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D DESIGN is the endeavor to understand mind (thinking, intellect)
terms of its design (how it is built, how it works). It amounts, there-
¢, to a kind of cognitive psychology. But it is oriented more toward
ucture and mechanism than toward correlation or law, more toward
“how” than the “what”, than is traditional empirical psychology.
experiment” in mind design is more often an effort to build some-
rig and make it work, than to observe or analyze what already exists.
us, the field of artificial intelligence (AD), the attempt to construct
elligent artifacts, systems with minds of their own, lies at the heart
vind design. Of course, natural intelligence, especially human
telhgence, remains the final object of i mvestigation, the phenomenon
ventually to be understood. What is distinctive is not the goal but-
ather the means to it. Mind design is psyc/yology by reverse engineering.
Though the idea of intelligent artifacts is as old as Greek mythol-
gy, and a familiar staple of fantasy fiction, it has been taken seriously
ience for scarcely two generations. And the reason is not far to
k: pending several conceptual and technical breakthroughs, no one
ad a clue how to proceed. Even as the pioneers were striking boldly
the unknown, much of what they were reilly up to remained
nclear, both to themselves and to others; and some still does. Accord-
y; mind design has always been an area of p/ﬂlomp/azml interest, an
 in which the conceptual foundations—the very questions to ask,
what would count as an answer—have remained unusually fluid
controversial.

he essays collected here span the history of the field since its
ion (though with emphasis on more recent deveiopments) The
thors are about evenly divided between phllosophers and scientists.
et, all of the essays are “philosophical”, in that they address funda-
tental issues and basic concepts; at the same time, nearly all are also
ntific” in that they are technically sophisticated and concerned
the achievements and challenges of concrete empirical research.
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Several major trends and schools of thought are represented, often
explicitly disputing with one another. In their juxtaposition, therefore,

not only the lay of the land, its principal peaks and valleys, but also its:

current movement, its still active fault lines, can come into view.
By way of introduction, I shall try in what follows to articulate a

handful of the fundamental ideas that have made all this possible.

1 Perspectives and things

None of the present authors believes that intelligence depends on any-

thing immaterial or supernatural, such as a vital spirit or an immortal
soul. Thus, they are all materialists in at least the minimal sense of sup-
posing that matter, suitably selected and arranged, suffices for intellj-
gence. The question is: How?

It can seem incredible to suggest that mind is “nothing but” matter
in motion. Are we to imagine all those little atoms thinking deep
thoughts as they careen past one another in the thermal chaos? Or, if
not one by one, then maybe collectively, by the zillions? The answer to
this puzzle is to realize that things can be viewed from different perspec-
tives {or described in different terms)—and, when we look differently,
what we are able to see is also different. For instance, what is a coarse
weave of frayed strands when viewed under a microscope is a shiny silk
scatf seen in a store window. What is a marvellous old clockwork in
the eyes of an antique restorer is a few cents’ worth of brass, seen as
scrap metal, Likewise, so the idea goes, what is mere atoms in the void
from one point of view can be an intelligent system from another.

Of course, you can't look at anything in just any way you please—
at least, not and be right about it. A scrap dealer couldn’t see a wooden
stool as a few cents’ worth of brass, since it isn’t brass; the antiquarian
couldn’t sce a brass monkey as 2 clockwork, since it doesn’t work like a
clock. Awkwardly, however, these two points taken together seem to
create a dilemma. According to the first, what something is—coarse or
fine, clockwork or scrap metal—depends on how you look at it. Bu,
according to the second, how you can rightly look at something (or
describe it) depends on what it is. Which comes first, one wants to ask,
seeing or being?

Clearly, there’s something wrong with that question. What some-
thing is and how it can rightly be regarded are not essentially distinc;
neither comes before the other, because they are the same, The advan-
tage of emphasizing perspective, nevertheless, is thar it highlights the
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llowing question: What constrains how something can rightly be
garded or described (and thus determines what it is)? This is impor-
nt, because the answer will be different for different kinds of perspec-
tive or descrlpt1on—~as our examples already illustrate. Sometimes,
what something is is determined by its shape or form (at the relevant
vel of detail); sometimes it is determined by what it’s made of; and
metimes by how it works or even just what it does, Which—if any—
of these could determine whether something is {rightly regarded or
escribed as) intelligent?

.1 The Turing test

Ih; 1950, the pioneering computer scientist A. M. Turing suggested
chat intelligence is a matter of behavior or behavioral capacity: whether
4 system has 2 mind, or how intelligent it is, is determined by what it
can and cannot do. Most materialist philosophers and cognitive scien-
sts now accept this general idea (though John Searle is an exception).
Turing also proposed a pragmatic criterion or test of what a system can
do that would be sufficient to show that it is intelligent. (He did not
claim that a system would not be intelligent if it could not pass his test;
oﬂly that it would be if it could.) This test, now called the Tiring tess,
is controversial in various ways, but remains widely respected in spirit.
Turing cast his test in terms of simulation or imitation: a non-
human system will be deemed intelligent if it acts so like an ordinary
person in certain respects that other ordinary people can’t tell (from
these actions alone) that it isn’t one. But the imitation idea itself isn't
the important part of Turing’s proposal. What's important is rather the
specific sort of behavior that Turing chose for his test: he specified
verbal behavior. A system is surely intelligent, he said, if it can carry on
an ordinary conversation like an ordinary person (via electronic means,
 avoid any influence due to appearance, tone of voice, and so on).

- This is a daring and radical simplification. There are many ways in
which intelligence is manifested. Why single out zalking for special
emphasis? Remember: Turing didn’t suggest that talking in this way is
required to demonstrate intelligence, only that it’s sufficient. So there’s
no worry about the test being too hard; the only qucitlon is whether it
ight be too lenient. We know, for instance, that there are systems
that can regulate temperatures, generate intricate rhyth\ns,,or even fly
airplanes without being, in any serious sense, intelligent. Why couldn’
the ability to carry on ordinary conversations be like that?




Turing’s answer is elegant and deep: talking is unique among intel-.
ligent abilities because it gathers within itself, at one remove, all others.
One cannot generate rhythms or fly airplanes “about” talking, but one-
certainly can talk about rhythms and flying—not to mention poetry,

sports, science, cooking, love, politics, and so on—and, if one doesn’t
know what one is talking about, it will soon become painfully obvious.

Talking is not merely one intelligent ability among others, but also,

and essentially, the ability to express intclligently a great many (maybe
all) other intelligent abilities. And, without Aaving those abilities in

fact, at least to some degree, one cannot talk intelligently about them. -

That’s why Turing’s test is so compelling and powerful.

On the other hand, even if not too easy, there is nevertheless a sense
in which the test does obscure certain real difficulties. By concentrat-
ing on conversational ability, which can be exhibited entirely in writ-

ing (say, via computer terminals), the Turing test completely ignores

any issues of real-world perception and action. Yet these turn out to be
extraordinarily difficult to achieve artificially at any plausible level of
sophistication. And, what may be worse, ignoring real-time environ-
mental interaction distorts a system designer’s assumptions about how
intefligent systems are related to the world more generally. For
instance, if a system has to deal or cope with things around it, but is
not continually tracking them externally, then it will need somehow to
“keep track of” or represent them internally. Thus, neglect of percep-
tion and action can lead to an overemphasis on representation and
internal modeling,

1.2 Intentionality

“Intentionality”, said Franz Brentano (1874/1973), “is the mark of the
mental.” By this he meant that everything mental has intentionality,
and nothing else does (except in a derivative or second-hand way),
and, finally, that this fact is the definition of the mental. ‘Intentional’ is
used here in a medieval sense that harks back to the original Latin
meaning of “stretching toward” something; it is not limited to things
like plans and purposes, but applies to all kinds of mental acts. More
specifically, intentionality is the character of one thing being “of” or
“about” something else, for instance by representing it, describing it,
referring to it, aiming at it, and so on. Thus, intending in the narrower
modern sense (planning) is also intentional in Brentano’s broader and
older sense, but much eclse is as well, such as believing, wanting,
remembering, imagining, fearing, and the like.

- Intentionality is peculiar and perplexing. It looks on the face of it to
¢ a relation between two things. My belief that Cairo is hot is inten-
'mnal because it is about Cairo {and/or its being hot). That which an
tentional act or state is about (Cairo or its being hot, say) is called its
m'tentwmzl object. (It is this intentional object that the intentional state
stretches toward”.} Likewise, my desire for a certain shirt, my imagin-
g a party on a certain date, my fear of dogs in general, would be
about "—that is, have as their intentional objects—that shirt, a party
that date, and dogs in general. Indeed, havingan object in this way
s another way of explaining intentionality; and such “having” seems
to be a relation, namely between the state and its object.

‘ But, if it’s a relation, it’s a relation like no other. Being-inside-of is a
ty pical relation. Now notice this: if it is a fact about one thing that it is
inside of another, then not only that first thing, but also the second has
to exist; X cannot be inside of ¥ or indeed be related to ¥ in any other
way, if ¥ does not exist. This is true of relations quite generally, but it
is not true of intentionality. I can perfectly well imagine a party on a
certain date, and also have beliefs, desires, and fears about it, even
fhough there is (was, will be) no such party. Of course, those beliefs
would be false, and those hopes and fears unfulfilled; but they would
be intentional—be about, or “have”, those objects—all the same.

. Tt is this puzzling ability to have something as an object, whether or
ot that something actually exists, that caught Brentano’s attention.
Brentano was no materialist: he thought that mental phenomena were
one kind of entity, and material or physical phenomena were a com-
pletely different kind. And he could not see how any merely material
or physical thing could be #n fact related to another, if the latter didn’t
exist; yet every mental state (belief, desire, and so on) has this possibil-
ity. So intentionality is the definitive mark of the mental.

- Daniel C. Dennett accepts Brentano’s definition of the mental, but
proposes a materialist way to view intentionality. Dennett, like Turing,
inks intelligence is a matter of how a system behaves; but, unlike
tring, he also has a worked-out account of what it is about (some)
B_ehavior that makes it intelligent—or, in Brentano’s terms, makes it
the behavior of a system with intentional (that is, mental) states. The
idea has two parts: (i) behavior should be understood not in isolation
but in context and as part of a consistent pattern of behavior (this is
often called “holism”}; and (ii) for some systems, a consistent pattern
of behavior in context can be construed as rational (such construing is
often called “interpretation”).!
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Rationalizy bere means: acting so as best to satisfy your goals overall,
given what you know and can tell about your situation. Subject to this
constraint, we can surmise what a system wants and believes by watch-

ing what it does—but, of course, not in isolation. From all you can tell

in isolation, a single bit of behavior might be manifesting any number
of different beliefs and/or desires, or none at all. Only when you see a
consistent pattern of rational bebavior, manifesting the same cognitive
states and capacities repeatedly, in various combinations, are you justi-
fied in saying that #hose are the states and capacities that this system

has—or even that it has any cognitive states or capacities at all. “Ratio- -

nality”, Dennett says (1971/78, p. 19}, “is the mother of intention.”
This is a prime example of the above point about perspeczive. The

constraint on whether something can rightly be regarded as having -
intentional states is, according to Dennett, not its shape or what it is -
made of, but rather what it does—more specifically, a consistently °

rational pattern in what it does. We infer that a rabbit can tell 2 fox

from another rabbit, always wanting to get away from the one but not -

the other, from having observed it behave accordingly time and again,

under various conditions. Thus, on a given occasion, we impute to the

rabbit intentional states (beliefs and desires) about a particular fox, on
the basis not only of its current behavior but also of the pattern in its
behavior over time. The consistent pattern lends both specificity and
credibility to the respective individual attributions.

Dennett calls this perspective the intentional stance and the entities
so regarded intentional systems. If the stance is to have any conviction
in any particular case, the pattern on which it depends had better be
broad and reliable; but it needn’t be perfect. Compare a crystal: the
pattern in the atomic lattice had better be broad and reliable, if the
sample is to be a crystal at all; but it needn’t be perfect. Indeed, the
very idea of a flaw in a crystal is made intelligible by the regularity of
the pattern around it; only insofar as most of the lattice is regular, can
particular parts be deemed flawed in determinate ways. Likewise for
the intentional stance: only because the rabbit behaves rationally
almost always, could we ever say on a particular occasion that it hap-
pened to be wrong—had mistaken another rabbit (or a bush, or a
shadow) for a fox, say. False beliefs and unfulfilled hopes are intelligible
as isolated lapses in an overall consistent pattern, like flaws in a crystal.
This is how a specific intentional state can rightly be attributed, even
though its supposed intentional object doesn’t exist—and thus is Den-
nett’s answer to Brentano’s puzzle.
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1.3 Original intentionality

Many material things that aren’t intentional systems are nevertheless
“about” other things—including, sometimes, things that don exist.
Written sentences and stories, for instance, are in some sense material;
"'yet they are often about fictional characters and events, Even pictures
and maps can represent nonexistent scenes and places. Of course,
‘Brentano knew this, and so does Dennett. But they can say that this
sort of intentionality is only derivative. Herc’s the idea: sentence
‘inscriptions—ink marks on a page, say—are only “about” anything
‘because we (or other intelligent users) mean them that way. Their

intentionality is second-hand, borrowed or derived from the intention-

‘ality that those users already have.

So, a sentence like “Santa lives at the North Pole”, or a picture of
him or a map of his travels, can be “about” Santa (who, alas, doesn’t
exist), but only because we can think that he lives there, and imagine
what he looks like and where he goes. Its really our intentionality that
these artifacts have, second-hand, because we use them to express it.
Our intentionality itself, on the other hand, cannot be likewise deriva-
tive: it must be original, (‘Original’, here, just means nos derivative, not
borrowed {rom somewhere else. If there is any intentionality at all, at

least some of it must be original; it can’t all be derivative.)

The problem for mind design is that artificial intelligence systems,

like sentences and pictures, are also artifacts. So it can seem that their
‘intentionality too must always be derivative—borrowed from their

designers or users, presumably—and never original. Yet, if the project

‘of designing and building a system with a mind of its own is ever really

to succeed, then it must be possible for an artificial system to have gen-

uine original intentionality, just as we do. Is that possible?

Think again about people and sentences, with their original and
derivative intentionality, respectively. What’s the reason for that differ-

‘ence? Is it really that sentences are artifacts, whereas people are not, or
might it be something else? Here’s another candidate. Sentences don’t

do anything with what they mean: they never pursue goals, draw con-
clusions, make plans, answer questions, let alone care whether they are

right or wrong about the world—they just sit there, utterly inert and

heedless. A person, by contrast, relies on what he or she believes and

~wants in order to make sensible choices and act efficiently; and this

entails, in turn, an ongoing concern about whether those beliefs are

‘really true, those goals really beneficial, and so on. In other words, real
beliefs and desires are integrally involved in a rational, active existence,




8 ' John Haugeland

intelligently engaged with its environment. Maybe this active, rational
engagement is more pertinent to whether the intentionality is original
or not than is any question of natural or artificial origin.

Clearly, this is what Dennett’s approach implies. An intentional sys-
tem, by his lights, is just one that exhibits an appropriate pattern of
consistently rational behavior—that is, active engagement with the
world. If an artificial system can be produced that behaves on its own
in a rational manner, consistently enough and in a suitable variety of
circumstances (remember, it doesnt have to be flawless), then it has
original intentionality—it has a mind of its own, just as we do.

On the other hand, Dennett’s account is completely silent about
how, or even whether, such a system could actually be designed and
buile. Intentionality, according to Dennett, depends entirely and
exclusively on a certain sort of pattern in a system’s behavior; internal
structure and mechanism (if any) are quite beside the point. For scien-
tific mind design, however, the question of how it actually works (and
50, how it could be built) is absolutely central—and that brings us to
COmPULELs,

2 Computers

Computers are important to scientific mind design in two fundamen-
tally different ways. The {irst is what inspired Turing long ago, and a
number of other scientists much more recently. But the second is what
really launched Al and gave it its first serious hope of success. In order
to understand these respective roles, and how they differ, it will first be
necessary to grasp the notion of ‘computer’ at an essential level.

2.1 Formal systems

A formal system is like a game in which tokens are manipulated
according to definite rules, in order to see what configurations can be
obtained. In fact, many familiar games—among them chess, checkers,
tic-tac-toe, and go—simply are formal systems. But there are also
many games that are not formal systems, and many formal systems
that are not games. Among the former are games like marbles, tiddly-
winks, billiards, and baseball; and among the latter are a number of
systems studied by logicians, computer scientists, and linguists.

This is not the place to attempt a full definition of formal systems;
but three essential features can capture the basic idea: (i) they are (as
indicated above) token-manipulation systems; (ii) they are digital; and
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iii) they are medium independent. It will be worth a moment to spell
ut what each of these means.

OKEN-MANIPULATION SYSTEMS. o say that a formal system is a
oken-manipulation system is to say that you can define it completely
by specifying three things:

. (1) aset of types of formal tokens or pieces;

- (2) one ox more allowable starting positions—that is, initial formal
arrangements of tokens of these types; and

(3) a set of formal rules specifying bow such formal arrangements
may or must be changed into others.

This definition is meant to imply that token-manipulation systems are
entirely self-contained. In particular, the formality of the rules is two-
fold: (i) they specify only the allowable next formal arrangements of
tokens, and (ii) they specify these in terms onfy of the current formal
‘arrangement—nothing else is formally relevant at all,

"~ So take chess, for example. There are twelve types of piece, six of
each color. There is only one allowable starting position, namely one
“in which thirty-two pieces of those twelve types are placed in a certain
way on an eight-by-eight array of squares. The rules specifying how
the positions change are simply the rules specifying how the pieces
‘move, disappear (get captured), or change type (get promoted). (In
:_chess, new pieces are never added to the position; but that’s a further
kind of move in other formal games—such as go.) Finally, notice that
chess is entirely self-contained: nothing is ever relevant to what moves
would be legal other than the current chess position itself.2

- And every student of formal logic is familiar with at least one logi-
‘cal system as a token-manipulation game. Here's one obvious way it
can go (there are many others): the kinds of logical symbel are the
types, and the marks that you acrually make on paper are the tokens of
‘those types; the allowable starting positions are sets of well-formed for-
‘mulae (taken as premises); and the formal rules are the inference rules
specifying steps—that is, further formulae that you write down and
‘add to the current position—in formally valid inferences. The fact that
this is called formallogic is, of course, no accident.

Drarrar svstems. Digitalness is a characteristic of certain techniques
(methods, devices) for making things, and then (later) identifying what
‘was made. A familiar example of such a technique is writing something
down and later reading it. The thing written or made is supposed to be
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of a specified type (from some set of possible types), and identifying it

later is telling what type that was. So maybe you're supposed to write
down specified letters of the alphabet; and then my job is to tell, on
the basis of what you produce, which letters you were supposed to

write. Then the question is: how well can [ do that? How good are the

later identifications at recovering the prior specifications?

Such a technique is digital if it is positive and reliable. It is positive .

if the reidentification can be absolutely perfect. A positive technique is
reliable if it not only can be perfect, but almost always is. This bears
some thought. Were accustomed to the idea that nothing—at least,
nothing mundane and real-worldly—is ever quite perfect. Perfection is
an ideal, never fully attainable in practice. Yet the definition of ‘digital’
requires that petfection be not only possible, but reliably achievable,

Everything turns on what counts as success. Compare two tasks,
each involving a penny and an eight-inch checkerboard. The first asks
you to place the penny exacily 0.43747 inches in from the nearest edge
of the board, and 0.18761 inches from the left; the second asks you to
put it somewhere in the fourth rank (row) and the second file (column
from the left). Of course, achieving the first would also achieve the sec-
ond. But the first task is strictly impossible—that is, it can never actu-
ally be achieved, but at best approximated. The second task, on the
other hand, can in fact be carried out absolutely perfectly—it's not even
hard. And the reason is easy to see: any number of slightly different
actual positions would equally well count as complete success—Dbecause
the penny only has to be somewhere within the specified square,

Chess is digital: if one player produces a chess position {or move},
then the other player can reliably identify it perfectly. Chess positions
and moves are like the second task with the penny: slight differences in
the physical locations of the figurines aren’t differences at all from the
chess point of view—that is, in the positions of the chess pieces.
Checkers, go, and tic-tac-toe are like chess in this way, but baseball and
billiards are not. In the latter, unlike the former, arbitrarily small dif-
ferences in the exact position, velocity, smoothness, elasticity, or what-
ever, of some physical object can make a significant difference to the

game. Digital systems, though concrete and material, are insulated -

from such physical vicissitudes.

MEDIUM INDEPENDENCE. A concrete system is medium independent
if what it is does not depend on what physical “medium” it is made of
or implemented in. Of course, it has to be implemented in something;
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‘and, moreover, that something has to support whatever structure or
form is necessary for the kind of system in question. But, apart from
this generic prerequisite, nothing specific about the medium matters
{except, perhaps, for extraneous reasons of convenience). In this sense,
only the form of a formal system is significant, not its matter.

- Chess, for instance, is medium independent. Chess picces can be
‘made of wood, plastic, ivory, onyx, or whatever you want, just as long
as they are sufficiently stable (they don’t melt or crawl around) and are
movable by the players. You can play chess with patterns of light on a
video screen, with symbols drawn in the sand, or even—if you're rich
and eccentric enough—with fleets of helicopters operated by radio
control. But you cant play chess with live frogs (they won' sit still),
shapes traced in the water (they won'’t last), or mountain tops (nobody
can move them). Essentially similar points can be made about logical
symbolism and all other formal systems.

. By contrast, what you can light a fire, feed a family, or wire a circuit
with is not medium independent, because whether something is flam-
mable, edible, or electrically conductive depends not just on its form
but also on what it's made of. Nor are billiards or baseball independent
of their media: what the balls (and bats and playing surfaces) are made
of is quite important and carefully regulated. Billiard balls can indeed
be made either of ivory or of (certain special) plastics, but hardly of
wood or onyx. And you couldn't play billiards or baseball with helicop-
ters or shapes in the sand to save your life. The reason is that, unlike
chess and other formal systems, in these games the details of the physi-
cal interactions of the balls and other equipment make an important
difference: how they bounce, how much friction there is, how much
energy it takes to make them go a certain distance, and so on.

2.2 Automatic formal systems

An automatic formal system is a formal system that “moves” by itself.
More precisely, it is a physical device or machine such that:

(1) some configurations of its parts or states can be regarded as the
tokens and positions of some formal system; and

{2) in its normal operation, it automatically manipulates these
tokens in accord with the rules of that system.

So it’s like a set of chess pieces that hop around the board, abiding by
t__he rules, all by themselves, or like a magical pencil that writes out for-
mally correct logical derivations, without the guidance of any logician.



Of course, this is exactly what computers are,

sality,

algorithmic and heuristic procedures, and digital simulation.

IMPLEMENTATION AND UNIVERSALITY, Perhaps the most basic idea of
computer science is that you can use one automatic formal systemn to
programming is. Instead of building -
some special computer out of hardware, you build it out of software; -

you write a program for a “general purpose” computer (which
you already have) that will make it act exactly as if it were the special

implement another. This is what

that is,

computer that you need. One computer so implements another when:

(1) some configurations of tokens and positions of the former can
be regarded as the tokens and positions of the latter; and

(2) as the former follows its own rules,

it automatically manipulates
those tokens of the latter in accord

with the latter’s rules.

In general, those configurations that are being regarded as tokens and
positions of the special computer are themselves only a fraction of the
tokens and positions of the general computer. The remainder (which
may be the majority) are the program. The general computer follows
its own rules with regard to @/ of its tokens; but the program tokens
are so arranged that the net effect is to manipulate the configurations
implementing the tokens of the special computer in exactly the way
required by its rules.

This is complicated to describe, never mind actually to achieve; and
the question arises how often such implementation is possible in prin-
ciple. The answer is as surprising as it is consequential. In 1937, A. M.
Turing—the same Turing we met eatlier in our discussion of intelli-
gence—showed, in effect, that it is ahways possible. Put somewhat
more carefully, he showed that there are some computing machines—-
which he called universal machines—that can implement any well-
defined automatic formal system whatsoever, provided only that they
have enough storage capacity and time. Not only that, he showed also
that universal machines can be amazingly simple; and he gave 2 com-
plete design specification for one.

Every ordinary (programmable) computer is a universal machine in
Turing’s sense. In other words, the computer on your desk, given the
right program and enough memory, could be made equivalent to any

seen from a formal
perspective. But, if we are to appreciate properly their importance for
mind design, several fundamental facts and features will need further
claboration-—among them the notions of implementation and univer-
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omputer that is possible at all, in every respect except speed. Anything
ny computer can do, yours can too, in principle. Indeed, the machine
n your desk can be (and usually is) lots of computers at once. From
one point of view, it is a “hardware” computer modifying, according to
strict formal rules, complex patterns of tiny voltage tokens often called
“bits”. Viewed another way, it is simultaneously a completely different
system that shuffles machine-language words called “op-codes”, “data”
and “addresses”. And, depending on what you're up to, it may also be a
word processor, a spell checker, a macro interpretet, and/or whatever.

ALGORITHMS AND HEURISTICS. Often a specific computer is designed
nd built {or programed) for a particular purpose: there will be some
omplicated rearrangement of tokens that it would be valuable to
bring about automatically. Typically, a designer works with facilities
that can carry out simple rearrangements easily; and the jobistofind a
combination of them (usually a sequence of steps) that will collectively
achieve the desired result. Now there are two basic kinds of case,
depending mainly on the character of the assigned task.

In many cases, the designer is able to implement a procedure that is
~guaranteed always to work—thar is, to effect the desired rearrange-
ment, regardless of the input, in a finite amount of time. Suppose, for
instance, that the input is always a list of English words, and the
“desired rearrangement is to put them in alphabetical order. There are
known procedures that are guaranteed to alphabetize any given list in
finite time. Such procedures, ones that are sure to succeed in finite
‘time, are called algorithms, Many important computational problems
_can be solved algorithmically. ‘

But many others cannot, for theoretical or practical reasons. The
task, for instance, might be to find the optimal mave in any given

hess position, Technically, chess is finite; so, theoretically, it would be
possible to check every possible outcome of every possible move, and
thus choose flawlessly, on the basis of complete information. But, in
fact, even if the entire planet Earth were one huge computer built with
‘the best current technology, it could not solve this problem even once
in the life of the Solar System. So chess by brute force is impra tical.
But that, obviously, does not mean that machines can’t come up with
‘good chess moves. How do they do that?

They rely on general estimates and rules of thumb: procedures that,
while not guaranteed to give the right answer every time, are fairly
reliable most of the time. Such procedutes are called heuristics. Tn the




case of chess, sensible heuristics involve lookjng ahead a few moves in

various directions and then evaluating factors like number and kind ¢

pieces, mobility, control of the center, pawn coordination, and so on:

These are not infallible measures of the strength of chess positions

but, in combination, they can be pretty good. This is how chess-play-
ing computers work—and likewise many other machines that dea]

with problems for which there are no known algorithmic solutions.

The possibility of heuristic procedures on computers is sometimes.
confusing. In one sense, cvery digital computation (that does not con-
sult a randomizer) is algorithmic; so how can any of them be heuristicy
The answer is again a matter of perspective. Whether any given proce.
dure is algorithmic or heuristic depends on how you describe the task, -
One and the same procedure can be an algorithm, when described a5-

counting up the number and kinds of pieces, but a mere heuristic rule
of thumb, when described as estimating the strength of a position.

This is the resolution of another common confusion as well. It is-
often said that computers never make mistakes (unless there is a bug in -
some program or a hardware malfunction). Yer anybody who has ever
played chess against a small chess computer knows that it makes plenty

of mistakes. But this is just that same issuc about how you describe the

task. Even thar cheap toy is executing the algorithms that implement
its heuristics flawlessly every time; seen that way, it never makes a mis. -
take. It’s just that those heuristics aren’t very sophisticated; so, seen asa -

chess player, the same system makes lots of mistakes.
piayt ¥

Dreriar stmurarion. One important practical application of com-
puters isn't really token manipulation at all, €XCept as a means to an
end. You see this in your own computer all the time. Word processors

and spreadsheets literally work with digital tokens: letters and numer- _

als. But image processors do not: pictures are oz digital. Racher, as
everybody knows, they are “digitized”. That is, they are divided up
into fine enough dots and gradations that the increments arc barely
perceptible, and the result looks smooth and continuous. Nevertheless,
the computer can store and modify them because— redescribed —those
pixels are all just digital numerals,

The same thing can be done with dynamic systems: systems whose
states interact and change in regular ways over time. If the relevant
variables and relationships are known, then time can be divided inro
small intervals too, and the progress of the system computed, step by
tiny step. This is called digital simulation, The most famous real-world
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mple of it is the massive effort to predict the weather by s.unulatmg
arth’s atmosphere. But engineers and scientists—including, as we
[ see, many cognitive scientists-—rely on digital simulation of non-

gitai systems all the time.

‘Computers and intelligence '

uri'ng (1950 fchapter 2 in this volume], 442 [38]) predicted——falsell}(ri
we now know, but not foolishly—that l?y thej year 2000' there Wofu
computers that could pass his test for intelligence. ThlS.WG:S b.e orle
ny serious work, theoretical or practical, had begun on artificial intel-

hge'nce at all. On what, then, did he base his prediction? He doesn’t

Al t from an estimate—quite low—of how much storage
reigy Lj:zrs(a;sc?lild then have). But [ t}ciink we can see what moved him.
: 1111) Turing’s test, the only relevant inputs and outputs are womif—al;
of which are (among other things) formal t(?kens. So the capacity o
human beings that is to be matched is effectively a formal mput/(Flt-
put function. But Turing himself had shown, thi.rtcen years earlier,
that #ny formal input/output function from a certain very broad (?zteé
gory could be implemented in a routin'e universal machine, provi }el
only that it had enough memory and time (or speed)—and those, he
thought, would be available by century’s enc_i. ‘ '
Now, this isn't really a proof, even setting aside the assumptions
about size and speed, because Turing did not (a_nd could not) show
that the human verbal input/output function. fell into that broad cate-
gory of functions to which his theorem applied. But he I‘la.d excellent
reason to believe that any function computable by any digital mechz‘L-
nism would fall into that category; and he was convinced that there is

nothing immaterial or supernatural in human beings. :I"he only alter-
native remaining would seem to be nondigital mechanisms; and those

he believed could be digitally simulated. '
Notice that there is nothing in this argument about how the mind

_might actually work—nothing about actual mz"nd design. Thfare’s ]tli's;t
“an assumption that there must be some (nonmaglc.al) way that it works,
“and that, whatever that way is, a computer can elt}}er 1rpplement it or
simulate it. In the subsequent history of artificial intelligence, on the

other hand, a number of very concrete proposals. have been made
about the actual design of human (and/or other) minds. Almost all of
these fall into one or the other of two broad groups: ‘th‘ose that take
seriously the idea that the mind itself is essent%ally a digital computer
{of a particular sort), and those that reject that idea.
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3 GOFAI

The first approach is what I call “good old-fashioned AT”, or GOFAL
(It is also sometimes called “classical” or “symbol-manipulation” or
even “ianguage—of—thought” AL) Research in the GOFAI tradition
dominated the field from the mid-fifties through at least the mid-
eighties, and for a very good reason: it was (and still is) a well-articu—
lated view of the mechanisms of intelligence that is both intuitively
plausible and eminently realizable. According to this view, the mind
just #s a computer with certain special characteristics—namely, one:
with internal states and processes that can be regarded as explicit #hink-
ing or reasoning. In order to understand the immense plausibility and’
power of this GOFAI idea, we will need to see how a computer could
properly be regarded in this way. '

3.1 Interpreted formal systems

The idea of a formal system emerged first in mathematics, and was
inspired by arithmetic and algebra. When people solve arithmetic o
algebraic problems, they manipulate tokens according to definite rules,
sort of like a game. But there is a profound difference between these-
tokens and, say, the pieces on a chess board: they mean something,
Numerals, for instance, represent numbers (either of specified items or
in the abstract), while arithmetic signs tepresent operations on or rela-
tionships among those numbers. (Tokens that mean something in this
way are often called symbols.) Chess pieces, checkers, and go stones, by
contrast, represent nothing: they are not symbols at all, but merely for-
mal game tokens.

The rules according to which the tokens in 2 mathematical system
may be manipulated and what thosc tokens mean are closely related, A
simple example will bring this out. Suppose someone is playing a for-
mal game with the first fifteen letters of the alphabet. The rules of this
game are very restrictive: every starting position consists of a string of
letters ending in ‘A’ (though not every such string is legal); and, for
cach starting position, there is one and only one legal move—which is
to append a particular string of letters after the ‘A’ (and then the game
is over). The question is: What (if anything) is going on here?

Suppose it ocours to you that the letters might be just an oddball
notation for the familiar digits and signs of ordinary arithmetic. There
are, however, over a trillion possible ways to translate fifccen letters
into fifteen digits and signs. How could you decide which—if any—is
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Eight sample games (before translation):
Starting  legal Starting  Legal
position  move position  move
OEOA N MMCN A )
NIBMA G OODFA OO
HCHCH A KON IDLA M
KEKDOFA F NBNA O
“First translation scheme: Sample games, by first translation:
A=1 F=6 K=d =5-1 =+ xx3+1 00
B=2 G=7  L=-1 _g50q 7 —=461 ==
C=3 H=8 t;‘:”f 83838 1 +=+ 94-1 x
D=4 =9 = i544=61 6 121 =
E=5 J=0 O==
-Second translation scheme: Sample games, by second translation:
A== F=0 K=5 9+9= 8 77-8= 44
B=+ Gl =6 a0 99x0= 99
C=- H=2 MS71 5, 5 2= 598 Ix6= 2
D=x =3 N=8 . si00- ¢ 848= 9
CE e+ ] =4 O=9
Third translation scheme: Sample games, by third translation:
A== F=20 K25 T+1= 2 33x2= 66
B=+ G289 L=d4) 9732 9 M-0= M
C=x H=8 M=S3 4 8x8= 512,  7-4= 3
D= I=7 N=2igc 0= 0 2:2= 1
E= + ] =6 O=1

Téble 1.1: Letter game and three different translation schemes.

he “right” way? The problem is illustrated in table 1.1. The first row
gives eight sample games, each legal according to the rules. The next
hree rows each give a possible translation scheme, and show how the
ight samples would come out according to that scheme.

- The differences are conspicuous. The sample games as rendered by
the first scheme, though consisting of digits and arithmetic signs, look
no more like real arithmetic than the letters did—they’re “arithmetic
alad” at best. The second scheme, at first glance, looks better: at least :
ﬂ_‘ie strings have the shape of equations. But, on closer examination,
construed as equations, they would all be false—uwildly false. In fac,
though the signs are plausibly placed, the digits are just as randomly



t}tl?isedt as irht; ﬁit! i&se. The third scheme, by contrast yields stiiy,
not only look like equations they are equati hey’ '

. . ) quations—they’re
d thlS. makes that third scheme seem much more accepta);:vle 3{71(/11
'Conmder a related problem; translatin :
a hitherto unknown script. Clearly, if so

scheme according to which the texts came out gibberish (like the fp
Is

ntelligence by explicit reasoning
éss to say, interpretation and automation can be combined. A
» calculator, for instance, is essentially an automated version of
tter-game example, with the third interpretation. And the system
Turing envisioned—a computer with inputs and outputs that
d be understood as coherent conversation in English-—would be
i interpreted automatic formal system. But it’s oz GOFAL
So far, we have considered systems the inputs and outputs of which
be interpreted. But we have paid no attention to what goes on
de of those systems—how they get from an input to an appropriate
sutput. [n the case of a simple calculator, there’s not much to it. But
agine a system that tackles harder problems—like “word problems”
n algebra or physics text, for instance. Here the challenge is not
g the calculations, but figuring out what calculations to do. There
many possible things to try, only one or a few of which will work.
A skilled problem solver, of course, will not try things at random,
. ut will rely on experience and rules of thumb for guidance about
> Sine at to try next, and about how things are going so far (whether it
ould be best to continue, to back-track, to start over, or even to give
p). We can imagine someone muttering: “If only T could get that,
en I could nail this down; but, in order to get that, | would need
ich and such. Now, let me sce ... well, what if ...” (and so on). Such
anny, methodical exploration—neither algorithmic nor random—is a
familiar sort of articulate reasoning or thinkinga problem out.
But each of those steps (conjectures, partial results, subgoals, blind
alleys, and so on) is—from a formal point of view—just another token
ring, As such, they could easily be intermediate states in an inter-
preted automatic formal system that took a statement of the problem
as input and gave a statement of the solution as output. Should these
intermediate strings themselves then be interpreted as steps in thinking
or reasoning the problem through? If two conditions are met, then the
case becomes quite compelling. First, the system had better be able to
handle with comparable facility an open-ended and varied range of
problems, not just a few (the solutions to which might have been “pre-
canned”). And, it had better be atriving at its solutions actually via
these steps. (It would be a kind of fraud if it were really solving the
-problem in some other way, and then tacking on the “steps” for show
afterwards.)
GOFAL is predicated on the idea that systems can be built to solve
problems by reasoning or thinking them through in this way, and,

& some ancient documeng;

-tfonal' states, and the latter (translation) semantic interpretation
it attribures meanings (= semantics),
o Like all gnterpretatlon, translation is holjstic: It is impossible g
e i i ‘ .
Tpret a brief string completely out of context. For instance, the
el

and ‘§—6 =2’ 1 i

and b6 : 2’ re.spectlvc?ly). But, in the case of the second scheme,

o E(:j xilo‘usly just an isolated coincidence, whereas, in the case 01;
¢ thurd, it is part of a consistent pattern, Finding meaning in a body

of symbols, like finding rationali in
o 2 bod PR .
certain kind of consistent, reﬁab]‘:i’ﬂlttem_o y of behavior, is finding a

Well, what £ind of pattern?

explicit definition of
' ible, given the si

o ”l ) s glven < situa-
n El»)ut .surel?f 10 captures much of what we mean (and Turin
meant) by intelligence, whether in action or in expression ;
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Despite its initial plausibility and promise, howcve.r,_ GOFAI hajs
en in some ways disappointing. Expanding and organizing a systern’s
tore of explicit knowledge scems at best partially to solve the problem
f common sense. This is why the Turing test will not soon be pass:ed.
urther, it is surprisingly difficult to design systems that can :ftdjust
heit own knowledge in the light of experience. The problem is not
‘that they can’t modify themselves, but that it’s hard © figure out just
‘which modifications to make, while keeping everythl_ng else coherent.
inally, GOFAI systems tend to be rather poor at noticing unexpected
“similarities or adapting to unexpected peculiarities. Indeed_, they are
poor at recognizing patterns more generally—such as perceived faces,
ounds, or kinds of objects—let alone learning to recognize them.
None of this means, of course, that the program is bankrupt. Rome
~was not built in a day. There is a great deal of active research, and new
“developments occur all the time. It Aas meant, however, that some cog-
nitive scientists have begun to explore various alternative approaches.

moreover, that this is how people solve problems. OFf course, we aren’
always consciously aware of such reasoning, especially for the countles;
routine problems—Ilike those involved in tatking, doing chores, and
generally getting along—-that we “solve” all the time. But the fact that
we are not aware of it doesn’t mean that its not going on, subco
sciously or somehow “behind the scenes”.

The earliest GOFAI efforts emphasized problem-solving methods,
especially the design of efficient heuristics and search procedures, fof
various specific classes of problems. (The article by Newell and Simon
reviews this approach.) These early systems, however, tended to be
quite “narrow-minded” and embarrassingly vulnerable to unexpected
vatiations and oddities in the problems and information they were
given. Though they could generate quite clever solutions to compli-
cated problems that were carefully posed, they conspicuously lacked
“common sense™—they were hopelessly ignorant—so they were prone
to amusing blunders that no ordinary person would ever make.

Later designs have therefore emphasized broad, common-sense
knowledge. Of course, problem-solving heuristics and scarch tech-
niques are still essential; but, as research problems, these were over-
shadowed by the difficulties of large-scale “knowledge representation”,
The biggest problem turned out to be organization. Common-sense
knowledge is vast; and, it seems, almost any odd bit of it can be just
what is needed to avoid some dumb mistake at any particular moment.
So all of it has to be at the system’s “cognitive fingertips” all the time.
Since repeated exhaustive search of the entire knowledge base would
be quite impractical, some shortcuts had to be devised that would
worl most of the time. This is what efficient organizing or structuring
of the knowledge is supposed to provide.

Knowledge-representation research, in contrast to heuristic prob-
lem solving, has tended to concentrate on natural language ability,
since this is where the difficulties it addresses are most obvious. The
principal challenge of ordinary conversation, from a designer’s point of
view, is that it is so often ambiguous and incomplete—mainly because
speakers take so much for granted. That means that the system must
be able to fill in all sorts of “trivial” gaps, in order to follow what’s
being said. But this is still GOFAT, because the filling in is being done
rationally. Behind the scenes, the system is explicitly “hguring out”
what the speaker must have meant, on the basis of what it knows
about the world and the context. (The articles by Minsky and Dreyfus
survey some of this work, and Dreyfus and Searle also criticize it.)

4 New-fangled Al

By far the most prominent of these new-fangled ideas—we c.ou,lcl call
them collectively NFAI (en-fai)—falls under the general rubric of con-
nectionism. This is a diverse and still rapidly evolving bundle of systems
‘and proposals that seem, on the face of it, to address some of GOFATs
most glaring weaknesses. On the other hand, connectionist systems are
“not so good—at least not yet—at matching GOFATDs most obvious
“strengths. (This suggests, of course, a possibility of joining forces; but,
“at this point, it’s too soon to tell whether any such thing could work,
“never mind how it might be done.) And, in the meantime, there are
“other NFAI ideas afloat, that are neither GOFAI nor connectionist.
" The field as a whole is in more ferment now than it has been since the
“earliest days, in the fifties.

4.1 Connectionist networks

Connectionist systems are networks of lots of simple active units that
have lots of connections among them, by which they can interact.
- There is no central processor or controller, and also no separate mem-
“ory or storage mechanism. The only activity in the system is these little
units changing state, in response to signals coming in along those con-
- nections, and then sending out signals of their own. There are two
ways in which such a network can achieve a kind of memory. First, in
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the short term, information can be retained in the system over tim.

insofar as the units tend to change state only slowly (and, perhaps, regs
ularly). Second, and in the longer term, there is a kind of memory }

the connections themselves. For, each connection always connects the
same two units (they don’t move around); and, more significant, each’
connection has a property, called its “weight” or “strength”, which s’

preserved over time,

Obviously, connectionist networks are inspired to some extent by

brains and neural networks. The active units are like individual ney
rons, and the connections among them are like the axons and den

drites along which electro-chemical “pulses” are sent from neuron to
neuron. But, while this analogy is important, it should not be over:
stressed. What makes connectionist systems interesting as an approach:
to Al is not the fact that their structure mimics biology at a certain -
level of description, but rather what they can do. After all, there are -
countless other levels of description at which connectionist nets are :
utterly unbiological; and, if some GOFAI account turns out to be
right about human intelligence, then there will be some level of -
description at which it too accurately models the brain. Connectionist -

and allied research may someday show that neural networks are the

level at which the brain implements psychological structures; but this

certainly cannot be assumed at the outset.
In order to appreciate what is distinctive about network models, it
is important to keep in mind how simple and relatively isolated the

active units are. The “state” of such a unit is typically just a single

quantitative magnitude—specifiable with a single number—ealled jts
activation level. This activation level changes in response to signals
arriving from other units, but only in a very crude way. In the first
place, it pays no attention to which signals came from which other
units, or how any of those signals might be related to others: it simply
adds them indiscriminately together and responds only to the total.
Moreover, that response, the change in activation, is a simple function
of that total; and the signal it then sends to other units is just a simple
function of that resulting activation.

Now there is one small complication, which is the root of every-

thing interesting about these models. The signal that a unit receives
from another is not the same as the signal that the other unit sent: it is
multiplied—increased or decreased—by the weight or strength of the
connection between them. And there are always many more connec-
tions in a network than there are units, simply because each unit is
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onnected to many others. That means that the overall state of the net-
work—that is, the pattern of activations of aE.I its un.its‘—.c'an change in
very subtle and sophisticated ways, as a function of its initial state. Th.c
overall pattern of connection weights is what determines these compli-
cated changes, and thus the basic character of the nfzmorli.

. Accordingly, connectionist networks are essentially pattern proces-
ors. And, it turns out, they can be quite good at certain psychologi-
cally important kinds of pattern processing. In particulat, they ate
adept at finding various sorts of similarities among patterns, at recog-
nizing repeated (or almost repeated) patterns, at filling in t'he missing
yarts of incomplete patterns, and at transforming patterns into ot'hcrs
with which they have been associated. People are good at these kinds
of pattern processing too; but GOFAI' systems tend not to be,‘cxcsept
_in special cases. Needless to say, this is what gets cognitive scientists
excited about connectionist models.

Two more points. First, when | say that networks are good at such
- pattern processing, I mean not only that they can do it well, but also
-~ that they can do it quickly. This is a consequence of the fact that,
‘although each unit is very simple, there are a great many of thefn
- working at once—in parallel, so to speak—so the cumulatlv.e effect in
“each time increment can be quite substantial. Second, techniques have
" been discovered by means of which networks can be trained Fhrough
exposure to examples. That is, the connection. weights ‘Eeqmreii for
some desired pattern-processing ability can be induced ( taughF ) by
giving the network a number of sample instances, and allow1'ng it
slowly to adjust iwself. (It should be added, hOW.CVCI‘, that .th'e training
techniques so far discovered are not psychologically reahsti.c: pe)ople
learn from examples too, but, for various reasons, we know it can’t be
in quite these ways.)

I mentioned a moment ago that GOFAI systems are not so good at
pattern processing, except in special cases. In comparing approachfs to
mind design, however, it is crucial to recognize that some of these “spe-
clal cases” are extremely important. In particular, GOFAI systems are
remarkably good at processing (recognizing, transforming, prod.uc_lng)
syntactical (grammatical) patterns of the sort that are characteristic oyf
Jogical formulae, ordinary sentences, and many inferences. What's
more, connectionist networks are #o# (so far?) particularly good at pro-
cessing these patterns. Yet language is surely a central manifestation of
{(human) intelligence. No approach to mind design that cannot
accommodate langnage ability can possibly be adequate.
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Connectionist researchers use computers in their work just as muyc
as GOFAI researchers do; but they use them differently. Pattern-pro

cessing networks are not themselves automatic formal systems: they do:

not manipulate formal tokens, and they are not essentially digital. T;
be sure, the individual units and connections are sharply distinct from;
one another; and, for convenience, their activations and weights ar,
sometimes limited to a handful of discrete values. But these are mor
akin to the “digitization” of images in computer image processing than.
to the essential digitalness of chess pieces, logical symbols, and words

Thus, connectionist mind design relies on computers more in the way
the weather service does, to simulate digitally systems that are not n’

themselves digital.
It has been shown, however, that some connectionist networks can,

in effect, implement symbol manipulation systems. Although these -
implementations tend not to be very efficient, they are nevertheless -

interesting, For one thing, they may show how symbol manipulation
could be implemented in the brain. For another, they might yield ways

to build and understand genuine hybrid systems—thar is, systems with -

the advantages of both approaches. Such possibilities aside, however,
symbolic implementation would seem at best Phyrric victory: the net-

work would be relegated to the role of “hardware”, while the psycho-

logical relevance, the actaal #2ind design, would still be GOFAL
GOFAT is inspited by the idea that intelligence as such is made pos-

sible by explicit thinking or reasoning—that is, by the rational manip-

ulation of internal symbol structures (interpreted formal tokens),

Thus, GOFAI intentionality is grounded in the possibility of transla-

tion—semantic interpretation. Connectionist NFAIL by contrast, is
inspired initially by the structure of the brain, but, more deeply, by the
importance and ubiquity of non-formal pattern processing. Since there
are no formal tokens (unless implemented at a higher level), there can
be no semantically interpreted symbols. Thus, to regard these systetns
as having intentional states would be to adopt Dennett’s intentional
stance—that is, mzentional interpretation.-

In this volume, connectionist models are introduced and promoted
in the articles by Rumelhart, by Smolensky, and by Churchland. The
approach is criticized in the articles by Rosenberg and by Fodor and
Pylyshyn. The articles by Ramsey, Stich and Garon and by Clark don’t
so much take sides as explore further what might be involved in the
very idea of connectionism, in ways that might make a difference to
those who do take sides.
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2 Embodied and embedded Al ‘
GOFAL is a fairly coherent research tradition, b‘ased on a single baSJ:C
ea: thinking as internal symbol manipulat‘lon.‘ NFAJ , by conrast, is
more a grab-bag term: it means, roughly, scler}tlﬁc mind design that;;
not GOFAL Connectionism falls under. this u.mbr.ella, but sever
other possibilities do as well, of which I will mention just one.
Connectionist and GOFAI systems, for all t.hell‘ differences, tend to
have one feature in common: they accept an input from somewhere,

“they wotk on it for a while, and then they deliver an output. All the
action” is within the system, rather than being an integral part of a

arger interaction with an active body and an active environment. The
alternative, to put it radically (and perhaps a bit contentiously) . would
be to have the intelligent system be the larger interactive whole, includ-

' ng the body and environment as essential components. Nox:r, of
. . o ; . i

‘ coutse, this whole couldn’t be intelligent if it weren’t for a specu.tl sub

: system” such as might be implemented in a computer or a brain; but,

equally, perhaps, that subsystem couldn’t be intelligent either except as

- part of a whole comprising the other components as well.

Why would anyone think this? It goes without saying that, in gen-
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~eral, intelligent systems ought to be able to act intelligently “in” the

world. That’s what intelligence is for, ultimately. Yet, .a(.:hieving even
basic competence in real robots turns out to be surprlsmgly hard. A
simple example can illustrate the point and alsq the change in perspec-
tive that motivates some recent research. Consider a system that must
be able, among other things, to approach and unloc.k a door. How $-111
it get the key in the lock? One approach would equip the robot with:

(1) precise sensors to identify and locate the lock, and monitor the
angles of the joints in its own arm and hand;

(2) enough modelling power to convert join_t information {ntoha
representation of the location and orientation of the key (in the
coordinate system of the lock), compute the exact .key motion
required, and then convert that back into joint motions; and

(3) motors accurate enough to effect the computed motions, and
thereby to slide the key in, smooth and straight, the first time.

Remarkably, such a system is utterly impractical, Pcrhaps l1:ce}11‘afl‘ly
impossible, even with state-of-the-art technology. Yet insects, Wltks ar
less compute power on board, routinely perform much harder tasks. P

How would insectile “intelligence” approach the key-lock prol?lem.
First, the system would have a crude detector to notice and aim at



locks, more or less. But, it would generate no central representation of
the lock’s position, for other subsystems to use in computing ar
movements. Rather, the arm itself would have its own ad hoc, by
more local, detectors that enable it likewise to home in on a lock, mor
or less (and also, perhaps, to adjust its aim from one try to the next);:
And, in the meantime, the arm and its grip on the key would both be
quite flexible, and the lock would have a kind of funnel around jts
opening, so any stab that’s at all close would be guided physically righe
into the lock. Now thars engineering—elegant, cheap, reliable. '

But is it intelligence? Well surely not much; but that may not be the-
right question to ask. Instead, we should wonder whether some similar -

essential involvement of the body (physical fexibility and special pur
pose subsystems, for instance) and the wotld (conveniences like th

funnel) might be integral to capacities that are more plausibly intell;-

gent. If so, it could greatly decrease the load on central knowledge,:

problem solving, and even pattern processing, thereby circumventing

{perhaps) some of the bottlenecks that frustrate current designs.
To get a feel for the possibilities, move for a moment to the othet*
end of the spectrum. Human intelligence is surcly manifested in the

ability to design and make things-—using, as the case may be, boards:
and nails. Now, for such a design to work, it must be possible to drive
nails into pieces of wood in a way that will hold therm together. But

ncither a designer nor a carpenter ever needs to think about that—it-

need never even occur to them., (They take it for granted, as a fish does
water.) The suitability of these materials and techniques is embedded

in the structure of their culture: the logging industry, the manufacture
of wire, the existence of lumber yards—and, of course, countless
bodily skills and habits passed down from generation to generation.

Think how much “knowledge” is contained in the traditional shape -
and heft of 2 hammer, as well as in the muscles and reflexes acquired in

learning to use it—though, again, no one nced ever have thought of it.
Multiply that by our food and hygiene practices, our manner of dress,
the layout of buildings, cities, and farms. To be sure, some of this was
explicitly figured out, at least once upon a time; but a lot of it wasgt——
it just evolved that way (because it worked). Yet a great deal, perhaps
even the bulk, of the basic expertise that makes human intelligence
what it is, is maintained and brought to bear in these “physical” struc-
tures. It is neither stored nor used inside the head of anyone—it’s in
their bodies and, even more, out there in the world.
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Scientific research into the kinds of systems that _might flchie\ie
intelligence in this way—embodied and embedded mind design-—is

still in an early phase. Two rather different theoretical and empirical
.' strategies are presented here in the articles by Brooks and van Gelder.

5 What's missing from mind design?

A common complaint about artificial intelligence, of WhG.ltCVCF str.ipe,
. is that it pays scant attention to feelings, emotions, ego, imagination,
'moods, consciousness—the whole “phenomenology” of an inner hfei.
" No matter how smart the machines become, so the worty goes, ther‘es
- still “nobody home”. I think there is considerable merit in these mis-

givings, though, of course, more in some forms than in others. Here,

_ however, I would like briefly to discuss only one form of the worry,

one that strikes me as more basic than the others, and also more inti-

- mately connected with cognition narrowly conceived.

No current approach to artificial intelligence takes wunderstanding

 seriously—where understanding itself is understood as distinct from

knowledge (in whole or in part) and prerequisite thereto. It seems to

- me that, taken in this sense, only peaple ever understand anything—no

animals and no artifacts (yet). It follows that, in a strict and proper
- sense, no animal or machine genuinely believes or desires anything

either—How could it believe something it doesnt understand?-—
:: though, obviously, in some other, weaker sense, animals (at least? have
- plenty of beliefs and desires. This conviction, 1 shp_uid add, is not
. based on any in-principle barrier; it’s just an empirical observation

about what happens to be the case at the moment, so far as we can tell.
So, what is it for a system to understand something? Imagine a sys-

. tem that makes or marks a battery of related distinctions in the course
-~ of coping with some range of objects. These distinctions can show up

in the form of differing skillful responses, different symbol structures,
or whatever. Let’s say that, for each such distinction, the system has a
proto-concept. Now 1 suggest that a system understands the objects to
which it applies its proto-concepts insofar as:

(1) it takes responsibility for applying the proto-concepts correctly;

(2) it takes responsibility for the empirical adequacy of the proto-
concepts themselves; and

(3) it takes a firm stand on what can and cannot happen in the
world, when grasped in terms of these proto-concepts.




When these conditions are

merely proto-concepts, bue concepis in the full and proper sense,
The three conditions are not unrelated. For, it is precisely in ¢h

responding in some

be right!” and then trying to figure out what went wrong. The respon
sibility for the concepts themselves emerges when, too
find any mistake. In ¢

revised, either by modifying the discriminative

often, it cap’

the concepts, or by modifying the stand it takes on what is and jsp;

possible, or both. Afterward, it will have (more or less) new concepts,

produce outputs that, when best interpreted by us, come our true,

Rather, such a system appreciates for itself the difference between truth

and falsity, appreciates that, in these, it must accede to
the world determines which
undersm;zding4
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Notes

L. Both parts of this idea have their 1oots in W. V. O. Quine’s pioneering

(1950, 1960) investigations of meaning, (Meaning is the linguistic or

symbolic counterpare of intentionality.)

+ Chess players will know tha the rules for castling, stalemate, and cap-
turing en passent depend also on Previous events; 50, to make chess
strictly formal, these conditions would have to be encoded in furcher

tokens {markers, say) that count as part of the current position.

- A similar point can be made about code-cracking (which s basically
translating texts that are contrived to make that especially difficulc). A
cryptographer knows she has succeeded when and only when the
decoded messages come out consistently sensible, relevant, and trye,

These ideas are explored fruther in the last four

chapters of Hauge-
land (1997).

met, moregver, the proto-concepts are not

way that we would express by saying: “This eans

Computing Machinery
and Intelligence

A. M. Turing
1950

1 The imitation game

I propose to consider the question “an machines think;’” Tlu.s slzloulj
. begin with definitions of the meaning of the terms ‘machine an
‘think’. The definitions might be framed so as to reﬂect so far as pos;:—
. ble the normal use of the words, but this attitude is dangerous. If the
- meaning of the words ‘machine’ and ‘thinl¢’ are to be found by e:lam.xn—
ing how they are commonly used it is difficult to escape the con 11:118'101’1
that the meaning and the answer to the question, “Can machines
think?” is to be sought in a statistical survey such as a Gallup poll. But
this is absurd. Instead of attempting such a deﬁmt}on I shail replac;
the question by another, which is closely telated to it and is expresse

i ively unambiguous words.

" r?ﬁzl‘:e\):r?orm 0? the problem can be described %n terms of a game
which we call the “imitation game”. It is played with three peogle, a
man (A), a woman (B), and an interrogator (C) who may be of el’;‘h}fr
sex. The interrogator stays in a room apart from thf:‘ other.hﬁm.f he
object of the game for the interrogator is to determine which o tbe
other two is the man and which is the woman. Hc kncct)wr?‘ them by
labels X and Y, and at the end of the game he says either “Xis Aand Y
is B” or “X is B and Y is A”. The interrogator is allowed to put ques-
tions to A and B thus:

C: Will X please tell me the length of his or her hair?
Now suppose X is actually A, then A must answer. Tt is A’s object in the

gamc to try to cause C to make the wrong identification. His answer
might therefore be

A: My hair is shingled, and the fongest strands are about nine
inches long.




