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THE CHURCH-TURING
THESIS

far in our development of the theory of computation we have presented sev-
al models of computing devices. Finite automata are good models for devices
at have a small amount of memory. Pushdown automata are good models for
evices that have an unlimited memory that is usable only in the last in, first out
manner of a stack. We have shown that some very simple tasks are beyond the
ipabilities of these models. Hence they are too restricted to serve as models of
neral purpose computers.

URING MACHINES

We turn now to a much more powerful model, first proposed by Alan Turing
n 1936, called the Turing machine. Similar to a finite automaton but with an
unlimited and unrestricted memory, a Taring machine is a much more accurate
model of a general purpose computer. A Turing machine can do everything that
- real computer can do. Nonetheless, even a Turing machine cannot solve certain
roblems. In a very real sense, these problems are beyond the theoretical limits
_of computation.

The Turing machine model uses an infinite tape as its unlimited memory. It
has a tape head that can read and write symbols and move around on the tape.
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Tnitially the tape contains only the input string and is blank everywhere else. If
the machine needs to store information, it may write this information on the tape.
To read the information that it has written, the machine can move its head back
over it. 'The machine continues computing until it decides to produce an output.
"The outputs accept and reject are obtained by entering designated accepting and
rejecting states. If it doesn’t enter an accepting or a rejecting state, it will go on
forever, never halting.

control

aTola[s[ulo]o]e -

" FIGURE 3.1
* Schematic of a Turing machine

The following list summarizes the differences between finite automata and
Turing machines.

1. A Turing machine can both write on the tape and read from it.

2. The read-write head can move both to the left and to the right.

3. The tape is infinite.

4. The special states for rejecting and accepting take immediate effect.

Let’s consider a Turing machine M; for testing membership in the language
B = {w#w|w € {0,1}*}. That is, we want to design M to accept if its input is
a member of B. To understand M better, put yourself in its place by imagining
that you are standing on a mile-long input consisting of millions of characters.
Your goal is to determine whether the input is a member of B, that is, whether
the input comprises two identical strings separated by a # symbol. The input is
too long for you to remember it all, but you are allowed to move back and forth
over the input and make marks on it. Of course, the obvious strategy is to zig-zag
to the corresponding places on the two sides of the # and determine whether they
match. Use marks to keep track of which places correspond.

We design M to work in the same way. Tt makes multiple passes over the
input string with the read-write head. On each pass it matches one of the char-
acters on each side of the # symbol. Yo keep track of which symbols have been
checked already, M crosses off each symbol as it is examined. Ifit crosses off all
the symbols, that means that everything matched successfully, and M goes into
an accept state. If it discovers a mismatch, it enters a reject state. In summary,
M’ algorithm is as follows.

M = “On input string w:

L. Scan the input to be sure that it contains a single # symbol. If
not, reject.

2. Zig-zag across the tape to corresponding positions on either side
of the # symbol to check on whether these positions contain the
same symbol. If they do not, reject. Cross off symbols as they
are checked to keep track of which symbols correspond.

3. When all symbols to the left of the # have been crossed off, check
for any remaining symbols to the right of the #. If any symbols
remain, refect; otherwise accept.”

The following figure contains several snapshots of M1’ tape while it is com-
puting in stages 2 and 3 when started on input 011000#011000.

o
011000#0110000uw ...

XXXXXXH#xxxxxxu ...
' accept

FIGURE 3.2
Snapshots of Tarring machine M; computing on input 0110004011000

This description of Turing machine M sketches the way it functions but does
not give all its details. We can describe Turing machines in complete detail by
giving formal descriptions analogous to those introduced for finite and pushdown
automata, The formal description specifies each of the parts of the formal defini-
tion of the Turing machine model to be presented shortly. In actuality we almost
never give formal descriptions of Turing machines because they tend to be very
big.

FORMAL DEFINITION OF A TURING MACHINE

The heart of the definition of a Turing machine is the transition function § be-
cause it tells us how the machine gets from one step to the next. For a Turing
machine, § takes the form: @ x I' — @ x I x {L.,R}. That is, when the ma-
chine is in a certain state g and the head is over a tape square containing a symbol
a, and if §(g,a) = (r, b, L), the machine writes the symbol b replacing the a, and



goes to state 7. The third component is either L or R and indicates whether the

head moves to the left or right after writing. In this case the L indicates 2 move |

to the left.

DEFINITION 3,7 s

A Tuﬂng machine is a 7—tuple, (Q) 2, I‘: 6: 0 Gaceepts q:'ejcct), where Q, 2, Tareall
finite sets and

1. Q is the ser of states,

2. 3 is the input alphabet not containing the special blank symbol 1,
3. T'is the tape alphabet, whereu € T and X C T,

4. 8: QxT'—QxT x {L,R} is the transition function,

5. q9 € Q is the start state,

6. Quecepr € € is the accept state, and

7. Qreject € Q i the reject state, where gueject 7 Gaccept-

A Turing machine M = (Q, 3, T, 6, g0, Gaceepts Grejoce) cOmputes as follows, Ini-
tially A receives its input w = wywy ... w, € I* on the lefrmost n squares of
the tape, and the rest of the tape is blank (i.e., filled with blank symbols), The
head starts on the leftmost square of the tape. Note that & does not contain the
blank symbol, so the first blank appearing on the tape marks the end of the input.
Once M starts, the computation proceeds according to the rules described by the
transition function. If M ever tries to move its head to the left off the left-hand
end of the tape, the head stays in the same place for that move, even though the
transition fariction indicates L. 'The computation continues until it enters either
the accept or reject states at which point it hales. If neither occurs, M goes on
forever.

As a Turing machine computes, changes occur in the current state, the cur-
rent tape contents, and the current head location. A setting of these three items
is called a configuration of the Turing machine, Configurations often are repre-
sented in a special way. For a state ¢ and two strings u and v over the tape alphabet
I'we write u g v for the configuration where the current state is g, the current tape
contents is uv, and the current head location is the first symbol of v. The tape
contains only blanks following the last symbol of v. For example, 1011¢,01111
represents the configuration when the tape is 101101111, the current state is g,
and the head is currently on the second 0. The following figure depicts a "Turing
machine with that configuration.

7
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FIGURE 3.3 ‘
A Turing machine with configuration 10114701111

Here we formalize our intuitive understanding of the way that a Turing ma-
chine computes. Say that configuration ' yields configuration C .if the.Turmg
machine can legally go from € to €5 in a single step. We define this notion for-
mally as follows. o

Suppose that we have a, b, and ¢ in T, as well as u and v in I'™* and states g;
and ¢;. In that case ua g; bv and u g; acv are two configurations. Say that

wag; by yields wg;acy

if in the transition function §(g;, ) = (g;, ¢, L.). That handles the case where the
Turing machine moves leftward. For a rightward mave, say that

wag; by vields wacg;v

if 6{qi, ) = {g;, . R). ‘

S(f;ecl)al ciggs OCCI)H‘ when the head is at one of the ends of the corl.ﬁ'g"grgnon‘
For the left-hand end, the configuration ¢; bv yields g; cv if the transition is left
moving (because we prevent the machine from going off the left—}}and end of the
tape), and it yields ¢ g;v for the right moving transition. For the right-hand end,
the configuration ua ¢; is equivalent to ua g; u becanse we assume that blanks fol.—
low the part of the tape represented in the configuration. Thus we can handle this
case as before, with the head no longer at the right-hand end. o

The start configuration of M on inputw is the configuration gy w, which ]I_Illdl-
cates that the machine is in the start state go with its head at the leftmost position
on the tape. In an accepting configuration the state of the ‘conﬁgura'tjon i§ Qaceept-
In a vejecting configuration the state of the configuration is Grcect- Accepting fmd
rejecting configurations are balting configurations and accolrdlng}y do not yield
further configurations. A Turing machine M aceepts input w if a sequence of con-
figurations Oy, Ca, ... , C exists where

1. ¢ is the start configuration of M on input w,
2. each C; yields C;44, and
3. O}, is an accepting configuration,

The collection of strings that M accepts is the language of M, denoted L(M).
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DEFINITION 3_2 ........................................................................................................................ -

Call a Tanguage Turing-recognizable if some "Turing machine recognizes it.!

When we start a TM on an input, three outcomes are possible. The machine

- may accept, reject, or Joop. By leop we mean that the machine simply does not hal,

It is not necessarily repeating the same steps in the satne way forever as the con-

notation of looping niay suggest. Looping may entail any simple or complex be-
havior that never leads to a halting state,

A Turing machine M can fail to accept an input by entering the Greject State
and rejecting, or by looping, Sometimes distinguishing a machine that is loop-
ing from one that is merely taking a long time is difficult. For this reason we
prefer Turing machines that halt on all inputs; such machines never loop. These
machines are called deciders because they always make a decision to accept or re-
ject. A decider that recognizes some language also is said to decide that language.

DEF[NITION 3.3 ........................................................................................................................

Call 2 language Turing-decidable or simply decidable if some Turing machine
decides it.

Every decidable language is ‘Turing-recognizable but certain luring-recognizable.

languages are not decidable. We now give some examples of decidable languages.
We present examples of langnages that are Turing-recognizable but not decidable
after we develop a technique for proving undecidability in Chapter 4.

EXAMPLES OF TURING MACHINES

As we did for finite and pushdown automata, we can give a formal description of
a particular Turing machine by specifying each of its seven parts. However, go-
ing to that level of detail for ‘Turing machines can be cumbersome for all but the
tinicst machines. Accordingly, we won’t spend much time giving such descrip-
tions. Mostly we will give only higher level descriptions because they are precise
enough for our purposes and are much easier to understand. Nevertheless, it is
important to remember that every higher level description is actually just short-
hand for its formal counterpart. With patience and care we could describe any
of the Turing machines in this book in complete formal detail.

'Io help you make the connection between the formal descriptions and the
higher level descriptions, we give state diagrams in the next two examples, You
may skip over them if you already feel comfortable with this connection.

He is called a recuysively enmmerable language in some other textbooks.
Tt is called a recursive language in some other textbooks.

3.1 TURING MACHINES 131

* Here we describe 2 TM My that recognizes the language consisting of all strings

of 0s whose length is a power of 2. It decides the language A = {02"| n > 0}.

g My = “On input string w:

1. Sweep left to right across the tape, crossing off every other 0,

2. Tfinstage 1 the tape contained a single 0, accept.

3. Ifin stage 1 the tape contained more than a single 0 and the
number of 0s was odd, reject.

4. Return the head to the left-hand end of the tape.

5. (o tostage 1.7

Each iteration of stage 1 cuts the number of 0s in half. As the machine sweeps
across the tape in stage 1, it keeps track of whether the number of 0s seen is even
or odd. If that number is odd and greater than 1, the original number of 0s in the
input could not have been a power of 2. Therefore the machine rejects in this
instance. However, if the number of 0s seen is 1, the original number must have
been a power of 2. So in this case the machine accepts.

Now we give the formal description of M, = (Q, %, T, 8, ¢, Gaceepts Greject ) -

* Q= {q1, 92,43, ¢4, T5, Gaceepts Greject »

* ¥ = {0}, and

o I' = {0,x,u}.

* We describe § with a state diagram (see Figure 3.4),

* The start, accept, and rejectstates are ¢, Gaceepts AN Grojece.

In the state diagram in Figure 3.4 the label 0 ~» L,R appears on the transition
from g; to g. It signifies that, when in state q; with the head reading 0, the ma-
chine goes to state gz, writes u, and moves the head to the right. Tn other W(')deS,
8(¢1,0) = (ga,u,R). For clarity we use the shorthand ¢ — R in the transition
from g3 to g4, as meaning that the machine moves to the right when reading 0 in
state g3 but doesn’t alter the tape, so 5(g3,0) = (g4,0,R).

"This machine begins by writing a blank symbol over the leftmost 0 on the tape
so that it can find the left-hand end of the tape in stage 4. Whereas we would
normally use a more suggestive symbol such as # for the left-hand end delimiter,
we use a blank here to keep the tape alphabet, and hence the state diagram, small.
Example 3.6 gives another method of finding the left-hand end of thf: tape.

We give a sample run of this machine on input 0000. The starting config-
uration is ¢;0000. The sequence of configurations the machine enters appears
following Figure 3.4. Read down the columns and left to right.
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0—1,
x—L

FIGURE 3.4
State diagram for Turing machine M,

A sample run of AMj on input 0000:

¢1 0000 Usx0xu LR G5XXL
U000 grux0xs LI XXX
Lxgz 00 ugex0xu gsLXXXU
ux0g40 Lxga Oxu Lo XXX
ux0xgsu LIXX ({3 XU LIX (XXl
uxQgsxu LXXX(3U LIXX (fo X1
LxgsOxa LXX 5 XU LXXHgau
UXXXUQaccept = .

EXAMPLE 3'5 .....................

The following is a formal deseription of My = (Q, %, 1,6, ¢1, Gaceepe, Greject)s the |
"Turing machine that we informally described on page 127 for deciding the lan- -
guage B = {wiw|w € {0,1}"}. : '

 FIGURE 3.5
State diagram for Turing machine A,

 Asin Example 3 4, the machine starts by writing a blank symbol to delimit the
left-hand edge of the tape. This time it may overwrite a 0 or 2 1 when doing so,
and it remembers the overwritten symbol by using the finite control.

Stage 1 is implemented by states g1 through ¢7, and stages 2 and 3 by the re-
maining states. 'To simplify the figure, we don’t show the reject state or the tran-
sitions going to the reject state. Those transitions occur implicitly whenever a

state lacks an outgoing transition for a particular symbol. Thus, because in state
g5 1o outgoing arrow with a # is present, if a # occurs under the head when the
machine is in state gs, it goes to State Greject. s

* Q={qu, - > q14; Gacoepts Greject f»

3 = {0,1,#}, and T = {0,1,#,x,u}.

» We describe § with a state diagram (see Figure 3.5).

» The start, accept, and reject states are ¢1, Gaccepts A0 Greject

In Figure 3.5 depicting the state diagram of TM My, you will find the label
0,1 — R on the transition going from g3 to itself. That label means that the
machine stays in ¢3 and moves to the right when it reads a 0 or a 1 in state g3. It
doesn’t change the symbol on the tape.
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EXAMPLE 38 i s sesseseesseemsseecs st ssmeeesessesesessses

Here, a "Turing machine Mj is doing some elementa
language C' = {a'bc*| i x j = kand 4,5,k > 1}.

CHAPTER 3 / THE CHURCH-TURING THESIS

ry arithmetic. Tt decides die.

ere, a Turing machine M) is solving what is called the elernent d-'istz'?fcmeys prob-
. It is given a list of strings over {0,1} separated by #s and its job is to accept

‘all the strings are different. The language is
M3z = “On input string w:

1. Scan the input from left to right to be sure that it is 2 member
of a*b*c* and reject if it isn’t.

2. Return the head to the left-hand end of the tape.

3. Cross off an a and scan to the right untl a b occurs. Shuttle be-
tween the b’s and the c’, crossing off one of each until all bs are
gone,

4. Restore the crossed off bk and repeat stage 3 if there is another
a to cross off. If all as are crossed off, check on whether all ¢’s
also are crossed off. If yes, accept; otherwise, reject.”

E = {#zi#at - #2y| each ; € {0,1}" and @; # w; for cachi # j}.

flachine My works by comparing z; with 25 through @y, then by comparing x;
M?l: x5 through z;, and so on. An informal description of the TM My deciding
this language follows.

s = “On input w:

1. Place a mark on top of the leftmost tape symbol. If that symbol
was a blank, accept. If that symbol was a #, continue with the
next stage. Otherwise, reject. .

2. Scan right to the next # and place a second mark on top of it. If
no #is encountered before a blank symbol, only z;; was present,
50 accept. _ _

3. By zig-zagging, compare the two strings to the right of the
marked #s. If they are equal, reject.

4, Move the rightmost of the two marks to the next # symbol to
“the right. Tf no # symbol is encountered before a blank sym-
bol, move the leftmost mark to the next # to its right and the
rightmost mark to the # after that. This time, if no # is available
for the rightmost mark, all the strings have been compared, so
accept.

5. Go to Stage 3.”

Let’s examine the four stages of M3 more closely. In stage | the machine op
erates like a finite automaton. No writing is necessary as the head moves from
left to right, keeping track using its states of whether the input is in the prope
form.

Stage 2 looks equally simple but contains a subtlety. How can the "Turing ma
chine find the left-hand end of the input tape? Finding the right-hand end of th
input is easy because it is terminated with a blank symbol. But the lefe-hand end:
has no terminator initially. One technique that allows the machine to find the
left-hand end of the tape is for it to mark the leftmost symbol in some way when
the machine starts with its head on that symbol. Then the machine may scan left
until it finds the mark when it wants to reset its head to the lefi-hand end. Fx
ample 3.4 illustrated this technique, using a blank symbol to mark the left-hand
tape symbol.

A rrickier method of finding the left-hand end of the tape takes advantage
of the way that we defined the Turing machine model. Recall that, if the ma:
chine tries to move its head beyond the lefe-hand end of the tape, it stays in the
same place. We can use this feature to make a left-hand end detector. ‘1o detect
whether the head is sitting on the left-hand end the machine can write a special
symbol over the current position, while recording the symbol that it replaced in
the control, Then it can attempt to move the head to the left, Ifit is still over the
special symbol, the leftward move didn’t succeed, and thus the head must have
been at the left-hand end. If instead it is over a different symbol, some symbols
remained to the left of that position on the tape. Before going farther, the ma-
chine must be sure to restore the changed symbal to the original. i

Stages 3 and 4 have straightforward implementations using several states each.

- This machine illustrates the technique of marking tape symbols. In stage 2,
the machine places a mark above a symbol, # in this case, Tn the actual imple-
mentation, the machine has two different symbols, # and #, in its tape-alpha].)et. ,
Saying that the machine places a mark above 2 # means that the machine writes
he symbol # at that location. Removing the mark means that the machine writes
the symbol without the dot. In general we may want to place marks over various
symbols on the tape. To do so we merely include versions of all these tape sym-
bols with dots in the tape alphabet. :

We may conclude from the preceding examples that the described Ianguages
A, B, C, and E are decidable. All decidable languages are Turing-recognizable,
o these languages are also Turing-recognizable. Demonstrat%ng a langl.lage that
s Turing-recognizable but not decidable is more difficult, which we do in Chap-
ter 4,



VARIANTS OF TURING MACHINES

fy multitape Turing machine has an equivalent single tape Turing machine.

ooF We show how to convert a multitape TM M to an equivalent single
'e-TM S. The key idea is to show how to simulate M with S.

Say that M has k tapes. Then S simulates the effect of k tapes by storing their
rmation on its single tape. Tt uses the new symbol # as a delimiter to separate
contents of the different tapes. In addition to the contents of these tapes, .5
t keep track of the Jocations of the heads. Tt does so by writing a tape symbol
th 2 dot above it to mark the place where the head on that tape would be. Think
these as “virtual” tapes and heads. As hefore, the “dotted” tape symbols are
ly new symbols that have been added to the tape alphabet. The following
¢ illustrates how one tape can be used to represent three tapes.

Alternative definitions of Turing machines abound, including versions with’ 1
tiple tapes or with nondeterminism. They are called variants of the Taring
chine model. The orlgmal model and its reasonable variants all have the sy
power—they recognize the same class of languages. In this section we descri
some of these variants and the proofs of equivalence in power. We call thi
variance to certain changes in the definition robustness. Both finite automats 4
pushdown automata are somewhat robust models, but Turing machines ha\re
astonishing degree of robustness.

1o illustrate the robustness of the Turing machine model let’s vary the
of transition function permitted. In our definition, the transition function force
the head to move to the left or right after each step; the head may not simip}
stay put. Suppose that we had allowed the Turing machine the ability to stay p :
The transition function would then have the form §: @xT'—QxTx {L, R
Might this feature allow Turing machines to recognize additional languages,
adding to the power of the model? Of course not, because we can convert any:
with the “stay put” feature to one that does not have it. We do so by repla
each stay put transition with two transitions, one that moves to the right and the
second back to the left.

This small example contains the key to shomng the equlvalence of Turing m
chine variants. "lo show that two models are equivalent we simply need to shy
that we can simulate one by the other.

[o]t]olt|oiu]...
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MULTITAPE TURING MACHINES

A multitape Turing machine is like an ordinary Turing machine with seve
tapes. Each tape has its own head for reading and writing. Tnitially the inpu
pears on tape 1, and the others start out blank. The transition function is chang;
to allow for readlng, writing, and moving the heads on all the tapes smlultan
ously. Formally, it is

1. First S puts its tape into the format that represents all & tapes of
M. The formatted tape contains

§: Q xI*—Q x T x {L,R}*, By o wy B . #

where k is the number of tapes. The expression
5(({1',&1, ,ak) == (Q'j,bl, ,bk,L,R, L)

means that, if the machine is in state ¢; and heads 1 through k are reading sym
ay through ag, the machine goes to state ¢;, writes symbols b, through bz;
moves each head to the left or right as specified.

Multitape Turing machines appear to be more powerful than ordinary Turmg
machines, but we can show they are equivalent in power. Recall that two'm
chines are equivalent if they recognize the same language.

2. 'Tosimulate a single move, S scans its tape from the first #, which
marks the left-hand end, to the (k + 1)st #, which marks the
right-hand end, in order to determine the symbols under the
virtual heads. "Then S makes a second pass to update the tapes
according to the way that A% transition function dictates.

3. Ifatany point.S moves one of the virtual heads to the right onto
a #, this action signifies that A has moved the corresponding
head onto the previously unread blank portion of that tape. So
S writes a blank symbol on this tape cell and shifts the tape con-
tents, from this cell until the rightmost #, one unit to the right.
Then it continues the simulation as before.”




ROOF  The simulating deterministic TM D has three tapes. By Theorem 3.8
is arrangement is equivalent to having a single tape. _The machine D uses its
three tapes in a particular way, as illustrated in the foiiomg ﬁgure. Tape 1 a,lways
ontains the input string and is never altered. 'Tape 2 maintains a copy of N's tape
n some branch of its nondeterministic computation. "Tape 3 keeps track of D’
ocation in N's nondeterministic computation tree.

COROLLARY 3.9 i ssiemescemsscesssenesseresteessossesessomsaneeoseees S

A language is Turing-recognizable if and only if some multitape ‘Turing machiy
recognizes it

PROOF  A'luring-recognizable language is recognized by an ordinary (single
tape) Taring machine, which is a special case of a multitape Thring machine
That proves one direction of this corollary. The other direction follows from
Theorem 3.8, ‘

|0|0|1|0|ur... input tape

fx|x|#[0|1|xlu| ... simulation tape

NONDETERMINISTIC TURING MACHINES

L . . . .- .. address tape
A nondeterministic ‘Turing machine is defined i the expected way, At any point HEEIBHE EEIESE! [3Jul. .. addresstap
in a computation the machine may proceed according to several possibilities, The

transition fimction for a nondeterministic Turing machine has the form
6: QxT—P(Q xI' x {L,R}).

The computation of a nondeterministic "Turing machine is a tree whose branchios
correspond to different possibilities for the machine, If some branch of the com.:
putation leads to the accept state, the machine accepts its input. If you feel the
need to review nondeterminism, turn to Section 1.2 on page 47. Now we show
that nondeterminism does not affect the power of the Turing machine model. .-

FIGURE 3.7 - o
Déterministic TM D simulating nondeterministic TM IV

Let’s first consider the data representation on tape 3. Every node_ in the tree
can have at most b children, where b is the size of the largest set of possible choices
given by N transition function. To every node in the tree we assign an address
that is a string over the alphabet &, = {1,2, ... ,b}. We assign the.addre'ss 231
to the node we arrive at by starting at the root, going to its 2nd child, going to
that node’s 3rd child, and finally going to that node’s Lst child. Each symbol in
the string tells us which choice to make next when simulating a step in one branch
in Vs nondeterministic computation. Sometimes a symbol may not correspond
to any choice if too few choices are available for a configuration. In t}'iat case -the
address is invalid and doesn’t correspond to any node. Tape 3 contains a string
over ¥y It represents the branch of N's computation from the root to-the .node
addressed by that string, unless the address is invalid. ‘The empty string is the
address of the root of the tree. Now we are ready to describe D.

THEOREM 3.10 et et e

Every nondeterministic Turing machine has an equivalent deterministic "Turing:
machine,

PROOF IDEA  We show that we can simulate any nondeterministic TM N with
a deterministic TM D. The idea hehind the simulation is to have D try all possible
branches of N's nondeterministic computation, If D ever finds the aceeptstate o

one of these branches, 1) accepts. Otherwise, D’s simulation will not terminate L. Initially tape 1 contains the input w, and tapes 2 and 3 are empty.

2. Copy tape 1 to tape 2. ‘

3. Use tape 2 to simulate N with input w on one branch of its nondetermin-
istic computation. Before each step of N consult the next symbol on tape 3
to determine which choice to make among those allowed by N’ transition
function. If no more symbols remain on tape 3 or if this nondeterministic
choice is invalid, abort this branch by going to stage 4. Also go to stage 4
if a rejecting configuration is encountered. If an accepting configuration is
encountered, accept the input.

4. Replace the string on tape 3 with the Jexicographically next string. Simulate
the next branch of N’ computation by going to stage 2.

tully is crucial lest 1D fail to visit the entire tree, A tempting, though bad, ides
is to have D explore the tree by using depth first search, The depth first search
strategy goes all the way down one hranch before backing up to explore other’
branches. If D were to explore the tree in this manner, D could go forever down
one infinite branch and miss an accepting configuration on some other branch’
Hence we design D to explore the tree by using breadth first search instead. "T'his
strategy explores all branches to the same depth before going on to explore any
branch to the nexr depth. "This method guarantees that I will visit every node in
the tree until it encounters an accepting configuration. '
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COROLLARY 3.11 - revanteammeemEemeeammssmmeemmsememyssemesmesmremmes

A language is Turmg recognizable if and only if some nondeterministic Turm

machine recognizes it. ction of all the strings that it eventually prints out. Moreover, E may generate

e strings of the language in any order, possibly with repetitions. Now we are

FROOF Any deterministic TM is antomatically a nondeterministic TM and s ready to develop the connection between enumerators and Turing-recognizable

one direction of this theorem follows immediately. The other direction follows
from Theorem 3.10. '

anguage is Turing-recognizable if and only if some enumerator enumerates it.

We can modify the proof of Theorem 3.10 so that if N always halts on al
branches of its computation, D will always halt. We call a nondeterministic T
ing machine a decider if all branches halt on all inputs. Exercise 3.3 asks you to
modify the proof in this way to obtain the following corollary to Theorem 3.1

,roOF First we show thatif we have an enumerator E that enumerates a lan-
age A, a TM M recognizes A. The TM M works in the following way.

£ = “On input w:
1. Run E. Every time that E outputs a string, compare it with w.
2. If w ever appears in the output of E, accept.”

COROLLARY 3.12 Lva e rmrerreans et AR LSRR SRR B b ek s reEn R e e nnn ey
Clearly, M accepts those strings that appear on E List.

Alanguage is decidable if and only if some nondeterministic Turing machine de Nowwe do the other direction. TFTM M recognizes a language A, we can con-

cidesic truct the following enumerator E for A. Say that s1,52,s3,... is a list of all
possible strings in X"
ENUMERATORS = “Ignore the input.

1. Repeat the following foré =1,2,3,. ..
2. Run M for ¢ steps on each input, 1, 89, ..., Si.
3. Ifany computations accept, print out the corresponding s;.”

As we mentioned in an earlier footnote, some people use the term recursively enu
merable language for Turing-recognizable language. That term originates from
a type of Turing machine variant called an enumerator. Loosely defined, an enu
merator is a Turing machine with an attached printer. The Turing machine ¢
use that printer as an output device to pr int strings. Every time the Turing ma
chine wants to add a string ¢o the list, it sends the string to the printer. Exer
cise 3.4 asks you to give a formal definition of an enumerator. The followin
figure depicts a schematic of this model.

.M accepts a particular string s, eventually it will appear on the list generated
by £. In fact, it will appear on the list infinitely many times because M runs from
e beginning on each string for each repetition of step 1. This procedure gives
e effect of run.mng M in parallel on all possible input smngs

QUIVALENCE WITH OTHER MODELS

baba

far we have presented several variants of the Turing machine model and have
abba

hown them to be equivalent in power. Many other models of general purpose

printer mputation have been proposed. Some of these models are very much like Tur-

control ng machines, while others are quite different. All share the essential feature of
liring machines, namely, unrestricted access to unlimited memory, distinguish-

ol1]olofu]... worktape g them from weaker models such as finite automata and pushdown automata.

emarkably, i/ models with that feature turn out to be equivalent in power, so

ng as they satisfy certain reasonable requirements.’
FIGURE 3.8

Schematic of an enumerator

or example, one requirement is the ability to perform only a finite amount of work in a
gle step.
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To understand this phenomenon consider the analogous situation for pr
gramming languages. Many, such as Pascal and LISP, look quite different fro
one another in style and structure. Can some algorithm be programmed in o
of them and not the others? Of course not—we can compile LISP into Pascalag
Pascal into LISP, which means that the two languages describe exactly the sany
class of algorithms. So do all other reasonable programming languages. The
widespread equivalence of computational models holds for precisely the sam;
reason. Any two computational models that satisfy certain reasonable requ
ments can simulate one another and hence are equivalent in power.

This equivalence phenomenon has an important philosophical corollary. By
though there are many different computational models, the class of algorith
that they describe is unique. Whereas each individual computational model
a certain arbitrariness to its definition, the underlying class of algorithms that
describes is natural because it is the same class that other models describe. Th
phenomenon also has had profound implications for mathematics, as we show.
the next section.

nstant called a coefficient. For example,
6-z-z-z-y 2 z=>6xyz*
4 term with coefficient 6, and

6z yz? + 3xy? — 2° — 10

ia poiynomiai with four terms over the variables z, y, and z. A reof of a polyno-
al is an assignment of values to its variables so that the value of the polynomlal
0. ‘This polynomial has a root at & = 5,y = 3, and z = 0. This root is an inte-
4l reot because all the variables are 3551gned integer values. Some polynomials
ha'{re an integral root and some do not.
Hilbert’s tenth problem was to devise an algorithm that tests whether a poly-
fnial has an integral root. He did not use the term algorithm but rather “a pro-
55 accordmg to which it can be determined by a finite number of operations.™
terestingly, in the way he phrased this problem, Hilbert explicitly asked that
algorithm be “devised.” Thus he apparently assumed that such an algorithm
st exist—someone need only find it.
‘As we now know, no algorithm exists for this task; it is algorithmically unsoly-
le. For mathematicians of that period to come to this conclusion with their
mtﬁjtive concept of algorithun would have been virtnally impossible. The intu-
ve concept may have been adequate for giving algorithms for certain tasks, but
vas useless for showing that no aigorithm exists for a particular task. Proving
that an algorithm does not exist requires having a clear definition of algorithm.,
ogress on the tenth problem had to wait for that definition.
‘The definition came in the 1936 papers of Alonzo Church and Alan Turing.
hurch used a notational system called the A-calculus to define algorithms. Tir-
g did it with his “machines.” These two definitions were shown to be equiva-
nt. This connection between the informal notion of algorithm and the precise
finition has come to be called the Church-Turing thesis.
he Church-Turing thesis provides the definition of algorithm necessary to
solve Hilberts tenth problem. In 1970, Yuri Matijasevié, building on work of
artin Davis, Hilary Putnam, and Julia Robinson, showed that no algorithm ex-
ts for testing whether a polynomial has integral roots. In Chapter 4 we develop
¢ techniques that form the basis for proving that this and other problems are
oorithmically unsolvable.

3 3 BN OEOR OWOE M OH & & & F
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THE DEFINITION OF ALGORITHM

Informally speaking, an algorithm is a collection of simple instructions for ca
rying out some task. Commonplace in everyday life, algorithms sometimes 3
called procedmres or recipes. Algorithms also play an important role in mathemati
Ancient mathematical literature contains descriptions of algorithms for a variety
of tasks, such as finding prime numbers and greatest commeon divisors. In co
temnporary mathematics algorithms abound.

Even though algorithms have had a long history in mathematics, the noton o
algorithm itself was not defined precisely until the twentieth century. Before that,
mathematicians had an intuitive notion of what algorithms were and relied upon
that notion when using and describing them. But that intuitive notion was'i
sufficient for galmng a deeper understanding of algorithms, The following sto
relates how the precise definition of algorithm was crucial to one important ma
ematical problem.

Intuitive notion Turing machine

HILBERT’S PROBLEMS equals

: of algorithms algorithms
In 1900, mathematician David Hilbert delivered a now-famous address at t
International Congress of Mathematicians in Paris. In his lecture, he identifi GURE 3.9
twenty-three mathematical problems and posed them as a challenge for the CO_'_ 6 Church-Turing Thesis

ing century. The tenth problem on his list concerned algorithms.
Before describing that problem, let’s briefly discuss polynomials. A polyn
mial is a sum of terms, where each zerm is a product of certain variables and

nslared from the original German.
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Lets phrase Hilbert’s tenth problem in our terminology. Doing so hel
introduce some themes that we explore in Chapters 4 and 5. et '

algorithms? Students commonly ask this question, especially when prepar-
solutions to exercises and problems. Let’s entertain three possibilities. The
the formal description that spells out in full the Turing machine’s states, tran-
tion function, and so on. It is the lowest, most detailed, level of description.
second is a higher level of description, called the implementation description,
jiich we use English prose to describe the way that the Turing machine moves
ead and the way that it stores data on its tape. At this level we do not give de-
fstates or transition functon. Third is the high-level description, wherein we
English prose to describe an algorithm, ignoring the implementation model.
¢ level we do not need to mention how the machine manages its tape or

D = {p| p is a polynomial with an integral root}.

Hilbert’s tenth problem asks in essence whether the set D is decidable, Tha
swer Is negative. In contrast we can show that D is Turing-recognizable. Bef,
doing so, let’s consider a simpler problem. Itis an analog of Hilbert’s tenth Pro
tem for polynomials that have only a single variable, such as 423 — 222 + 4
Let

Dn = {p| p is a polynomial over  with an integral root}. .
this chapter we have given formal and implementation-level descriptions of

rious examples of Turing machines. Practice with lower level Taring machine
scriptions helps you understand Turing machines and gain confidence in using
. Once you feel confident, high-level descriptions are sufficient.
We now set up a format and netation for describing Turing machines. The in-
to'a Taring machine is always a string. If we want to provide an object other
an 4 string as input, we must first represent that object as a string. Strings can
represent polynomials, graphs, grammars, automata, and any combination
i0se objects. A Turing machine may be programmed to decode the repre-
ntation so that it can be interpreted in the way we intend. Our notation for
encoding of an object O into its representation as a string is {Q). If we have
| objects Oy, Oa, ... , Ok, we denote their encoding into a single string by
2, ..., Or}. The encoding itself can be done in many reasonable ways, It
ot matter which one we pick, because a Taring machine can always trans-
one such encoding into another.
our format, we describe Turing machine algorithms with an indented seg-
of text within quotes. We break the algorithm into stages, each usually in-
ing many individual steps of the Turing machine’ computation. We indicate
block structure of the algorithm with further indentadon. The first line of
orithm describes the input to the machine. If the input description is sim-
the input is taken to be a string. If the input description is the encoding
object as in (A), the Turing machine first implicitly tests whether the input
etly encodes an object of the desired form and rejects it if it doesn’t.

Here is a Turing machine A4 that recognizes Dy:

M = “The input is a polynomial p over the variable z. :
1. Evaluate p with  set successively to the values 0, 1, —1, 2, —2,-
3, =3, ... If at any point the polynomial evaluates to 0, accept.”

If p has an integral root, M) eventually will find it and accept. If p does noth
an integral root, M will run forever. For the multivariable case, we can pres'
similar Turing machine M that recognizes 1. Here, M goes through all possih}
settings of its variables to integral values.
Both M) and M are recognizers but not deciders. We can convert M, to:
a decider for Dy because we can caleulate bounds within which the roots:6f
single variable polynomial must lie and restrict the search to these bounds,
Problem 3.18 you are asked to show that the roots of such a polynomial must
between the values :

:l: k Cma.x
€1

¥

where k is the number of terms in the polynomial, ¢y is the coefficient
largest absolute value, and ¢; is the coefficient of the highest order term
root is not found within these bounds, the machine rejects. Matijasevie’s the:
shows that calculating such bounds for multivariable polynomials is impossib

TERMINOLOGY FOR DESCRIBING TURING MACHINES

We have come to a turning point in the study of the theory of computation
continue to speak of Turing machines, but our real focus from now on is o
gorithms, That is, the Turing machine merely serves as a precise model fo
definition of algorithm. We will skip over the extensive theory of Turing
chines themselves and not spend much time on the low-level programming
Turing machines. We only need to be comfortable enough with Turing macht
to believe they capture all algorithms. _

With that in mind, let’s standardize the way we describe Turing machine
rithms. Initially, we ask: What is the right level of detail to give when describ

A be the language consisting of all strings representing undirected graphs
are connected. Recall that a graph is connected if every node can be reached
ery other node by traveling along the edges of the graph. We write

A = {{G}| G is a connected undirected graph}.

following is a high-level description of a TM M that decides A.




emoves the underlines, and goes on from the beginning of stage 2. If they aren’s,
checks the next edge on the list. If there are no more edges, {n;,na} is not
‘edge of G. Then M moves the underline on n; to the next dotted node and
w calls this node ns. Tt repeats the steps in this paragraph to check, as before,
¢ther the new pair {n1, ny} is an edge. If there are no more dotted nodes, n;
sot attached to any dotted nodes. Then M sets the underlines so that ny is the
axt undotted node and ng is the first dotted node and repeats the steps in this
ragraph. If there are no more undotted nodes, M has not been able to find any
nodes to dot, so it moves on to stage 4.
For stage 4, M scans the list of nodes to determine whether all are dotted.
they are, it enters the accept state; otherwise it enters the reject state. This
mpletes the description of TM M. -

M = “On input (G, the encoding of a graph G:
1. Select the first node of G and mark it.
2. Repeat the following stage until no new nodes are marked.
3. For each node in (, mark it if it is attached by an edge to a .
node that is already marked.
‘4. Scan all the nodes of G to determine whether they all are”
marked. Tf they are, accept; otherwise reject.” '

For additional practice, fet’s examine some implementation-level details
“Turing machine M. Usually we won’t give this level of detail in the future
you won’t need to do so either, unless specifically requested in an exercise. Fj
we must understand how () encodes the graph G as a string. Consider an
coding that is a list of the nodes of G followed by a list of the edges of G, Eac
node is a decimal number, and each edge is the pair of decimal numbers thatre
resent the nodes at the two endpoints of the edge. The following figure depic
this graph and its encoding. . E

OB OB OB oW o &

XERCISES

(1,2,3,4)((1,2),(2,3),(3,1),(1,4)) "This exercise concerns TM M3 whose description and state diagram appear in Ex-

ample 3.4. In each of the parts, give the sequence of configurations that Mz enters
when started on the indicated input string.

a. 0.

b. 00.
Ficureg 3.10 c. 000.
A graph G and its encoding (G) d. 000000.

. This exercise concerns TM Af; whose déscripﬂ'on and state diagram appear in Ex-
- ample 3.5. In each of the parrs, give the sequence of configurarions that M, enters

When M receives the input (G}, it first checks to determine that the input - . .
: when started on the indicated input string,

the proper encoding of some graph. To do so, M scans the tape to be surc th

there are two lists and that they are in the proper form. The first list should 2 11,
list of distinet decimal numbers, and the second should be a list of pairs of deci b. 1#1.
numbers. Then M checks several things. First, the node list should contain c. 1##1.
repetitions, and second, every node appearing on the edge list should also apj d. 10811,
on the node list. For the first, we can use the procedure given in Example e 1010

for TM My that checks element distinctness. A similar method works for the:
ond check. If w passes these checks, it is the encoding of some graph ¢.. T
verification completes the input check, and M goes on to stage 1.

For stage 1, M marks the first node with a dot on the leftmost digit.

For stage 2, M scans the list of nodes to find an undotted node n; and flag
by marking it differently, say, by underlining the first symbol. Then M scans!
list again to find a dotted node nq and underlines it, too.

Now M scans the list of edges. For each edge, M tests whether the two urid;
lined nodes 111 and ng are the ones appearing in that edge. If they are, M dots

- Modify the proof of Theorem 3.10 on page 138 to obmin Corollary 3.12 showing
that a language is decidable iff some nondeterministic TM decides it. (You may as-
sume the following theorem about trees. If every node in a tree has finitely many
childeen and every branch of the tree has finitely many nodes, the tree itself has
finitely many nodes.)

- Give a formal definition of an enumerator, Consider it to be a type of two-tape
Turing machine that uses its second tape as the printer. Include a definition of the
enumerated language.
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3.5 Examine the formal definition of a Turing machine to answer the following (iué.g
tions, and explain your reasoning.
a. Can a Taring machine ever write the blank symbol w1 on its tape?
b. Can the tape alphabet I be the same as the input alphabet X.?
¢, Can a Turing machine’s head ever be in the same location in two successi
steps?
d. Can a Turing machine contain just a single state?
3.6 In Theorem 3.13 we showed that a language is Turing-recognizable iff some enyj
merator emrmerates it. Why didn’t we use the following simpler algorithm for th
forward direction of the proof? As before, s1,82,... is a list of all strings in X~
FE = “Ignore the input.
1. Repeat the following for i = 1,2,3,...
2.  Run M on ss.
3. Ifit accepts, print out s;.”
3.7 Explain why the following is not a description of a legitimate Turing machine.
Muzd = “The input is a palynomial p over variables z1, ... , Tk
1. Tryall possible settings of 1, ... , zx to integer values.
2. PBwvaluate p on all of these settings.
3. Ifany of these settings evaluates to 0, accepi; otherwise, reject.”
3.8 Give implementation-level deseriptions of Turing machines that decide the folto
ing languages over the alphabet {0,1}:
a. {w|w contains an equal number of 0s and 1s}. '
b. {w|w contains twice as many 0s as 1s}.
c. {w| w does not contain twice as many 0s as 1s}.
PROBLEMS
3.9 Tetak-PDA be a pushdown automaton that has k stacks, Thus a 0-PDAisan N
and a 1-PDA is a conventional PDA, You already know that 1-PDAs are more po
erful (recognize a larger class of languages) than 0-PDAs. : -
3.
a, Show that 2-PDAs are more powetful than 1-PDAs. :
b. Show that 3-PDAs are not more powerful than 2-PDAs,
(Hint: Simulate a Toring machine tape with two stacks.)
3.10 Say that a write-once Tiving machine is a single-tape TM that can alter each tap
square at most once (including the input portion of the tape). Show that this varian
Turing machine model is equivalent to the ordinary Turing machine model. (Hi
As a first step consider the case whereby the Turing machine may alter each tap
square at most twice. Use lots of tape.) '
3.11 A Turing machine with doubly infinite tape is similar to an ordinary Taring m:

chine except that its tape is infinite to the left as well as to the right. The tape
initially filled with blanks except for the portion that contains the input. Compil
tation is defined as usnal except that the head never encounters an end to the tap
as it moves leftward. Show that this type of Turing machine recognizes the class 0
"Turing-recognizable languages.

13

14

A Turing machine with left reset is similar to an ordinary Turing machine except
that the transition function has the form

§: @ xI—Q x T x {R,RESET}

1f §{q,a) = (v, b, RESET), when the machine is in state ¢ reading an a, the ma-
chine’ head jumps to the left-hand end of the tape after it writes b in the tape and
enters state r. Note thar these machines do not have the usual ability to move the
head one symbot left. Show that Turing machines with left reset recognize the class
of Turing-recognizable languages.

A Turing machine with stay put instead of left is similar to an ordinary Toring ma-
chine except that the transition function has the form

6: QxT—@xT % {RS}

At each point the machine can move its head right or let it stay in the same position.
Show that this Turing machine variant is net equivalent to the usual version, What
class of languages do these machines recognize?

Show that the coflection of decidable languages is closed under the operations of
union.

. concatenation.

. star.

. complementation.

ﬂﬁuhU"Eﬂ

. intersection,

Show that the collection of Turing-recognizable languages is clased under the op-
erations of

union.

. concatenation.

I 4

star.

d. intersection.
Show that a language is decidable iff some enumerator enumerates the language in
lexicographic order.

Show that single-tape TMs that cannot write on the portion of the tape containing
the input string can only recogaize regular languages.

Letciz™ + 2™ + -+ €n + Gny1 be a polynomial with a root at z = mo. Let
Cmax be the largest absolute value of a ¢;. Show that

Cmax

ea}

lzal < (n 1)

Let A be the language containing only the single string s, where

¢ if God does not exist
1 if God does exist.

Is A decidable? Why or why not? (Note that the answer doesn’t depend on your
religious convictions.) :



