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204 John R. Seq

not machines. Whatever else intentionality is, it is a biological ph
nomenon, and it is likely to be as causally dependent on the specj
biochemistry of its origins as are lactation, photosynthesis, or any big.
logical phenomena. No one would suppese that we could produ
milk and sugar by running a computer simulation of the form
sequences in lactation and photosynthesis; but where the mind is co
cerned, many people are willing to believe in such a miracle, because
a deep and abiding dualism: the mind, they suppose, is a matter of f;
mal processes and is independent of specific material causes in a wa
that milk and sugar are not. :

In defense of this dualism, the hope is often expressed that the
brain is a digital computer. (Early computers, by the way, were ofter
called “electronic brains”.) But that is no help. Of course the brain is
digital computer. Since everything is a digital computer, brains are too
The point is that the brain’s causal capacity to produce intentionality
cannot consist in its instantiating a computer program, since for an
program you like it is possible for something to instantiate that pro
gram and still not have any mental states. Whatever it is that the brai
does to produce intentionality, it cannot consist in instantiating a pro:
gram, since no program by itself is sufficient for intentionality.

rchitecture of Mind:
onnectionist Approach

David E. Rumelhart
1989

e science has a long-standing and important relationship to
smputer. The computer has provided a tool whereby we have
ablé to express our theories of mental activity; it has been a valu-
ource of metaphors through which we have come to understand
appreciate how mental activities might arise out of the operations
mple-component processing elements.

recall vividly a class L taught some fifteen years ago in which T out-
‘the then-current view of the cognitive system. A particularly
al student challenged my account, with its reliance on concepts
awn from computer science and artificial intelligence, with the ques-
11 of whether T thought my theories would be different if it had hap-
ed that our computers were parallel instead of serial. My response,
ccall, was to concede that our theories might very well be differ-
but to argue that that wasnt a bad thing. I pointed out that the
ation for our theories and our understanding of abstract phe-
1cna always is based on our experience with the technology of the
¢ T pointed out that Aristotle had a wax tablet theory of memory,
that Leibniz saw the universe as clockworks, that Freud used a hydrau-
model of libido flowing through the system, and that the tele-
phone-switchboard model of intelligence had played an important role
vell. The theoties posited by those of previous generations had, I
uggested, been useful in spite of the fact that they were based on the
ctaphors of their time. Therefore, I argued, it was natural thart in our
neration—the generation of the serial computer—we should draw
our insights from analogies with the most advanced technological
velopments of our time. I don’t now remember whether my response
tisfied the student, but I have no doubt that we in cognitive science
ve gained much of value through our use of concepts drawn from
ur experience with the computer.

Notes

1. Tam not saying, of course, that Schank himself is committed to thes
claims. '

2. Also, “understanding” implies both the possession of mental (inten.
tional) states and the truth (validity, success) of these states. For th

purposes of this discussion, we are concerned only with the possessio
of the states.

3. Intentionality is by definition that feature of certain mental states by
which they are directed at or are about objects and states of affairs in the’
world. Thus, beliefs, desires, and intentions are intentional states; undi
rected forms of anxiety and depression are not. (For further discussion
see Searle 1979),
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of difference. It is the architecture that determines which
rithms are most easily cartied out on the machine in ques-
he architecture of the machine that determines the essential
.:é'program itself. Tt is thus reasonable that we should begin
shat we know about the architecture of the brain and how it
ape the algorithms underlying biological intelligence and
mental Iife.
basic strategy of the connectionist approach is to take as its
ental processing unit something close to an abstract neuron.
agine that computation is carried out through simple interac-
among such processing units. Essentially the idea is that these
ng elements communicate by sending numbers along the lines
ect the processing elements. This identification already pro-
\¢ interesting constraints on the kinds of algorithms that
underlie human intelligence.
¢ operations in our models then can best be characterized as
{ly-inspired”. How does the replacement of the computer meta-
ith the brain metaphor as model of mind affect our thinking?
hange in orientation leads us to a number of considerations that
- inform and constrain our model-building efforts. Perhaps the
ucial of these is time. Neurons are remarkably slow relative to
yonents in modern computers. Neurons operate in the time scale
milliseconds, whereas computer components operate in the time
of nanoseconds—a factor of 10° faster. This means that human
racesses that take on the order of a second or less can involve only a
undred or so time steps. Because most of the processes we have stud-
perception, memory retrieval, speech processing, sentence com-
hension, and the like—take about a second or so, it makes sense to
pose what Feldman (1985a) calls the “100-step-program” con-
raint. That is, we seek explanations for these mental phenomena that
fiot require more than about a hundred elementary sequential oper-
tions. Given that the processes we seck to characterize are often quite
nplex and may involve consideration of large numbers of simulta-
us constraints, our algorithms must involve considerable parallel-
. Thus although a serial computer could be created out of the kinds
of components represented by our units, such an implementation
ould surely violate the 100-step-program constraint for any but the
simplest processes. Some might argue that, although parallelism is
bviously present in much of human information processing, this fact
alone need not greatly modify our world view. This is unlikely. The

In addition to its value as a source of metaphors, the computer
fers from earlier technologies in another remarkable way. The ¢
puter can be made to simulate systems whose operations are
different from the computers on which these simulations run. In.
way we can use the computer to simulate systems with which we
to have experience and thereby provide a source of experience that ¢
be drawn upon in giving us new metaphors and new insights into
mental operations might be accomplished. It is this use of the co;
puter that the connectionists have employed. The architecture that-
are exploring is not one based on the von Neumann architecture of o
current generation of computers but rather an architecture based:
considerations of how brains themselves might function. Our strate
has thus become one of offering a general and abstract model of ¢
computational architecture of brains, to develop algorithms and proq
dures well suited to this architecture, to simulate these procedures ang
architecture on a computer, and to explore them as hypotheses aboui
the nature of the human information-processing system. We say tha
such models are neurally inspired, and we call computation on such :
system brain-style computation. Our goal in short is to replace the com
puter metaphor with the brain metaphor.

1 Why brain-style computation?

Why should a brain-style computer be an especially interesting sourc
of inspiration? Implicit in the adoption of the computer metaphor i
an assumption about the appropriate level of explanation in cognitiv
science. The basic assumption is that we should seek explanation at th
program ot functionallevel rather than the implementation level. Thus
it is often pointed out that we can fearn very little about what kind o
program a particular computer may be running by looking at the elec
tronics. In fact we don’t care much about the details of the computer a
all; all we care about is the particular program it is running. If we know.
the program, we know how the system will behave in any situation. It
doesn’t matter whether we use vacuum tubes or transistors, whether we.
use an IBM or an Apple, the essential characteristics are the same. This
is a very misleading analogy. It is true for computers because they are
all essentially the same. Whether we make them out of vacuum tubes
or transistors, and whether we use an IBM or an Apple computer, we
are using computers of the same general design. But, when we look at
an essentially different architecture, we see thart the architecture makes
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speed of components is a critical design constraint. Although ¢h
has slow components, it has very many of them. The human brain
tains billions of such processing elements. Rather than organize
putation with many, many serial steps, as we do with systems:
steps are very fast, the brain must deploy many, many processin
ments cooperatively and in parallel to carry out its activities. -
design characteristics, among others, lead, I believe, to a general
nization of computing that is fundamentally different from wh
are used to.
A further consideration differentiates our models from itk
inspired by the computer metaphor—that is, the constraint that alj
knowledge is in the connections. From conventional programms
computers we are used to thinking of knowledge as being stored in,
states of certain units in the system. In our systems we assume t
only very short-term storage can occur in the states of units; 10ng '
storage takes place in the connections among units. Indeed it
connections—or perhaps the rules for forming them through expe
ence—that primarily differentiate one model from another. This i
profound difference between our approach and other more conve
tional approaches, for it means that almost all knowledge is implic
the structure of the device that carries out the task, rather than expls
in the states of units themselves. Knowledge is not directly accessi
to interpretation by some separate processor, but it is built into th
processor itself and directly determines the course of processing. It
acquired through tuning of connections, as they are used in proce
ing, rather than formulated and stored as declarative facts. _
These and other neurally inspired classes of working assumption
have been one important source of assumptions undetlying the con
nectionist program of research. These have not been the only consider
ations. A second class of constraints arises from our beliefs about th
nature of human information processing considered at a more abstract
computational level of analysis. We see the kinds of phenomena w
have been studying as products of a kind of constraint-satisfaction pro
cedure in which a very large number of constraints act simultaneoust
to produce the behavior. Thus we see most behavior not as the produc
of a single, separate component of the cognitive system but as th
product of a large set of interacting components, each mutually con:
straining the others and contributing in its own way to the globall
observable behavior of the system. It is very difficult to use serial algo
rithms to implement such a conception but very natural to use highl

hese problems can often be characterized as best-match
problems. As Minsky and Papert (1969 have pointed
difficult to solve best-match problems serially. This is
Kind of problem, however, that is readily implemented
para]iel algorithms of the kind we have been studying.

f brain-style computatlonal systems, then, offers not only

processing tasks but also solutions to computational
fat seem difficult to solve in more traditional computa-

chapter, I begin with a somewhat more formal sketch of the
jonal framework of connectionist models. I then follow with
discussion of the kinds of computational problems that con-
‘models seem best suited for. Finally, I briefly review the state

e connectionist framework

are seven major components of any connectionist systerm:
set of processing units;

:}mte of activation defined over the processing units;

an output finction for each unit that maps its state of activation
ifnto an output;

4 pattern _of connectivity among units;

an activation rule for combining the inputs impinging on a unit
with its current state to produce a new level of activation for the
unit;

a learning rule whereby patterns of connectivity are modified by
experience; and

an environment within which the system must operate.

re 8.1 illustrates the basic aspects of these systems. There is a set of
cessing units, generally indicated by circles in my diagrams; at each
nt in time each unit #; has an activation value, denoted in the dia-
m as «;(¢); this activation value is passed through a function f; to
roduce an output value 0;(¢). This output value can be seen as pass-
o through a set of unidirectional connections (indicated by lines or
ows in the diagrams) to other units in the system. There is associ-
ed with each connection a real number, usually called the weighs or
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Unitn hich the units fepresent small, featurelike entities we
Q Catires. In this case it is the pattern as a whole that is the
4 level of analysis. This should be contrasted to a one-unit—

: or localmt representational syster, in Wthh single units

processmg of a connectionist system is carncd out by
There is no executive or other overseer. There are only rel-
mple units, each doing its own relatively simple job. A unit’s
mply to receive input from its neighbors and, as a function of
uts it receives, to compute an output value, which it sends 10 its

types of units: input, outpuz, and hidden units. Input units receive
om sources external to the system under study. These inputs
either sensory inputs ot inputs from other parts of the process-

t?,riisc:éld 10_ - a :M m in which the model is embedded. The output units send
output f f;aj) F(:ietj) F sut of the system. They may cither directly affect motoric sys-
function 0 _ 0 “simply influence other systems external to the ones we are

o 3 0 m et 0 m eling. ‘The hidden units are those whose only inputs and outputs

Figure 8.1: The basic parts of a parallel distributed processing system.:

STATE OF ACTIVATION. In addition to the set of units we need a
sentation of the state of the system at time # This is primarily
secified by a vector a{z), representing the pattern of activation over
e set of processing units. Each element of the vector stands for the
ation of one of the units. It is the pattern of activation over the
ole set of units that captures what the system is representing at any
ie.- It is useful to see processing in the system as the evolution,
ugh time, of a pattern of activity over the set of units.

Different models make different assumptions about the activation
slues a unir is allowed to take on. Activation values may be continu-
us or discrete. If they are continuous, they may be unbounded or
otunded, If they are discrete, they may take binary values or any of a
mall set of values. Thus in some models units are continuous and may
ke on any real number as an activation value. In other cases they may
ake on any real value between some minimum and maximum such as,
r example, the interval [0,1]. When activation values are restricted to
iscrete values, they most often are binary—such as the values 0 and 1,

strength of the connection, designated w; (zo unit 4, from unit ;), wh
determines how strongly the former is affected by the latter. All of th
inputs must then be combined; and the combined inputs to a uni
(usually designated the net inpur to that unit), along with its cury
activation value, determine its new activation value via a function
‘These systems are viewed as being plastic in the sense that the patter
of interconnections is not fixed for all time; rather the weights ca
undergo modification as a function of experience. In this way the sy:
tem can evolve. What a unit represents can change with experience
and the system can come to perform in substantially different ways.

THE SET OF PROCESSING UNITS. Any connectionist system begms-
with a set of processing units. Specifying the set of processing uni
and what they represent is typically the first stage of specifying a con
nectionist model. In some systems these units may represent particular.
conceptual objects such as features, letters, words, or concepts; in oth:
ers they are simply abstract elements over which meaningful patter
can be defined. When we speak of a distributed representation, we
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where 1 is usually taken to mean that the unit is active and 0 is ing the network must perform is the fan-in and fan-ous of
to mean that it is inactive. - fan-in is the number of elements that either excite or
given unit., The fan-out is the number of units affected
b'y.-a unit. It is useful to note that in brains these numbers are
arge. Fan-in and fan-out range as high as 100,000 in some
e brain. It seems likely that this large fan-in and fan-out
a kind of operation that is less like a fixed circuit and more
1'in character. .

Tur ourpur FUNCTION. Units interact by transmitting signals
their ncighbors. The strengths of their signals, and therefore
degrees to which they affect their neighbors, are determined by
levels of activation. Associated with each unit #; is an output fun
f{a(t)), which maps the current state of activation to an output sig
0,(#). In some of our models, the output level is exactly cqual 0

activation Jevel of the unit. In this case, f is the identity funct
Flx) = x. Sometimes f is some sort of threshold function, so th;
unit has no effect on another unit unless its activation exceeds a cer
value. Sometimes the function £is assumed to be a stochastic funct
in which the output of the unit depends probabilistically on its act
tion level.

TIvATION RULE. We also need a rule whereby the inputs
ing on a particular unit are combined with one another and
“current state of the unit to produce a new state of activation.
{'a function £}, which takes #,(z) and the net inputs, net, =
0;(¢), and produces a new state of activation. In the simplest

diy . . . .
. when F, is the identity function and depends only on the inputs,

an write #;(# + 1) = net;(#) —or, in vector notation for the whole
otk at once, a(#+ 1) = net(z) = Wo(z). Sometimes Fis a thresh-
unction so that the net input must exceed some value before
ibuting to the new state of activation. Often the new state of acti-
depends on the old one as well as the current input. The func-
self is what we call the activation rule. Usually the function is
ned to be deterministic. Thus, for example, if a threshold is
olved, it may be that 4;(#) = 1 if the total input exceeds some
shold value, and equals 0 otherwise. Other times it is assumed that
tochastic. Sometimes activations are assumed to decay slowly with
so that even with no external input the activation of a unit will
ply decay and not go directly to zero. Whenever 4,(2) is assumed to
on continuous values, it is common te assume that Fis a kind of
noid (that is, S-shaped) function. In this case an individual unit can
erate and reach a minimum or maximum value of activation.

"THE PATTERN OF CONNECTIVITY. Units are connected to one anothy
It is this pattern of connectivity that constitutes what the sys
knows and determines how it will respond to any arbitrary inp:
Specifying the processing system and the knowledge encoded the
is, in a connectionist model, a matter of specifying this pattern of co
nectivity among the processing units. '
Tn many cases we assume that each unit provides an additive cont
bution to the input of the units to which it is connected. In such cas
the total input to any unit is simply the weighted sum of the separat
inputs from each of the units connected to it. That is, the inputs fr
all of the incoming units are simply multiplied by their respective co
nection weights and summed to get the overall input to that uni
this case the total pattern of connectivity can be represented by mer
specifying the weights for each of the connections in the system
positive weight represents an excitatory input, and a negative weigf
represents an inhibitory input. It is often convenient to represent suc
a pattern of connectivity by a weight matrix W in which the entry
represents the strength and sense of the connection to unit #; fro
unit #; The weight w;; is a positive number if unit #; excites unit #
it is a negative number if unit #; inhibits unit #;; and] it is 0 if unit #
has no direct connection to unit %;. The absolute value of w; specifi
the strength of the connection. _
The pattern of connectivity is very important. It is this pattern that
determines what each unit represents. One important issue that may
determine both how much information can be stored and how much

HE, LEARNING RULE: CHANGES AS A FUNCIION OF EXPERIENCE.
hanging the processing or knowledge structure in a connectionist
ystem involves modifying the patterns of interconnectivity. In princi-
le this can involve three kinds of modification:

{1) development of new connections;
2} loss of existing connections;
(3} raodification of the strengths of connections that already exist.

Yéry li:ctie work has been done on (1) and (2). To a first order of
pproximation, however, (1} and (2) can be considered a special case of
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(3). Whenever we change the strength of connection away fro mhzatlon of the perceptron learning rule for Wthh the

to some positive or negative value, it has the same effect as g«
new connection. Whenever we change the strength of a connect
zero, that has the same effect as losing an existing connection. Thy,
have concentrated on rules whereby strengths of connections are
fied through experience.

Virtually all learning rules for models of this type can be cons
variants of the Hebbian learning rule, suggested by Hebb in his
book Organization of Behavior (1949). Hebb's basic idea is thi
unit #; receives an input from another unit #; at a time when
units are highly active, then the weight w;; to #; from #; shoul
strengthened. This idea has been extended and modlﬁed 50 that It
be stated more generally as

Swij = €a; (0;—w

i
mployed by Grossberg (1976) and others in the study of

#ning. In this case usually only the units with the stron-
n values are allowed to learn.

~NMENT. Lt is crucial in the development of any model to
representation of the environment in which this model is
-connectionist models, we represent the environment as a
g stochastic function over a space of possible inpuc pat-
, for each possible input pattern, we imagine that there is
Bwy = g (a; (0, 1,1} - h{o;(1),w,) ' robability that, at any given time, that pattern is impinging on
units. This probability function may in general depend on
tory of inputs to the system as well as outputs of the system. In
¢ most connectionist models involve a much sunplcr character-
f the environment. Typically, the environment is characterized
: probability distribution over the set of possible input pat-
dependent of past inputs and past responses of the system. In
we can imagine listing the set of possible inputs to the system
mbering them from 1 to M. The environment is then charac-
by a set of probabilities p; for 7= 1, ... , M. Because each input
an be considered a vector, it is sometimes useful to character-
e’ patterns with nonzero probabilities as consticuting orthogonal
irly independent sets of vectors.

[o summarize, the connectionist framework consists not only of a
al language but also a perspective on our models. Other qualita-
nd quantitative considerations arising from our understanding of
n processing and of human behavior combine with the formal sys-
(as in the simplest case) but 6 form what might be viewed as an aesthetic for our model-build-

glapt) =€ (T,—a) ' r:i_terprises.

This is often called the Widrow-Hoffrule, because it was originally fo
mulated by Widrow and Hoff (1960), or the delta rule, becausc th
amount of learning is proportional to the difference (or delta) betwe
the actual activation achieved and the target activation provided by
teacher. In this case we have

Swij =g (1,—a) “0;

or, suppressing the time variables for easier readability, as
dwy; = gla, ) -hio,w,)

where 1, is a kind of zeaching input to ;. Simply stated, this equ
says that the change in the connection to #; from u; is given by
product of a function g(...) of the activation of #; and its teachin
input 1;and another function 4{...) of the output value of u;an
current connection strength wy. In the simplest versions of Hebb
learning, there is no teacher and the functions gand 4 are simply p

portional to their first arguments, Thus we have

bw,. = ga0;
where € is the constant of proportionality representing the learn:

rate. Another common variation is a rule in which

h{o,w.) = o,
(J’ if i

Computational features of connectionist models

addition to the fact that connectionist systems are capable of
ploiting parallelism in computation and mimicking brain-style com-
ation, such systems are important because they provide good solu-
sto a number of very difficult computational problems that seem
rise often in models of cognition. In particular they typically:
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* are good at solving constraint-satisfaction problems;

* are efficient mechanisms for best-march search, pattern recogn
tion, and content-addressable memory;

* automatically implement similarity-based generalization;

* offer sitaple, general mechanisms for adaprive learning; and
ple, g P g

* exhibit graceful degradation with damage or information ove
load.

CONSTRAINT SATISFACTION PROBLEMS. Many cognitive-scie
problems are usefully conceptualized as problems in which a sol
is given through the satisfaction of a very large number of mutial
interacting constraints. The challenge is to devise a computational
tem that is capable of efficiently solving such problems. Connection;
nerworks are ideal for implementing constraint-satisfaction syste
indeed, the trick for getting connectionist networks to solve diffi
problems is often to cast the problems as constraint-satisfaction p;
lems. In this case, we conceptualize the connectionist network as a &
straint network in which each unit represents a hypothesis of some 5o
{for example, that a certain semantic feature, visual feature, or acoust
feature is present in the input), and each connection represents a co
straint among the hypotheses. .
Thus, for such a network, if feature B is expected to be pres
whenever feature A is present, there should be 2 positive connectio
from the unit corresponding to the hypothesis that A is present to t
unit representing the hypothesis that B is present. Contrariwise;
there is a constraint that whenever A is present B is expected not to:
present, there should be a negative connection from A to B. If the co
straints are weak, the weights should be small; if the constraints ar
strong, then the weights should be large. Similarly, the inputs to suc
networks can also be thought of as constraints. A positive inpur to
particular unit means that there is evidence from the outside that th
relevant feature is present. A negative input means that there is ev
dence from the outside that the feature is not present. The stronger the
input, the greater the evidence. If a network of this kind is allowed to
run, it will eventually seztde into an optimal state in which as many as
possible of the constraints are satisfied, with priority given to the stro
gest constraints. (Actually, the system will find a locally best solution to
the constraint-satisfaction problem. Global optima are more difficu
to find.) The procedure whereby such a system seztles into such a statg

re:8.2: A simple network representing some constraints involved in
perceiving a Necker cube. The ovals are the units in the net-
work; connections with arrow-heads are positive (excitatory),
while those with circle-heads are negative (inhibitory); the
dotted lines represent input stimuli from the perceived cube.

alled relaxation. We speak of the system relaxing to a solution.
hus, many connectionist models are constraint-satisfaction models
settle on locally optimal solutions through a process of relaxation.
Figure 8.2 shows an example of a simple 16-unit constraint net-
k. Each unit in the network represents a hypothesis concerning a
ex in a line drawing of a Necker cube. The network consists of two
reonnected subnetworks—one corresponding to each of the two
al interpretations of the Necker cube. Each unit in each subnet-
otk is assumed to receive input from the region of the input figure—
the cube—corresponding to its location in the network. Each unit in
gure 8.2 is labeled with a three-letter sequence indicating whether its
ttex is hypothesized to be front or back (F or B), upper or lower (U
1), and right or left (R or L). Thus, for example, the lower-left unit
ach subnetwork is assumed to receive input from the lower-left ver-
tex of the input figure. The unit in the left network represents the
hypothesis that it is receiving input from a lower-left vertex in the
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totally consistent. Sometimes a given unit may have to be turned
increase the function in some ways yet decrease it in other ways
point is that it is the sum of all of these individual contribution
the system seeks to maximize. Thus, for every state of the syst
every possible pattern of activation over the units—the patte
inputs and the connectivity matrix W determine a value of the
ness-of-fit function. The system processes its input by moving tp
from state to adjacent state until it reaches a state of maximum-ge
ness. When' it reaches such a stble state or fixed point, it will sta
that state and it can be said to have “settled” on a solution to the g
straint-satisfaction problem or, as in our present case, “settled it
interpretation” of the input. :

It is important to see then that entirely Jocal computational op
tions, in which each unit adjusts its activation up or down on the
of its net input, serve to allow the network to converge toward: s
that maximize a global measure of goodness or degree of constraint
isfaction. Hopfield’s main contribution to the present analysis w:
point out this basic fact about the behavior of networks with symi
rical connections and asynchronous update of activations.

Finally, one of the most difficult problems in cognitive science
build systems that can allow a large number of knowledge sourcés
interact usefully in the solution of a problem. Thus, in language p
cessing we would want syntactic, phonological, semantic, and prag
matic knowledge sources all to interact in the construction of
meaning of an input. Reddy and his colleagues (1973) have had sos
success in the case of speech perception with the Hearsay syst
because they were working in the highly structured domain of |
guage. Less structured domains have proved very difficult to organi
Connectionist models, conceived as constraint-satisfaction networks
are ideally suited for blending multiple-knowledge sources. E:
knowledge type is simply another constraint, and the system will,
parallel, find those configurations of values that best satisfy all of 1
constraints from all of the knowledge sources. The uniformity of rcj
resentation and the common currency of interaction (activation val
ues) make connectionist systems especially powerful for this domai

To summarize, there is a large subset of connectionist models th
can be considered constraint-satisfaction models. These networks ¢
be described as carrying out their information processing by climbin
into states of maximal satisfaction of the constraints 1rnphclt in th
network. A very useful consequence of this way of viewing networks.__

describe their behavior not only in terms of the behavior of
a2l units but also in terms of the properties of the nerwork
primary concept for understanding these network properties is
ess-of-fit landscape over which the system moves. Once we
cly described this landscape, we have described the opera-
rties of the system—it will process information by moving
rd goodness maxima. The particular maximum that the
Il find is determined by where the system starts and by the
s of the space induced by the input. One of the very impor-
criptors of a goodness landscape is the set of maxima that a sys-
n find, the size of the region that feeds into each maximum, and
e;ght of the maximum itself. The states themselves correspond to
terpretations, the peaks in the space correspond to the best
retations, the extent of the foothills or skirts surrounding a par-
peak determines the likelihood of finding the peak, and the
of the peak corresponds to the degree to which the constraints
etwork are actually met or alternatively to the goodness of the
ation associated with the corresponding state.

ially difficult for serial computational algorithms (they involve
austive search), but, as we have just indicated, connectionist sys-

They can similarly be used to find stored data that best match some
~or probe. In this case, it is useful to imagine that the network
sts of two classes of units. One class, the visible units, corresponds
¢ contents stored in the network, in the sense that each stored pat-
s a possible pattern of activation of these units. The other units,
ideen units, cotrespond to shared structural properties of the
ed patterns that play a role in storing and retrieving them. The pat-
s themselves are actually stored in the weights on the connections
g all these units. If we think of each stored pattern as a collection
eatures, then each visible unit corresponds to the hypothesis that
¢ particular feature is present in the relevant pattern, and each hid-
unit corresponds to a hypothesis concerning a configuration of sev-
features. The hypothesis to which a particular hidden unit
csponds is determined by the exact learning rule used to store the
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nectionist systems, on the other hand, similarities among
directly represented along with the patterns themselves in
on weights—in such a way that similar patterns have sim-
Therefore, similarity-based generalization- is an automatic
connectionist models. It should be noted that the degree of
between patterns is roughly given by the inner product of
s representing the patterns. Thus the dimensions of generali-
given by the dimensions of the representational space. Often
¢ad to the right generalizations. But, there are situations in

ds to inappropriate generalizations. In such cases, we must
system to learn its appropriate representation. In the next
describe how the appropriate representation can be learned so
rrect gencralizations are automatically made.

input and by the characteristics of the ensemble of stored pa
Retrieval in such a network amounts to setting the values of 5o,
the visible units (the retrieval probe) and letting the system settle ¢
best interpretation of that input, while itself setting the values’
remaining visible units. This is a kind of pattern completion
details are not too important here because a variety of learning
Jead to networks that all have the following important propertie

* When a previously stored (that is, familiar) pattern enters ¢
memory system, it is amplified, and the system responds wi
stronger version of the input pattern. This is a kind of recogn
tion response. '

* When an unfamiliar pattern enters the memory system, it
dampened, and the activity of the memory system is shs
dovn. This is a kind of unfamiliarity response. : & A key advantage of connectionist systems is the fact that

et powerful learning procedures can be defined that allow the
adapt to their environments. It was work on the learning

of neurally inspired models that first led to an interest in them
are Rosenblatt 1962), and it was the demonstration that those

‘procedures could not work for complex networks that con-

‘to the loss of interest (compare Minsky and Papert 1969).

- the perceptron convergence procedure and its variants have

ound for some time, they are limited to simple two-layer net-

volving only input and output units. There were no hidden
these cases and no internal representation. The coding pro-

» When part of a familiar pattern is presented, the syste
responds by “flling in” the missing parts. This is a kind of rec
paradigm in which the part constitutes the retrieval cue,
the filling in is a kind of memory-reconstruction process. This
is a content-addressable memory system. :

» When a pattern similar to a stored pattern is presented, the sy
tem responds by distorting the input pattern toward the stored
pattern., This is a kind of assimilation response in which simila
inputs are assimilated to similar stored events. '

Finally, if a number of similar patterns have been stored, th
system will respond strongly to the central tendency of the
stored patterns, even though the central tendency itself wal
never stored. Thus this sort of memory system automaticall;
responds to prototypes even when no prototype has been sce

oved useful in a wide variety of applications. Perhaps their most
rtant characteristic is that they map similar input patterns to sim-
output patterns. This is what allows them to make reasonable gen-
izations and perform reasonably on patterns that have never before
sented. The similarity of patterns in connectionist systems is
ined by their overlap. This overlap, for two-layer networks, is
ined entirely outside the learning system itself—by whatever
ces the patterns.
¢ constraint that similar input patterns lead to similar outputs
ad to an inability of the system to learn certain mappings from
t to output. Whenever the representation provided by the outside
d is such that the similarity structure of the input and output pat-
very different, a network without internal representations (that
network without hidden units) will be unable to perform the

These properties correspond very closely to the characteristics
human memory and, 1 believe, are exactly the kind of properties
want in any theory of memory.

AUTOMATIC, SIMILARTTY-BASED GENERALIZATION. One of the m
complaints against Al programs is their “fragilicy”. The programs
usually very good at what they are programmed to do, but respon:
unintelligent or odd ways when faced with novel situations. T
seem to be at least two reasons for this fragility. In conventional sy
bol-processing systems similarity is represented only indirectly, and
therefore not available as a basis for generalizations; and most Al p
grams are not self-modifying and cannot adapt to their environmen

'y.the external world had to suffice. Nevertheless, such networks




224 David E. Ry cture of Mind: A Connectionist Approach 225

Input Qutput input
patterns patterns patterns Output patt
u
00 — 0 000 - put patiems
01 - 1 010 —
10 — 1 _ 100 -
11 — 0 111 -
Table 8.1: XOR problem. Table 8.2: XOR problem ' ' Ry Internal-
: redundant third bit. representation
units
necessary mappings. A classic example of this case is the exclus
(XOR) problem illustrated in table 8.1. Here we sec that those pagte
that overlap least are supposed to gencrate identical output val
This problem and many others like it cannot be solved by netw
that lack hidden units with which to create their own internal rep
. . .. . Input patterns
sentations of the input patterns, It is interesting to note that ¢

input patterns contained a third input bit, taking the value 1 whe
only when the other two were both 1 (as shown in table 8.2), a
layer system would be able to solve the problem. :
Minsky and Papert (1969) have provided a careful analysis of ¢
ditions under which such systems are capable of carrying out
required mappings. They show that in many interesting cases netw,
of this kind are incapable of solving the problems. On the other ha
as Minsky and Papert also point out, if there is a layer of simpl
ceptron-like hidden units, as shown in figure 8.3, with which the
inal input pattern can be augmented, there is always 2 recoding {
is, an internal representation) of the input patterns in the hidden u
in which the similarity of the patterns among the hidden unit
support any fequired mapping from the input to the output uni
Thus if we have the right connections from the input units to a lat
enough set of hidden units, we can always find a representation'p
will perform any mapping from input to output through these hidd
units. In the case of the XOR problem, the addition of a feature
detects the conjunction of the input units changes the similarity str
ture of the patterns sufficiently to allow the solution to be learne
illustraced in figure 8.4, this can be done with a single hidden u
The numbers on the arrows represent the strengths of the connection
among the units. The numbers written in the circles represent i
thresholds of the units. The value of +1.5 for the threshold of the hi

den unit ensures that it will be turned on only when both input u

8.3: A multilayer network in which input patterns are recoded by
internal representation units.

__t_he point of view of the output unit, the hidden unit is treated as
‘another input unit. It is as if the input patterns consisted of
ather than two units {essentially as in table 8.2).

existence of networks such as this illustrates the potential
1 of hidden units and internal representations. The problem, as

Output unit

+1 ot +1

@ Hidden unit

1 +1

1 Input units

gure 8.4: A simple XOR network with one hidden unit.
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d Papert, in their pessimistic discussion of perceptrons,

noted by Minsky and Papert, is that, whereas there is a very' L er mac hines. They state that

guaranteed learning rule for all problems that can be solved w;
hidden units—namely, the perceptron convergence procedure (
variation reported originally by Widrow and Hoff 1960)— the
been no equally powerful rule for learning in multilayer networks.
It is clear that if we hope to use these connectionist netwoi
general computational purposes, we must have a learning s
capable of learning its own internal representations. This is jus
we (Rumelhart, Hinton, and Williams 1986) have done. W
developed a generalization of the perceptron learning procedure, ¢
the generalized delia rule, which allows the system to learn to com
arbitrary functions. The constraints inherent in networks without
modifying internal representations are no longer applicable. The |
learning procedure is a two-stage process. First, an input is applie
the network, Then, after the system has processed for some time,
tain units of the network—usually the output units—are informe
the values they ought to have attained. If they have attained the desis
values, the weights on their input connections are left unchange
they differ from their target values, then those weights are chang
slighely, in such a way as to reduce the differences between the act
values attained and the target values. .
Those differences between the actual and target values at the outp
units can be thought of as error signals. Similar error signals must.
sent back in turn to those units that impinged on the output uni
Each such unit reccives an error signal that is equal to the sum of't
errors in each of the output units to which it connects times the weis
on the connection to that output unit. Then, based on those error s

e’p'fron has shown itself worthy of study despite (and even
£1) its severe limirations. It has many features‘ that attract
ts linearity; its intriguing learning theore_m; its dear. par-
implicity as a kind of parallel computation. There is no
stippose that any of these vircues carry over to §he many-
d version. Nevertheless, we consider it to be an important
h problem to clucidate (or reject) our intuitive judgment
e extension Is sterile. Perhaps some powetful convergence
m will be discovered, or some profound reason for the failure
duice an interesting “learning theorem” for the multilayered
e will be found. (1969, pp. 231-232)

h our learning results do not guarantee that we can find a solu-
[l solvable problems, our analysis and simulation results have
that, as a practical matter, this error-propagation scheme leads
jons in virtually every case. In short, I believe that we have
d Minsky and Papert’s challenge and have found a learning
ifficiently powerful to demonstrate that their pessimism about
ing‘in multilayer machines was misplaced. o

e way to view the procedure I have been descrl-bmg- is as a paral-
omputer that, having been shown the appropriate input/output
plars specifying some function, programs iwelf to compute that
n in general. Parallel computers are nototiously difficult to pro-
1. Here we have a mechanism whereby we do not actually have to
¢ how to write the program to get the system to do it.

RACEFUL DEGRADATION. Finally, connectionist models are interest-
nals, the weights on the impus connections into those “second-laye candidates for cognitive-science models because of their'property
units can be modified, afrer which error signals can be passed ba graceful degradation in the face of damage and informz.mon over-
another layer. This process—called the backpropagation of ervor—co vad. The ability of our networks to learn leads to the promise of com-
tinues until the error signals reach the input units or until they ha ers that can literally learn their way around faulty components:
been passed back a predetermined number of times. Then a new inp cause every unit participates in the storage of many patterns and
pattern is presented and the process repeats. Although the procediire ause each pattern involves many different units, the. loss of a few
may sound difficult, it is actually quite simple and easy to implemen mponents will degrade the stored information, but will not destroy
within these nets. As shown in Rumelhart, Hinton, and Williams Similarly such memories should not be conceived as having a cer-
(1986}, such a procedure will always change its weights in such a way, ain fixed capacity. Rather, there is simply more and more storage
as to reduce the overall difference between the actual outpur values and terference and blending of similar pieces of information as the mem-

the desired output values, Moreover it can be shown that this systen] ory is overloaded. This property of graceful degradation mimics the
will work for any network whatsoever. ' :
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human response in many ways and is one of the reasons we fin

models of human information processing plausible. : Action units /Cg’"——
: {output)
2 The state of the art '
Recent yeats have seen a virtual explosion of work in the connec '
area. This work has been singularly interdisciplinary, being carrie ' Hld(.j; :
by psychologists, physicists, computer scientists, engineers, neur un
entists, and other cognitive scientists. A number of national and;
national conference.s have betlan' est‘abhshed and are be}ng held: ¢ A units Context
yeat. In such an environment it is difficult to keep up with the rapj units

developing field. Nevertheless, a reading of recent papers indicare
few central themes in this activity. These themes include the stud
learning and generalization (especially the use of the backpropagat
learning procedure), applications to neuroscience, mathematical pr
erties of networks—both of the learning algorithms and of conn
tionist style computation itself in comparison to more convention
computational paradigms—and finally the development of an impl
mentational base for physical realizations of connectionist comp
tional devices, especially in the areas of optics and analog VLSI.

Although there are many other interesting and important devel
ments, I conclude with a brief summary of the work with which Tk _
been most involved over the past several years, namely, the study some architecture
learning and generalization within muldlayer networks. Even.:
summary is necessarily selective, but it should give a sampling of mu
of the current work in the area.

The backpropagation learning procedure has become possibly.
single most popular method for training networks. The procedure
been used to train networks on problem domains including chara
recognition, speech recognition, sonar detection, mapping from spe
ing to sound, motor control, analysis of molecular structure, diagn
of eye diseases, prediction of chaotic functions, playing backgammo
the parsing of simple sentences, and many, many more arcas, Perha
the major point of these examples is the enormous range of probl
to which the backpropagation learning procedure can usefully
applied. In spite of the rather impressive breadth of topics and the su
cess of some of these applications, there are a number of serious op:
problems. The theoretical issues of primary concern fall into thi
main areas. (1) The architecture problem: are there useful architectures
beyond the standard three-layer network that are appropriate fo

ut layer of units, there have been a large number of interesting
tectures proposed—each for the solution of some particular prob-
of interest. There are, for example, a number of “special” architec-
hat have been proposed for the modeling of such sequential
omena as motor control. Perhaps the most important of these is
ne proposed by Mike Jordan (1986} for producing sequences of
1onhemes. The basic structure of the network is llustrated in figure
. It consists of four groups of units. Plan units, which tell the net-
k which sequence it is producing, are fixed at the start of a
nce and are not changed. Comtext wunits, which keep track of
re the system is in the sequence, receive input from the output
ts-of the systems and from themsclves, constituting a memory for
sequence produced thus far. Hidden units combine the information
om the plan units with that from the context units to determine
hich output is to be produced next. Output uniss produce the desired
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Output tions, these features turn out to provide a useful compact
units ———1 of the patterns. Many other architectures are being
well. The space of interesting and useful architecture is
he exploration will continue for many years.
Hidden :
units aling pl‘oblem

problem has received somewhat less attention, although it
! merged as a central problem with backpropagation-like

nput Context. dures. The basic finding has been that diff
S units ocedures. The basic inding has been that difficule problems

'a_ny learning trials. For example, it is not unusual to require
ven hundreds of thousands of pattern presentations to learn
rately difficule problems—-that is, - problems whose solutions
:ns of thousands to a few hundred thousand connections.
d: fast computers are required for such problems, and it is
stical for problems requiring more than a few hundred thousand
ons. It is therefore a matter of concern to learn how to speed
earning so that it can learn more difficult problems in a more
nable number of exposures. The proposed solutions fall into two
tegories. One line of attack is to improve the learning proce-
ther by optimizing the parameters dynamically (that is, change
irning rate systematically during learning), or by using more
ation in the weight-changing procedure (that is, the so-called
order backpropagation procedure, in which the second deriva-
are also computed). Although some improvements can be
ned by these methods, in certain problem domains the basic scal-
roblem still remains. It seems that the basic problem is that diffi-
problems require a large number of exemplars, however efﬁctently
xemplar is used. The other approach grows from VlerIlg learn-
nd evolution as continuous with one another. On this view, the
hat networks take a fong time to learn is to be expected, because
ormally compare their behavior to organisms that have long evo-
nary histories. Accordingly, the solution is to szars the systems at
ces that are as pre-suited as possible for the problem domains to be
ned. Shepherd (1989) has argued that such an approach is critical
an appropriate understanding of the phenomena being modeled.

A final approach to the scaling problem is through modularity.
netimes it is possible to break a problem into smaller subproblems
train subnetworks separately on these. Larger networks can then
assembled from those pretrained modules to solve the original
Oblem. An advantage of the connectionist approach in this regard is

Figure 8.6: A recurrent network of the type employed by Elman (1
for learning to recognize sequences.

output values. This basic structure, with numerous variation
been used successfully in producing sequences of phonemes (J;
1986), sequences of movements (Jordan, 1989), sequences of no
a melody (Todd, 1988), scquences of turns in a simulated
(Miyata, 1987), and for many other applications. An analogou
work for recognizing sequences has been used by Elman (1988) for
cessing sentences one at a time; and another variation has
developed and studied by Mozer (1988). The architecture use
Elman is illustrated in figure 8.6. This network also involves four
of units: 7mput units, in which the sequence to be recogmzed p
sented one element at a time; context units, which receive inputs fie
and send outputs to the hidden units and thus constitute a meme
for recent events; hidden units, which combine the current input wi
the memory of past inputs either to name the sequence, to predict
next element of the sequence, or both; and, of course, output units

Another kind of architecture that has received some attention
suggested by Hinton and has been employed by Elman and Z
(1987), Cottrell, Munro, and Zipser (1987), and many others. Ith
become part of the standard toolkit of backpropagation. This is th
called method of autoencoding the pattern set. The basic architect
in this case consists of three layers of units as in the conventional cas
however, the input and output layers are identical. The idea is to p
the input through a small number of hidden units and reproduc
over the output units. This requires the hidden units to do a kind
nonlinear, principle-components analysis of the input patterns. In th
case, that corresponds to a kind of extraction of critical features.
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that the preliminary training need only be approximately right.:
round of training can be used after assembly to learn the in

among the modules. _ sctionist MOdenng:

2.3 The generalization problem 'ali'Computation /
One final aspect of learning that has been looked at is the naty al Connections

generalization, It is clear that the most important aspect of networ
not that they learn a set of mappings but that they learn the func
implicit in the exemplars under study in such a way that they respo
properly to cases not yet observed. Although there are many exam
of successful generalization (e.g., the learning of spelling-to-phone;
mappings in Sejnowski and Rosenberg’s NETtalk, 1987), there ar
number of cases in which the networks do not generalize correctly
Denker et al. 1987). One simple way to understand this is to note ¢
for most problems there are enough degrees of freedom in the netwe
that there are a large number of genuinely different solutions to-
problems—each of which constitutes a different way of generalizing
unseen patterns, Clearly not all of these can be correct.

Weigend and I have proposed an hypothesis that shows som
promise in promoting better generalization (Weigend and Rumelh
1991). The basic idea is this: the problem of generalization is essen
tially the induction problem. Given a set of observations, what is tk
appropriate principle that applies to all cases? Note that the network
any point in time can be viewed as a specification of an induct
hypothesis. Our proposal is that we follow a version of Occam’s razo
and select the simplest, most robust network that is consistent with th
observations made. The assumption of robustness is simply an embod
iment of a kind of continuity assumption that small variations in th
input pattern should have little effect on the output or on the perfo
mance of the system. The simplicity assumption is simply to choose—
of all networks that correctly account for the input data—the net wi
the fewest hidden units, the fewest connections, the most symmetri
among the weights, and so on. We have formalized this procedure and
modified the backpropagation learning procedure so that it prefers
simple, robust networks, and, all things being equal, will select those
networks. In many cases it turns out that these are just the networks?
that do the best job generalizing.

Paul Smolensky
1989

past few years the approach to cognitive science and artificial
telligence known as connectionist modeling has dramatically increased
influence. Connectionist systems are large networks of extremely
¢ computational units, massively interconnected and running in
allel. Each unit or processor has a numerical activation value which
mmunicates to other processors along connections of varying
ngth the activation value of each processor constantiy changes in
onse to the activity of the processors to which it is connected. The
[ties of some of the units form the input to the system, and the val-
lics of other units form the output; the connections between the units
termine how input is transformed to output. In connectionist sys-
ms, knowledge is encoded not in symbolic structures but rather in
pattern of numerical strengths of the connections between units.
“The goal of connectionist research is to model both lower-level per-
tual processes and such higher-level processes as object recognition,
roblem solving, planning, and language understanding, The rapidly
growing collection of connectionist systems includes models of the fol-
owing cognitive phenomena:

* speech perception,

* visual recognition of figures in the “origami world”,

* development of specialized feature detectors,

* amnesia,

* language parsing and generation,

* aphasia,

» discovering binary encodings,

* dynamic programming of massively parallel networks,

* acquisition of English past tense morphophonology from examples,



