lemma 3.1.7, so by the model existence lemma 3.1.11, there exists \mathcal{A} such that $\mathcal{A} \models (\exists x \exists y P(x, y)) \in$ $T \subseteq T^*$. Now form structure \mathcal{B} by adding new object b to the domain of \mathcal{A} such that that R(b, a) fails for each a in $|\mathcal{A}| \cup \{b\}$ and let b be the interpretation of c'. Now T remains true in \mathcal{B} and each false existential statement remains false, so each Henkin conditional in T^* with a false antecedent remains true in \mathcal{B} . Furthermore, each Henkin conditional in T^* with a true consequent remains true in \mathcal{B} , so $\mathcal{B} \models T^*$. But $\mathcal{B} \not\models ((\exists x \exists y (P(x,c) \lor P(x,y))) \to (\exists y P(c',c) \lor P(c',y))$ because the antecedent is true and the consequent is false.