
Revisiting Exploding Gradient: A Ghost That Never Leaves

Kai Hu 1

Abstract
The exploding gradient problem is one of the
main barriers to training deep neural networks. It
is widely believed that this problem can be solved
by techniques like careful weight initialization
and normalization layers. However, we find that
exploding gradients still exist in deep plain net-
works with these techniques applied. Our the-
ory shows that the nonlinearity of activation lay-
ers are the source of such exploding gradients,
and the gradient of a plain network increases ex-
ponentially with the number of nonlinear lay-
ers. Based on our theory, we are able to miti-
gate this gradient problem and train deep plain
networks without any skip connection or short-
cuts. Our 50-layer plain network, SeqNet50,
achieves a 77.1% top-1 validation accuracy on
ImageNet. To the best of our knowledge, it is
the first plain network that can reach the perfor-
mance of ResNet50. Codes are available.

1. Introduction
For a long period of time, the vanishing and exploding gra-
dient problem was a major barrier for training large net-
works. Many methods are proposed to solve this problem:
gradient clipping (Allen-Zhu et al., 2019), careful weight
initialization (Glorot and Bengio, 2010; He et al., 2015)
and most importantly, adding normalization layers (Ioffe
and Szegedy, 2015) to the network. People generally be-
lieve that the vanishing/exploding gradient has been largely
addressed, especially with the help of normalization layers.

However, we check the gradients of layer weights in a
plain network (a sequential network without any kinds of
skip connections/shortcuts), and find something counter-
intuitive: the gradients increase exponentially from deep
layers (close to network outputs) to shallow layers (close
to network inputs) even the network is carefully initial-
ized and uses batch normalization (BatchNorm). This phe-
nomenon does not happen in residual networks (He et al.,
2016). Figure 1 (left) simulates the gradient norm of a plain
network (PlainNet20) and a residual network (ResNet20).
The architectures of two networks are similar, except that
the residual network uses a skip connection every 2 layers.

Please refer to Section 2 for implementation details. Recall
that the back propagation algorithm derives the gradient of
a network from deep layers to shallow layers, we need to
read the figure from right to left. For both networks, the
gradient norm of the deepest layer are close. As the back-
ward signal passes from deep layers to shallow layers, the
gradient norm increases exponentially for the plain network
but roughly linearly for the residual network.

Existing studies cannot explain this phenomenon: 1) the
gradients in the plain network explode regardless of the
activation choice, e.g., ReLU (Nair and Hinton, 2010) or
SELU (Klambauer et al., 2017); 2) all layers’ weights in the
network are properly initialized (He et al. (2015) or Glo-
rot and Bengio (2010)); 3) the batch normalization layer
is added after every weight layer, thus the variance of for-
ward signals are stable. We argue that the nonlinearity
property of the activation is the cause of the exploding
problem when the network is carefully initialized and
used normalization layers.

To understand this, we analyse the signal variance prop-
agation. A common misunderstanding is that the back-
ward variance propagation is similar to the forward vari-
ance propagation (He et al., 2015). It might be true for
linear operators, but not for nonlinear activations. A sim-
ple intuition: for an operator y = f(x), the forward and
backward variance propagation are determined by the func-
tion f and its derivative f ′ respectively, which are not very
correlated unless f is linear. A stable forward propagation
cannot guarantee a stable backward variance propagation.

We define two ratios to describe how an operator changes
the the signal variance during forward and backward (Def-
inition 3.1), and derive the relation between the two ratios.
Our conclusion is (informally): if an operator scales the
variance of forward signals by k times, it will scale the vari-
ance of backward signals by k times given the operator is
linear, but more than k times when it is nonlinear. Consider
a network, with careful initialization or normalization tech-
niques, the variance of network output and the variance of
network input can be close, but in the same time, the vari-
ance of input derivatives will be larger than the variance of
output derivatives. The increasing speed differs in network
architectures as in Figure 1 (left). In Section 3, we show
that the increasing speed is exponential for plain network

Revisiting Exploding Gradient

Figure 1: Left: The gradient norm of layer weights against layer indexes for a PlainNet20 and a ResNet20 with
BatchNorm and standard initialization. Right: BatchNorm layers’ running variance (square rooted) against layer indexes

from VGG19 trained checkpoints. The metrics increase from deep layers to shallow layers.

and roughly linear for residual networks.

With this exploding gradient problem, it is not surprised
that deep plain networks are not trainable while resid-
ual networks can be very deep. An interesting question
would be: if the exploding gradient problem is solved, can
deep plain networks match the performance of residual net-
works? We find that deep plain networks can be trainable
by breaking a common practice: the weights of different
layers are considered independent and initialized indepen-
dently, as shown if Figure 2 (left). Our theory shows that
by using a tied weight schema as in Figure 2, the increasing
speed of backward signal variance can be greatly reduced.

W M
x1 x2 x3

x2 = Wx1 x3 = Mx2

W
x1 x2 x3

x2 = Wx1 x3 = W⊤x2

W⊤

Figure 2: Left: common practice: weights of adjacent
layers are initialized independently. Right: basic module

of proposed SeqNet. Weights of the second layer are
initialized by the transpose of the first layer’s weights. The

ReLU between two linear layers is not displayed.

In Section 4, we propose the SeqNet, built by stacking the
basic module as in Figure 2. SeqNet is a deep plain ReLU
network without any kinds of skip connections or short-
cuts. We are able to train 50∼100 layers SeqNet with com-
mon training settings and match the corresponding ResNet
performance on ImageNet classification. To the best of
our knowledge, it is the first plain network that achieves

ResNet performance on ImageNet in the 100-layer setting.
We need to clarify that the purpose of SeqNet is not another
strong architecture, but an empirical example for studying
the difference between plain and residual networks on non-
toy dataset. Investigating SeqNet facilitates the learning
theories of very deep neural networks.

Our contributions are threefold: 1) we point out and
analyse an exploding gradient problem in plain networks.
When the network is well initialised or uses normalization
layers, the source of the exploding gradients is the non-
linear activations, which is less noticed in previous works.
2) We propose a trainable deep plain network that is ini-
tialized at a nonlinear state. Some existing works (Xiao
et al., 2018; Qi et al., 2020) also propose such networks,
but they largely rely on a linear initialization state. 3) The
proposed network is the first to match the validation accu-
racy of ResNet50 on ImageNet.

2. Evidence of Exploding Gradient
Let xi be the i-th element of x, and Wij be the i-th row,
j-th column of W . Let Var[x] be the average element vari-

ance: Var[x] =
1

d

∑
i

Var[xi]. Let x(0) ∈ Rd0 be the input

to neural networks, and x(k) ∈ Rdk be the output of k-th
layer.

2.1. Simulation evidence

We first go into details for the aforementioned PlainNet20
and ResNet20 networks in Section 1. For PlainNet20, the
k-th (0 < k ≤ 20) layer is a stack of a fully-connected
layer with weights W (k) ∈ Rdk−1×dk initialized by He

Revisiting Exploding Gradient

et al. (2015): W
(k)
ij ∼ N (0, 2/dk), a BatchNorm layer

B(k) and a ReLU activation layer σ(x) = max(x, 0):

k=0, 1, · · · 19, x(k+1)= σ(B(k)(W (k)x(k))), .

For simplicity, we use the same hidden dimension dk=d=
256 for every k.

The only difference for Residual20 is a skip connection.
We follow the Basic Block design (He et al., 2016) and add
the skip connection every two layers:

k=0, 2, · · · 18, x(k+1)= σ(B(k)(W (k)x(k)))

x(k+2)= σ(B(k)(W (k)x(k+1)) + x(k)),

We sample a batch of 128 inputs from normal distribution
x0 ∼ N (0, Id), and simulate the corresponding derivative

on top of the networks with normal distribution
∂ℓ

∂x(20)
∼

N (0,
1

d
Id). We do the back propagation with PyTorch’s

automatic differentiation to get the gradients of all fully-
connected layer weights for two networks. The experi-
ments are repeated 4096 times and we use the average gra-
dient norm to plot the gradient curve. More examples can
be found in Appendix A.

2.2. Circumstantial evidence

In the PlainNet, x(k) is activated from the output of a
BatchNorm layer, thus should always have a stable vari-
ance. The output variance of the fully-connected layer, i.e.,
Var[W (k)x(k)] is mainly determined by the magnitude of
W (k). With a careful initialization, this term should also
be stable. However, if exploding gradient happens, the gra-
dients in shallow layers are much larger than those in deep
layers, making larger updates to the weights in shallow lay-
ers. The variance term Var[W (k)x(k)] can be exponential
large in the shallow layers of a plain network.

The output variance of the fully-connected layer is
recorded by the next BatchNorm layer with the “running
variance” parameter, which can be used to verify whether
exploding gradients happen in a trained network. We
consider the VGG19-BN network (Simonyan and Zisser-
man, 2015), a classical 19-layer plain convolution net-
work. We check the final model of VGG19 (with Batch-
Norm) trained on ImageNet classification. The checkpoint
is provided by PyTorch1 (Paszke et al., 2019). Specifi-
cally, for a BatchNorm layer with input dimension d, there
are d running variances for each input dimension. We
use the square root of the average as the metric: σ =√

1
d

∑d
i=1(running variance)i.

1https://pytorch.org/vision/stable/
models.html#torchvision.models.vgg19_bn

Figure 1 (right) shows the metric σ, square rooted average
of running variance, in BatchNorm layers from the trained
checkpoint (still read the figure from right to left). In the
final model, the metric σ increases at most layer indexes
except for some layers. The overall trend is that the metric
grows exponentially as back propagation goes from deep
layers to shallow layers. An exploding gradient explains
for this exploding running variance.

3. Theory of Exploding Gradients
Proof strategy. For every operator (e.g., linear/activation
layers) in a network, we study how it scales the forward
and backward signals. We define two scaling ratios:

Definition 3.1. Let y = π(x) be an arbitrary operator in
the network with input x ∈ Rd and output y ∈ RD. Let
∂ℓ

∂x
and

∂ℓ

∂y
be the derivative of the network loss ℓ with

respect to the operator input and output:
∂ℓ

∂x
= π′(x)

∂ℓ

∂y
.

Denote the forward scaling ratio Rf (π) and backward scal-
ing ratio Rb(π) by

Rf (π) =
Var[y]
Var[x]

, Rb(π) = Var[
∂ℓ

∂x
]
/

Var[
∂ℓ

∂y
],

where the variances are computed over the distribution of

the input x and the output derivative
∂ℓ

∂y
.

Remark 3.2. Some existing work on variance propagation
computes the variance over the distribution of the inputs
and the network parameters (He et al., 2015; Zhang
et al., 2019; De and Smith, 2020), which we think is not
proper. The network we study or verify is always an ini-
tialized network with fixed parameters. The randomness of
parameters should not be used for computing the expecta-
tion and variance. In our setting, the variance is computed
with respect to the input distribution and is a function of
the fixed parameters, if any. Then the distribution of the
parameters can be used to estimate the computed variance.

The two ratios describes how signal variance flows during
network forward and backward.

3.1. Scaling ratios of common operators

We first discuss two linear operators: fully-connected lay-
ers and BatchNorm layers (large enough batch size). Con-
volution layers are a special case of fully-connected layers.
The results for linear operators may not be new, however
we still state them here for completeness.

Assumption 3.3. For the studied operator, dimensions of

the input to x, or dimensions of the output derivative
∂ℓ

∂y
,

are independent and identically distributed.

https://pytorch.org/vision/stable/models.html##torchvision.models.vgg19_bn
https://pytorch.org/vision/stable/models.html##torchvision.models.vgg19_bn

Revisiting Exploding Gradient

Proposition 3.4. Under Assumption 3.3, for a linear
layer πW with weights W ∈ RD×d: y = Wx, the
forward and backward scaling ratios are Rf (πW) =
∥W ∥2F

D
,Rb(πW) =

∥W ∥2F
d

, where ∥W ∥F denotes the
Frobenius norm.

Remark 3.5. Assumption 3.3 is widely used in many exist-
ing studies, but not likely to be true in generally. However,
Proposition 3.4 matches the real case quite well, e.g., He
initialization. We also verified this in Appendix A.1.

BatchNorm is done for each dimension of the input
independently. Thus it is equivalent to analysis one-
dimensional data. For a batch of data {xi}Bi=1, let µx =

1

B

B∑
i=1

xi, σ
2
x =

1

B

B∑
i=1

(xi − µx)
2 denote the batch mean

and batch variance respectively, the output of the Batch-

Norm is yi =
xi − µx

σx
. Let Var[

∂ℓ

∂x
] and Var[

∂ℓ

∂y
] denotes

the sample variance of { ∂ℓ
∂xi
}Bi=1 and { ∂ℓ

∂yi
}Bi=1 respec-

tively. We need the following assumption and corollary to

further analyse Var[
∂ℓ

∂x
] :

Assumption 3.6. For any neuron in the network, the for-

ward signal x and the backward signal
∂ℓ

∂x
are independent.

Corollary 3.7. Under Assumption 3.6, any neuron before
the last BatchNorm layer in a network has zero expectation

derivative, i.e., E
∂ℓ

∂x
= 0.

Proposition 3.8. Under Assumption 3.6, for a BatchNorm

layer B, the forward scaling ratio is Rf (B) =
1

σ2
where

σ2 is the input batch variance. The backward scaling ratio

is Rb(B) =
1

σ2
(1− z

B
) where B is the batch size and z is

a positive random variable that Ez = 1,Var[z] = 2.

With a properly large batch size, the forward and back-
ward scaling ratios are approximately the same for Batch-
Norm layers. Thus the gradient exploding problem is not
likely to happen is a plain network that only consists fully-
connected operators and BatchNorm operators.
Remark 3.9. Assumption 3.6 is widely used (Yang and
Schoenholz, 2017). In fact our proof only need non-
correlation. Even if the network inputs and targets are cor-
related, non-linearity will reduce the correlation greatly be-
tween a neuron and its derivative in a deep network.

Nonlinear operators We study element-wise activations
that operate on each neuron independently. Similarly, we
just consider one dimensional data.

Assumption 3.10. Let g be the element-wise nonlinear ac-
tivation with input x ∈ R and output y ∈ R: y = g(x).

Assume g is absolutely continuous and Var[g(x)] exists.

For activation g, the forward scaling ratio is Rf (g) =
Var[g(x)]/Var[x], and the backward scaling ratio is

Rb(g) = Var[
∂ℓ

∂x
]/Var[

∂ℓ

∂y
]. Recall assumption 3.6 and

Corollary 3.7, we have:

Var[
∂ℓ

∂x
] = Var[

∂ℓ

∂y

dy
dx

] = E
[
(
∂ℓ

∂y
)2[g′(x)]2

]
= E

[
∂ℓ

∂y

2]
E[g′(x)2] = Var[

∂ℓ

∂y
]E[g′(x)2].

The backward scaling ratio is E[g′(x)2]. Both two scaling
ratios are related to the input distribution. We discuss with
different assumptions on the input distribution.

Assumption 3.11. The input to the activation is Gaussian.
Many existing studies (Klambauer et al., 2017) make this
assumption. Chernoff (1981) shows that:

Proposition 3.12. Under Assumption 3.10 and 3.11,
Var[g(x)]/Var[x] ≤ E[g′(x)2]. The equality holds if and
only if g(x) = ax+ b for some a and b.

With proposition 3.12, the backward scaling ratio is
larger than the forward scaling ratio for nonlinear ac-
tivations. Specifically, for ReLU activation σ(x) =

max(x, 0), Rf (σ) =
1

2
(1 − 1

π
), Rg(σ) =

1

2
. For ReLU

activation, we can use weaker assumptions:

Assumption 3.13. The input to the activation layer follows
a symmetric distribution centered at zero: p(x) = p(−x)
where p(x) denotes the density function of x.

Without loss of generality, we can let Var[x] = 1 for ReLU
since σ(x) = s · σ(x/s) where s denotes the standard de-
viation of x and Var[x/s] = 1.

Proposition 3.14. Under Assumption 3.13 and Var[x] = 1,

Var[σ(x)] ≤ E[σ′(x)2]− 1

4
E[|x|].

Proposition 3.14 describes the state of activation layers
in the “linear-BN-ReLU” architecture at initialization pre-
cisely. The inputs to ReLU is standardized by the Batch-
Norm. Recall that the forward and backward scaling ratios
are Var[σ(x)] and E[σ′(x)2] respectively in this case. The
backward scaling ratio is strictly larger than the forward
scaling ratio in a “linear-BN-ReLU” plain network at ini-
tialization. To summarize, under some assumptions, the
forward scaling ratio Rf and the backward scaling rate Rb

are approximately the same for linear operators. However
for the nonlinear activations, Rb(g) ≥ Rf (g) + ϵ for some
ϵ > 0. Note that the two ratios are positive and bounded
for a single operator in a real network, it is equivalent to
say Rb(g) ≥ c ·Rf (g) for some c > 1.

Revisiting Exploding Gradient

Corollary 3.15. Suppose a plain network is a stack of lin-
ear layers, batch normalization layers and nonlinear acti-
vations. Let L denote the number of activation layers in the

network and c = min
g

Rb(g)

Rf (g)
for every nonlinear activation

g in the network. Let Rf (π) and Rb(π) be the forward and
backward scaling ratios of the entire network respectively,
Rb(π)/Rf (π) = Ω(cL).

Careful initialization or normalization methods make the
forward signals’ variance stable in the plain network, i.e.,
Rf (π) is bounded, However, the backward scaling ratio
Rb(π) is exponential large, thus the first layer derivative
is exponential larger than the output derivative.
Remark 3.16. Although the two ratios are not equal for
fully-connected operators as in proposition 3.4, it does not
lead to gradient exploding in practice. The ratio between
the maximum hidden layer dimension and the minimum
hidden layer dimension is bounded and independent with
the network depth.

In Figure 1 (right), the running variance decreases every
time passing a downsample (max-pooling) layer, which is
different than the curve trend. We can have an informal
explanation using our framework in Appendix C.1.

3.2. How do ResNets solve the problem

As in Figure 1 (left), the gradient of ResNets grow slowly
as backward signals pass from deep layers to shallow lay-
ers, without the problem of exploding gradient. In fact,
the vanilla ResNets also has the problem of exploding gra-
dient2 caused in another reason discussed by Zhang et al.
(2019). A zero-gamma initialization (Goyal et al., 2017) or
a 1/
√
L initialization (Balduzzi et al., 2017) are used solve

the problem stated by Zhang et al. (2019). Interestingly,
this method also solve the problem stated in this paper.

A ResNet is a stack of multiple residual blocks. We analyse
the two scaling ratios of a residual block y = x + F(x),
whereF is the residual branch. The residual branch is typi-
cally a 2 ∼ 3-layer plain network. The 1/

√
L initialization

use 1/
√
L to multiply the residual branch3 where L is the

number of residual blocks: y = x+
1√
L
F(x).

Proposition 3.17. Let Rf (F), Rb(F), Rf (R), Rb(R) de-
note the forward and backward scaling ratios of the resid-
ual branch, the forward and backward scaling ratios of
the residual block respectively. We have: Rf (R) = 1 +
1

L
Rf (F), Rb(R) = 1 +

1

L
Rb(F).

2See Appendix C.3 for the details.
3The 1/

√
L initialization actually uses 1/

√
L to initialize the

weight of the last BatchNorm layer in the residual branch. How-
ever it is equivalent to write in this form to analyse the variance.

Although Rb(F) and Rf (F) are not equal due to nonlin-
earity, note that the residual branch is a shallow network
with 2 ∼ 3 layers, both two ratios are in the same or-
der and can be considered bounded. When the ResNet is
deep, both Rb(F) − 1 and Rf (F) − 1 are O(1

L
) order.

When considering the entire network, the two ratios are

both O
(
(1 +

1

L
)L
)

order which is independent with the

network depth.

4. SeqNet without skip connections
In this section, we try to explore methods to solve the ex-
ploding gradient problem and make deep plain networks
trainable. The proposed SeqNet may provide intuition for
the theoretical explanation of the better performance of
ResNets than plain networks.

4.1. Breaking our assumptions

A plain network without exploding gradients sounds con-
tradictory to our theory. However most propositions in Sec-
tion 3 rely heavily on assumption 3.3, which is a rough
approximation. We can design a module where the real
distribution is far from this assumption. For example, let
x ∈ Rd be a vector variable with all independent dimen-
sions. Any projection of x to a much higher dimension
y = Wx ∈ RD cannot be dimension-wise independent4.

Initialized as linear functions A simple situation that
assumption 3.3 does not hold is that a neuron and its
negative exist at the same time. Specifically, for weight

W ∈ RD×d (D ≥ d), let W̃ =

[
W
−W

]
∈ R2D×d.

assumption 3.3 cannot hold for ỹ = W̃x. Next de-
fine M̃ = [M ,−M] ∈ Rd×2D for some matrix M ∈
Rd×D. We construct a two-layer ReLU network h(x) =

M̃ReLU(W̃x) = NWx, which is a linear function.

The idea of initializing as linear functions comes from Bal-
duzzi et al. (2017) that uses concatenated ReLU (Shang
et al., 2016), but we propose it from a different motivation.
However, this method (also some existing work (Qi et al.,
2020) to be discussed in Section 6) may give us a wrong
feeling that a linear (or close linear) initialization state is
the key for making deep plain network trainable. We show
it is not necessary with a nonlinear design.

Initialized with weight tying Let W ,M ∈ RD×d (D ≥
d) are initialized from N (0, 1/D). We study the different
forward and backward behaviours of two single-hidden-

4Breaking our assumptions is a necessary but insufficient con-
dition to make deep plain network trainable

Revisiting Exploding Gradient

3 × 3 : 64 → 128

ReLU

1 × 1 : 128 → 64

BatchNorm

3 × 3 : 64 → 64

BatchNorm, ReLU

3 × 3 : 64 → 64

BatchNorm

+
+

1 × 1 : 256 → 64

BatchNorm, ReLU

3 × 3 : 64 → 64

BatchNorm, ReLU

1 × 1 : 64 → 256

BatchNorm

3 × 3 : 64 → 128

ReLU

1 × 1 : 128 → 64

BatchNorm

1 × 1 : 64 → 256

ReLU

1 × 1 : 256 → 64

BatchNorm

BasicBlock SeqBasic BottleNeck SeqBottle

Figure 3: Examples for the ResNet building blocks and the SeqNet counterpart. k × k : d→ D indicates a convolution
layer with input dimension d, output dimension D, kernel size k-by-k.

layer networks h(x) = M⊤ReLU(Wx) and g(x) =
W⊤ReLU(Wx).

Proposition 4.1. (informal) Assume the network inputs
and the derivatives on top of the two networks are i.i.d.

Gaussian: x ∼ N (0, Id) and
∂ℓh
∂h

,
∂ℓg
∂g
∼ N (0, Id). Let

k = D/d, we have: Rf (h) ≈
2

k
(1 − 1

π
) Rb(h) ≈

2

k
; Rf (g) ≈ 1 +

2

k
(1− 1

π
) Rb(g) ≈ 1 +

2

k
.

Stacking the network h to get a deep plain network (even
with BatchNorm), the gradient will increase exponentially
with a rate of Rb(h)/Rf (h) =

π

π − 1
. However, the gradi-

ent exploding rate would be much smaller for the network
g if k = D/d ≥ 2. It is possible that a deep plain network
of stacking the network g is trainable. However it is not
guaranteed and needs to be verified by experiments. Our
analysis focuses on the variance propagation of initialized
network, and cannot describe or guarantee the network af-
ter training, which is the major limitation of our work.

4.2. SeqNet without skip connections

In this section, we introduce the proposed SeqNet by stack-
ing the mentioned network g.

Fully-connected Network The basic module is as stated in
Section 3.1. Let d be the input dimension, and k ≥ 2 be
a network hyper-parameter. The basic module is a stack
of 1) a fully connected layer with input and output di-
mension d and kd respectively; 2) a ReLU activation; 3)
a fully connected layer with input and output dimension
kd and d respectively and 4) a batch normalization layer.

Let W ∈ Rkd×d,M ∈ Rd×kd denote the fully connected
layers’ weights, the formula is y = B(M⊤ReLU(Wx)).
Initialize the element W with i.i.d. normal distribution
Wij ∼ N (0,

2

kd
). The weight M is initialized as W⊤.

Convolution Network Following the same ideas for fully-
connected network, we make minimal changes to the
ResNet architectures (He et al., 2016). The network con-
sists of the first 7-by-7 kernel size convolution layer, four
stages using a unified building block, a global pooling
layer, and the last classification layer. Our modifications
are on the building block, i.e., BasicBlock and BottleNeck.

BasicBlock has two convolution layers. Suppose the in-
put dimension is d, the two convolution layers are of in-
put dimension d, output dimension d and kernel size 3-
by-3. We replace them with one convolution layer with
input dimension d, output dimension 2d, kernel size 3-by-
3, and another convolution layer with input dimension 2d,
output dimension d, kernel size 1-by-1. Figure 3 shows
the examples for the two building blocks. We only ini-
tialize the “center” of the convolution weights and leave
other weights as zero. Taking the 3-by-3 convolution in
Figure 3 SeqBasic as an example, its weight is a 4-D ten-
sor W ∈ R128×64×3×3. The “center” of the weight is
W [:, :, 2, 2], a 128-by-64 matrix. For 1-by-1 convolution,
the “center” of the weight is itself. For the SeqBasic block,
we can initialize the “center” of the weight for the two
convolution layers using the three methods mentioned for
fully-connected layers. Parameters at other positions are
initialized as zero. SeqBottle is the counterpart for Bot-
tleNeck, and built on SeqBasic. We move the first 1-by-1
convolution in BottleNeck after the third 1-by-1 convolu-

Revisiting Exploding Gradient

Figure 4: Left: The gradient norm of three models against layer index at initialization using ImageNet data. Right: The
gradient norm of ResNet50 and SeqNet50 against layer index during training (at Epoch 50).

tion. It forms a similar basic module as discussed for fully-
connected network. Then we add these two layers to the
top of SeqBasic, and get the SeqBottle building block. The
initialization of SeqBottle is the same as SeqBasic.

We replace BasicBlock in ResNet18 and ResNet34 with
SeqBasic to get SeqNet18 and SeqNet34, and replace Bot-
tleNeck in ResNet50 and ResNet101 with SeqBottle to get
SeqNet50 and SeqNet101.

5. Experiments
ImageNet Classification. We experiment in the ImageNet
classification dataset (Deng et al., 2009). We use the
conventional training settings without any training tricks.
Please refer to Appendix B.1 for details. Figure 4 shows
the gradient norm of three models at initialization. Plain-
Net50 simply removes the skip connection in ResNet50.
At the initial state, both ResNet50 and SeqNet50 have sta-
ble gradient during back propagation, while the gradient of
PlainNet50 increases quickly. The right figure shows the
gradient norm of ResNet50 and PlainNet50 during train-
ing. Both two curves are stable generally stable, but the
gradient norm increases faster for SeqNet50.

Comparison with ResNets and other plain networks. As
shown in Table 1, our methods are significantly better than
existing plain networks in all layer settings and able to
match the performance of ResNets. It is overfitting that
makes SeqNet50/101 worse than ResNets. If any block
of the plain network does not learn well (maybe because
of unlucky initialization or noise), the final output results
cannot be good. However the results of ResNets behaves
like ensembles of all residual blocks (Veit et al., 2016),
making ResNets more robust. The reason why the per-
formance of SeqNet101 is worse than SeqNet50 is possi-
bly the performance degradation problem discussed in (He
et al., 2016; Balduzzi et al., 2017) as the training accuracy

of SeqNet101 is also lower than SeqNet50. The gradient
norm of SeqNet101 is in a normal range. Due to page limit,
please refer to the Appendix B.2 for the ablation studies and
Appendix B.3 for learning curves of SeqNet.

Object Detection and Segmentation. We adopt Mask R-
CNN (He et al., 2017) with a Feature Pyramid Network
(FPN) as the detection model, and compare the SeqNet
backbone with the ResNet50 backbone with BatchNorm
(BN) or GroupNorm (GN) (Wu and He, 2018). The mod-
els are pre-trained on ImageNet classification, fine-tuned
on the COCO train2017 set and evaluated on the COCO
val2017 set. We report the standard COCO metrics of Av-
erage Precision (AP), AP50, and AP75 , for bounding box
detection (APbbox) and instance segmentation (APmask). As
shown in Table 2, SeqNet model’s performance is compara-
ble to the ResNet50 models, demonstrating that our model
has good feature transfer abilities. (2X or 3X indicate the
180k or 270k iterations training).

6. Related Work and Discussion
Theories for residual networks and plain networks. Veit
et al. (2016) show ResNets behaves like ensembles of shal-
low networks. Hardt and Ma (2016) prove ResNets with
ReLU activations have universal finite-sample expressivity.
Orhan and Pitkow (2017) hypothese that skip-connections
improve performance by breaking symmetries. Balduzzi
et al. (2017) suggest that the “shattered gradients prob-
lem” might be the reason for training difficulties in deep
plain networks. Zaeemzadeh et al. (2020) prove that skip
connections facilitate preserving the norm of the gradi-
ent, and lead to stable back-propagation. Hanin and Rol-
nick (2018) provide some theoretical results in predicting
when networks are able to start training. Isometry is an-
other popular motivation for analyse the signal propagation
(Saxe et al., 2014; Philipp et al., 2017; Pennington et al.,
2017). Tarnowski et al. (2019) demonstrate that dynami-

Revisiting Exploding Gradient

Model 18-layer 34-layer 50-layer 101-layer

ResNet (He et al., 2016) 69.8% 73.3% 77.4% 78.8%
DiracNet(et al, 2017) 70.4% 72.8% NA NA
ISONet(Qi et al., 2020) 68.1% 70.9% 71.2% 71.0%

SeqNet (Ours) 72.4% 75.7% 77.1% 76.7%

Table 1: Comparison with ResNets and other plain networks on ImageNet validation.

Model APbbox APbbox
50 APbbox

75 APmask APmask
50 APmask

75

ResNet50 BN 2X 38.6 59.8 42.1 34.5 56.4 36.3
ResNet50 GN 2X 40.3 61.0 44.0 35.7 57.9 37.7
SeqNet50 2X 39.8 59.5 43.1 35.3 57.4 37.8

ResNet50GN 3X 40.8 61.6 44.4 36.1 58.5 38.2
SeqNet50 3X 40.6 60.7 44.9 36.0 58.2 38.5

Table 2: Detection and segmentation results in COCO using Mask R-CNN and FPN.

cal isometry is achievable irrespective of the activations in
ResNets.However, these work implicitly ignore the gradi-
ent exploding problem, which is the first obstacle for train-
ing. Another tool to study this problem is mean field the-
ory (Poole et al., 2016; Schoenholz et al., 2016), which re-
quires the where the network to be very wide. Although
our SeqNets also require this assumption (Proposition 4.1),
understanding the bad trainability of plain networks do not
need this assumption (Proposition 3.14).

Other Attempts to train deep plain networks. et al
(2017) propose to train plain networks up to 34 layers.
However their idea is to simulating identical kernels and
initial the convolution weights as an intensity matrix. More
generally, orthogonality is widely used in deep networks
(Bansal et al., 2018; Wang et al., 2020). Xiao et al. (2018)
show that orthogonality enables deep ConvNets trainable.
However, the model requires the activation layer to be lin-
ear around 0 (tanh). The performance is far below the base-
line even on CIFAR dataset. By using isometry, Qi et al.
(2020) propose a deep isometric network without skip con-
nections or normalisation with a Shifted ReLU, making the
activation linear around 0. These models require special
initialization methods and take the advantage of initialized
as linear operations. However, our models use Gaussian
distribution and every building block in SeqNet is not lin-
ear at initialization.

Insights from our work We first need to emphasize again
that there is not many significant advantages of training
plain networks, and the propose of SeqNet is not another
strong architecture for practice. However, our work can
provide new insights for many phenomena. Firstly, al-
though residual network generally has better performance
than the VGG network on a wide range of tasks, it is not
as good as VGG network on the style transfer task. The

reason behind this is still an open question. As we anal-
yse, the gradient exploding problem is more significant on
the VGG network, thus the derivative over the inputs for
VGG network is much larger that that of residual network
(Wang et al., 2021). A small change over the input can lead
to large change over the output for VGG network, make
it earlier to transfer an image. Another recent example is
the self-supervised vision transformers (MoCo V3) (Chen
et al., 2021). The authors find the instability of shallow
layers and choose to freeze these layers during training.
Although we cannot provide a better solution, we can ex-
plain this phenomenon. Although residual architecture can
solve the exploding gradient problem, the entire network as
a whole is still nonlinear, especially after training. The lay-
ers’ weight gradient is larger than deeper layers. If the net-
work is not very stable, the instability is more likely to hap-
pen in shallow layers. Finally, thanks to the performance on
non-toy datasets and simple training settings, SeqNets can
be used as a convincing example to empirically study the
difference of learning dynamics between residual and plain
networks, e.g., what does skip connection solves besides
the exploding gradient problem.

7. Conclusion
In this paper, we re-visit the exploding gradient problem,
and conclude that nonlinear activation may be the source of
explosive gradients. The gradient norm of a plain network
is of exponential order to the number of nonlinear layers,
making plain networks not trainable. Based on our theory,
we propose SeqNet, a plain network that does not have the
exploding gradient problem. Without skip connections, Se-
qNet can match the performance of ResNet counterpart on
image classification and object detection tasks. Studying
SeqNet may help better understand ResNets.

Revisiting Exploding Gradient

References
Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the

convergence rate of training recurrent neural networks.
In Advances in Neural Information Processing Systems,
2019.

David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis,
Kurt Wan-Duo Ma, and Brian McWilliams. The shat-
tered gradients problem: If resnets are the answer, then
what is the question? In International Conference on
Machine Learning, pages 342–350. PMLR, 2017.

Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can
we gain more from orthogonality regularizations in train-
ing deep cnns? arXiv preprint arXiv:1810.09102, 2018.

Xinlei Chen, Saining Xie, and Kaiming He. An empiri-
cal study of training self-supervised vision transformers.
arXiv preprint arXiv:2104.02057, 2021.

Herman Chernoff. A note on an inequality involving the
normal distribution. The Annals of Probability, pages
533–535, 1981.

Soham De and Sam Smith. Batch normalization biases
residual blocks towards the identity function in deep net-
works. Advances in Neural Information Processing Sys-
tems, 33, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

Zagoruyko et al. Diracnets: Training very deep neu-
ral networks without skip-connections. arXiv preprint
arXiv:1706.00388, 2017.

Xavier Glorot and Yoshua Bengio. Understanding the dif-
ficulty of training deep feedforward neural networks. In
Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, 2010.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017.

Boris Hanin and David Rolnick. How to start training: the
effect of initialization and architecture. In Proceedings
of the 32nd International Conference on Neural Infor-
mation Processing Systems, pages 569–579, 2018.

Moritz Hardt and Tengyu Ma. Identity matters in deep
learning. arXiv preprint arXiv:1611.04231, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. IEEE Interna-
tional Conference on Computer Vision, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 2961–2969,
2017.

Zhen Huang, Tim Ng, Leo Liu, Henry Mason, Xiaodan
Zhuang, and Daben Liu. Sndcnn: Self-normalizing
deep cnns with scaled exponential linear units for speech
recognition. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 6854–6858. IEEE, 2020.

Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing inter-
nal covariate shift. In Proceedings of the 32nd Inter-
national Conference on Machine Learning, ICML 2015,
Lille, France, 6-11 July 2015, 2015.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr,
and Sepp Hochreiter. Self-normalizing neural networks.
In Proceedings of the 31st international conference on
neural information processing systems, pages 972–981,
2017.

Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted boltzmann machines. In Icml, 2010.

A Emin Orhan and Xaq Pitkow. Skip connections eliminate
singularities. arXiv preprint arXiv:1701.09175, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems, 2019.

Jeffrey Pennington, Samuel S Schoenholz, and Surya Gan-
guli. Resurrecting the sigmoid in deep learning through
dynamical isometry: theory and practice. In Proceedings
of the 31st International Conference on Neural Informa-
tion Processing Systems, pages 4788–4798, 2017.

George Philipp, Dawn Song, and Jaime G Carbonell.
The exploding gradient problem demystified-definition,
prevalence, impact, origin, tradeoffs, and solutions.
arXiv preprint arXiv:1712.05577, 2017.

Revisiting Exploding Gradient

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-
Dickstein, and Surya Ganguli. Exponential expressivity
in deep neural networks through transient chaos. Ad-
vances in neural information processing systems, 29:
3360–3368, 2016.

PyTorch. Pytorch, official image models implementa-
tion. https://github.com/pytorch/vision/
tree/master/references/, 2020.

Haozhi Qi, Chong You, Xiaolong Wang, Yi Ma, and Jiten-
dra Malik. Deep isometric learning for visual recogni-
tion. In International Conference on Machine Learning,
pages 7824–7835. PMLR, 2020.

Andrew M Saxe, James L McClelland, and Surya Ganguli.
Exact solutions to the nonlinear dynamics of learning in
deep linear neural networks. International Conference
on Learning Representations, 2014.

Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and
Jascha Sohl-Dickstein. Deep information propagation.
International Conference on Learning Representations,
ICLR 2017, 2016.

Wenling Shang, Kihyuk Sohn, Diogo Almeida, and
Honglak Lee. Understanding and improving convolu-
tional neural networks via concatenated rectified linear
units. In international conference on machine learning,
pages 2217–2225. PMLR, 2016.

Jie Shao, Kai Hu, Changhu Wang, Xiangyang Xue, and
Bhiksha Raj. Is normalization indispensable for training
deep neural network? Advances in Neural Information
Processing Systems, 33, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In
International Conference on Learning Representations,
2015.

Wojciech Tarnowski, Piotr Warchol, Stanislaw Jastrzebski,
Jacek Tabor, and Maciej Nowak. Dynamical isometry
is achieved in residual networks in a universal way for
any activation function. In The 22nd International Con-
ference on Artificial Intelligence and Statistics, pages
2221–2230. PMLR, 2019.

Andreas Veit, Michael Wilber, and Serge Belongie. Resid-
ual networks behave like ensembles of relatively shallow
networks. arXiv preprint arXiv:1605.06431, 2016.

Jiayun Wang, Yubei Chen, Rudrasis Chakraborty, and
Stella X Yu. Orthogonal convolutional neural networks.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 11505–
11515, 2020.

Pei Wang, Yijun Li, and Nuno Vasconcelos. Rethinking
and improving the robustness of image style transfer. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 124–133, 2021.

Yuxin Wu and Kaiming He. Group normalization. In Pro-
ceedings of the European Conference on Computer Vi-
sion (ECCV), pages 3–19, 2018.

Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein,
Samuel Schoenholz, and Jeffrey Pennington. Dynamical
isometry and a mean field theory of cnns: How to train
10,000-layer vanilla convolutional neural networks. In
International Conference on Machine Learning, pages
5393–5402. PMLR, 2018.

Greg Yang and Samuel S Schoenholz. Mean field resid-
ual networks: on the edge of chaos. In Proceedings of
the 31st International Conference on Neural Information
Processing Systems, pages 2865–2873, 2017.

Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-
Dickstein, and Samuel S Schoenholz. A mean
field theory of batch normalization. arXiv preprint
arXiv:1902.08129, 2019.

Alireza Zaeemzadeh, Nazanin Rahnavard, and Mubarak
Shah. Norm-preservation: Why residual networks can
become extremely deep? IEEE transactions on pattern
analysis and machine intelligence, 2020.

Hongyi Zhang, Yann N. Dauphin, and Tengyu Ma. Fixup
initialization: Residual learning without normalization.
In 7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019, 2019.

https://github.com/pytorch/vision/tree/master/references/
https://github.com/pytorch/vision/tree/master/references/

Revisiting Exploding Gradient

A. Numerical simulations of exploding gradient
In Section 2 we show that plain ReLU networks with batch normalization have the exploding gradient problem. Now we
show that neither the type of activation layers nor the existence of batch normalization layers is the key of this problem.
The existence of nonlinear activation layers is the culprit. We still use the plain network as in Section 2, but replace the
activation layers with SELU 5 or Tanh6. We also study the case when batch normalization layers are removed from the
network. We use normal distribution N (0, 1/d),N (0, 2/d),N (0, 2/d) to initialize the layer weights of SELU, Tanh and
ReLU networks respectively so that the forward pass is stable. As shown in Figure 5, different activations have different
exponential rate, but they all have the exploding gradient problems regardless of the type of activation layers nor the
existence of batch normalization layers.

0 20 40 60 80 100
Layer Index

0

5

10

15

20

25

30

35

Gr
ad

ie
nt

 N
or

m

SELU w/o BN

0 10 20 30 40 50
Layer Index

2

4

6

8

10

12

14

Gr
ad

ie
nt

 N
or

m

Tanh w/o BN

0 5 10 15 20 25 30
Layer Index

0

25

50

75

100

125

150

175

200

Gr
ad

ie
nt

 N
or

m

ReLU w/o BN

0 20 40 60 80 100
Layer Index

0

10

20

30

40

50

60

70

Gr
ad

ie
nt

 N
or

m

SELU with BN

0 10 20 30 40 50
Layer Index

0

10

20

30

40

50

60

70

Gr
ad

ie
nt

 N
or

m

Tanh with BN

0 5 10 15 20 25 30
Layer Index

0

50

100

150

200

250

Gr
ad

ie
nt

 N
or

m

ReLU with BN

Figure 5: The gradient norm against layer index for SELU, Tanh, and ReLU with/without batch normalization layers.
Different activations have different exponential rate.

We can see that SELU has the smallest exponential rate and ReLU has the largest exponential rate. As we analysed in
Section e, this exponential rate is predictable (if can we assume the hidden layer distribution is asymptotic normal). The
exponential rate for activation σ is approximately:

X ∼ N (0, 1), r(σ) =
E[σ′(X)]2

Var[σ(X)]
(1)

The exponential rates are 1.072, 1.178, and 1.467 for SELU, Tanh, and ReLU respectively. Huang et al. (2020) train a 50-
layer plain network without skip connections by using SELU, but provides no explanations about why such a deep plain
network is trainable. Our work can provide some insights, and the maximum trainable depth (of plain networks) is larger
for SELU than that for ReLU. Yang et al. (2019) also find the exploding gradients in plain networks, but ascribe it to batch
normalization layers. Figure 5 shows that it may not be the case. However, batch normalization layers indeed increase the

5https://pytorch.org/docs/stable/generated/torch.nn.SELU.html
6https://pytorch.org/docs/stable/generated/torch.nn.Tanh.html

https://pytorch.org/docs/stable/generated/torch.nn.SELU.html
https://pytorch.org/docs/stable/generated/torch.nn.Tanh.html

Revisiting Exploding Gradient

exponential rates. This is because batch normalization layers rescale the hidden distributions to the most non-linear regime
of the activations.

A.1. Verification of the propositions

According to our propositions, the exponential rate of the exploding gradient for the network defined above should only
determined on the types of the activations, specifically the square root of r(σ) defined in Equation 1 (since we are plotting
the gradient norm not the square of gradient norm). For ReLU activation, the exponential rate is α =

√
π

π−1 . Figure 6 how
close does the gradient norm curve match the exponential function. Although some of our assumptions may not be the real
case, our conclusions still match the read case quite well.

0 5 10 15 20 25 30

Layer Index

0

50

100

150

200

250

G
ra

d
ie

n
t

N
or

m

plainnet gradient norm

y = exp(logα · (30− x))

Figure 6: The actual gradient norm and the predicting gradient norm.

B. ImageNet Classification Experiments
We experiment in the ImageNet classification dataset. The dataset contains 1.28 M training images and 50k validation
images that are labeled with 1000 categories.

B.1. Implementation details.

All models are trained using SGD with weight decay 0.0001, momentum 0.9 and batch size 256. W adopt standard data
augmentations as in PyTorch (2020). The top-1 classification accuracy on the validation set is reported. All results are
averaged over 5 runs. We use cosine learning rate decay with a gradual warmup (Goyal et al., 2017) applied for the first 5
epochs. For ResNets, we use an initial learning rate of 0.1. For SeqNets, we use an initial learning rate of 0.1 for the last
classification layer, but need a smaller learning rate for the convolution layers since these is no skip connection. We grid
search the learning rate from {0.01, 0.02, 0.04, 0.08} for SeqNet34, and find that 0.04 works best. We use this learning
rate (0.04) to guide the learning rate selections for other SeqNets.

Revisiting Exploding Gradient

• The number of layers in SeqNet18 is half of SeqNet34, we choose the learning rate 0.08.

• The number of layers in SeqNet50 is twice of SeqNet34, we choose the learning rate 0.02.

• The number of layers in SeqNet101 is twice of SeqNet50, we initially choose the learning rate 0.01, but the convergence
is slow. We find the reason is that SeqNet101’s weights are not uniformly distributed. The number of building blocks for
the 4 stage of SeqNet34, SeqNet50 (also ResNet34 and ResNet50) are 3, 4, 6, 3 respectively. However, for SeqNet101,
they are 3, 4, 23, 3 respectively. The added 50 layers are all located in the third stage. We choose to keep learning rate

0.02 except for the third stage, and use a learning rate of 0.02× 6

23
for the third stage in SeqNet101. The new learning

rate strategy brings 0.4% accuracy improvement for SeqNet101.

B.2. Ablation Study.

Our baseline is SeqNet50, replacing ResNet50’s BottleNeck with SeqBottle, and trained with the orthogonal regularization.
Table 3 shows the following ablation studies.

Initialization We compare the three initialization methods discussed for the SeqNet module:

L-Init Randomly initialize R ∈ R
kd
2 ×d as orthogonal R⊤R = Id. Let W =

√
2

[
R
−R

]
and M = R⊤. (

√
2 is a

compensate for ReLU (He et al., 2015))

O-Init Randomly initialize R ∈ Rkd×d as orthogonal R⊤R = Id. Let W =
√
2R,M = W⊤.

R-Init Initialize the element W with i.i.d. normal distribution Wij ∼ N (0,
2

kd
). Let M = W⊤.

R-Init is the method in our main paper. As shown in Table 3 (a), R-Init is better than O-Init and R-Init, but with a
very limit margin, which supports our argument. Moreover, if we use two random matrices to initialize W and M in
y = MReLU(Wx) without no weight tying (the “looks linear” initialization proposed by Balduzzi et al. (2017)), the
network cannot reach a validation accuracy higher than 70%.

Basic Module As we analyse in Section 4, a bias before the ReLU activation is not necessary, i.e., y = W⊤ReLU(Wx).
However, adding a bias or a BatchNorm layer before the activation layer generally helps training. In Table 3 (b), we
test whether using no bias is reasonable, and find that using a bias or BatchNorm is slightly worse. However, adding a
BatchNorm layer slightly improve the performance of SeqNet101 by 0.1%. We think it is marginal thus not show this in
the table.

Position for 3-by-3 convolution As shown in Figure 3, we put the 3-by-3 convolution as the first layer in both SeqBasic and
SeqBottle. It would be interesting to see whether placing the 3-by-3 convolution somewhere would influence the model
performance. We consider two extra cases: 1) Second Layer: using 3-by-3 convolution as the second layer and 1-by-1
convolution for the other three layers. 2) Third layer: move the current third and fourth layer in front of the the 3-by-3
convolution, i.e., 1 × 1(64 → 256); 1 × 1(256 → 64); 3 × 3(64 → 128); 1 × 1(128 → 64). We find that putting 3-by-3
convolution as the second layer is not good since it will make 3-by-3 convolution away from activation function. However,
putting it as the third layer does not make much difference.

Table 3: Ablation Study on ImageNet with SeqNet50 backbone

(a) Initialization

Method Accuracy

R-Init 77.1%
O-Init 77.0%
L-Init 77.0%

(b) Bias before ReLU

Method Accuracy

No Bias 77.1%
Use Bias 77.0%
Use BatchNorm 76.8%

(c) Position for 3-by-3 conv

Method Accuracy

First layer 77.1%
Second layer 76.7%
Third Layer 77.0%

Revisiting Exploding Gradient

Orthogonal Regularization While the SeqNets alone are trainable, we find that a widely used orthogonal regularization
(Xiao et al., 2018; Bansal et al., 2018; Wang et al., 2020; Qi et al., 2020) can improve the performance a lot. For a weight
W ∈ RD×d, let Σ = W⊤W if D ≥ d, and Σ = WW⊤ if D < d. A regularization loss is added to the original loss
function for back propagation: n = min{d,D}, ℓ(W) = η∥ n

trace(Σ)
Σ− In∥2F

We further study how orthogonal regularization impact the training of SeqNet with different layers. As shown in 4,
although SeqNet itself is trainable, orthogonal regularization can provide significant improvement. The improvement is
much larger than the gain of orthogonal regularization on ResNets (Bansal et al., 2018), which may indicate unknown
different properties of SeqNets and ResNets.

#layers - OrthReg + OrthReg Improvement

34 73.7% 75.3% +1.6%
50 75.7% 77.1% +1.4%

101 75.6% 76.7% +1.1%

Table 4: Ablation on orthogonal regularization. Validation accuracies on ImageNet. Higher is better.

Tying Conv2 Tying Conv4 Accuracy

Yes Yes 76.7%
Yes No 77.1%
No No 76.9%

Table 5: Ablation on weight tying. SeqNet50 validation accuracies on ImageNet.
The last ablation study is about weight tying. At initialization, the weights between a ReLU activation are initialized
with the matrix (with a transpose difference). Whether tying (sharing) these weights remain a question. We name the
convolution layers in the SeqBottle as Conv1, 2, 3, and 4 from shallow to deep. Table 5 shows the results of tying two
1-by-1 convolution layers. Tying (or not tying) does not always indicate performance improvement.

B.3. Training dynamics of SeqNet and ResNets

0 20 40 60 80 100
Epoch

30

40

50

60

70

80

Tr
ai

n
ac

cu
ra

cy

ResNet50
SeqNet50

0 20 40 60 80 100
Epoch

30

40

50

60

70

80

Va
lid

at
io

n
ac

cu
ra

cy

ResNet50
SeqNet50

Figure 7: Training (left) and validation (right) accuracy(%) on ImageNet using 50-layer network

Figure 7 and Figure 8 show the training and validation curves of ResNets and the corresponding SeqNets. We can find that
SeqNets converge faster than ResNets at the very beginning, but converge slower after 10 epochs. Thus our learning rates
might be smaller than the optimal learning rates. The train accuracy gap between SeqNets and ResNets decreases in the
middle of training, showing that the loss landscape of SeqNets is in a good condition during training. However, the final
train accuracy of SeqNet50 is higher than ResNet50 while the final train accuracy of SeqNet101 is lower than ResNet101,
showing that SeqNet101 may still suffer from some uncertain model degradation. The validation accuracy of SeqNet101
is also lower than SeqNet50 and ResNet101.

Revisiting Exploding Gradient

0 20 40 60 80 100
Epoch

40

50

60

70

80

Tr
ai

n
ac

cu
ra

cy

ResNet101
SeqNet101

0 20 40 60 80 100
Epoch

30

40

50

60

70

80

Va
lid

at
io

n
ac

cu
ra

cy

ResNet101
SeqNet101

Figure 8: Training (left) and validation (right) accuracy(%) on ImageNet using 101-layer network

0 20 40 60 80 100
Epoch

30

40

50

60

70

80

Tr
ai

n
ac

cu
ra

cy

Skip-SeqNet50
SeqNet50

0 20 40 60 80 100
Epoch

30

40

50

60

70

80

Va
lid

at
io

n
ac

cu
ra

cy

Skip-SeqNet50
SeqNet50

Figure 9: Training (left) and validation (right) accuracy(%) on ImageNet using 50-layer network

Revisiting Exploding Gradient

One might be curious, what if we add skip connections back to SeqNets? We do the experiments on SeqNet50. We add
the ResNet-like skip connections to SeqNet50, and the validation accuracy is 77.9%, which improves SeqNet50 by 0.8%.
Figure 9 shows the training and validation curves of SeqNet50 and the skip-connected version, Skip-SeqNet50. Skip-
SeqNet50 is completely better than SeqNet50, showing that skip connections are still the most effective components for
training deep neural network.

C. Discussion
C.1. Decreasing variance in the VGG figure.

Figure 1 (right) in the main paper can be seem as a record of the exploding gradient magnitude. However the metric σ
decreases at layer 5, 9 and 13 (green circles), which means the derivative variance decreases at these layers.

The max-pooling layer (kernel size 2, stride 2) right before each of the mentioned layers could be the reason. Max-pooling
operation is nonlinear but does not apply to our previous analysis since it is not an element-wise operation. It takes as input
some neighbor pixels in the same feature map y = max(x1, x2, x3, x4), which are obviously not independent. Thus we
can only give an informal intuition with an imprecise assumption.

We assume x1, x2, x3, x4 are independent standard Gaussian distributions. Under this assumption, easy to know the

backward scaling ratio for the max pooling operation is
1

4
, and the forward scaling ratio is 0.492 by numerical simulation.

The backward scaling ratio is smaller than the forward scaling ratio, making the derivative variance decrease.

C.2. No previous observation of the exploding gradient phenomenon.

He et al. (2016) argue that the degradation problem of plain networks is unlikely to be caused by vanishing gradients by
verifying that the backward gradients exhibit healthy norms with BN. We argue that BatchNorm cannot solve, but conceal
this problem.

We consider one weight w in the the shallow layer. At initialization, the gradient of the weight g is exponentially large
∥g∥ = O(cL). After one step of gradient decent update w ← w− ηg, the weight norm is in the same order of the gradient
norm ∥w∥ = O(ηcL). In the next step forward, the variance of this layer’s output (also the input to the next BatchNorm
layer) also grows large: σ2 = O(η2c2L). Recall proposition 3.8, the BatchNorm layer will scale the variance of the
backward signals by 1/σ2, which canceled the exponentially large backward signals. Thus we are not likely to observe the
large gradient after the first several updates. Please note that the degradation problem still exists. The weight has a very
large norm while its gradient is normal, thus the convergence would be exponentially slow.

C.3. Exploding gradient in vanilla residual network

The vanilla residual network does not use special initialization for the last batch normalization layer, thus also has the
exploding gradient problem. This is known in the literature, and can also be concluded from our theory. The exploding
rate is smaller than plain network: Rb(R)/Rf (R) = (1 +Rb(F))/(1 + Rf (F)) < Rb(F)/Rf (F). We can observe this
by increasing network depth in the experiment of Figure 1 (left), as shown in Figure 10.

C.4. Non-centered input for ReLU

During training, the affine operator in the BatchNorm layer may learn a non-zero bias b, and the input to the next activation
layer is not zero-centered. If the bias is small, the inequality still holds if we can make some assumption on the neurons’
tail distribution:

Assumption C.1. Let x be the output of the normalization operator in the BatchNorm layer, and assumption 3.13

holds for x. Further assume there exists a function h defined on the real line such that |p(x+ b)− p(x)

b
| ≤ h(x) and∫ ∞

0

u2h(u)du <∞. Let b denote the bias of the affine operator in the BatchNorm layer thatO(b2) terms can be ignored.

assumption C.1 is mild: hidden neurons are generally considered to be bounded, which would satisfy assumption C.1. If
the bias is small, we still have:

Revisiting Exploding Gradient

1 5 9 13 17 21 25 29 33 37
Layer Index

0

200

400

600

800

1000

Gradient Norm for ResNet40 and PlainNet40
ResNet40
PlainNet40

1 5 9 13 17 21 25 29 33 37
Layer Index

2

4

6

8

10

12

14

Gradient Norm for ResNet40
ResNet40

Figure 10: The gradient norm of ResNet40 and PlainNet40.

Proposition C.2. Let y=x+ b be the output of the BatchNorm layer (also input to the next activation):

Var[σ(y)] ≤ E[σ′(y)2]− 1

4
E[|x|] +

(
1

2
E[|x|]− p(0)

)
b.

Further if |b| ≤ E[|x|]
4 |E[|x|]− 2p(0)| , from proposition C.2, we have Var[σ(y)] ≤ E[σ′(y)2]− 1

8
E[|x|].

D. Missing proofs in the main paper
Proof of Proposition 3.4 Note that the entries of x are independent and identically distributed, let Var[xi] = σ2 for all
i. Then Var[x] = σ2.

Var[yi] = Var[
∑
j

Wijxj] =
∑
j

W 2
ijVar[xj] = σ2

∑
j

W 2
ij .

Then Var[y] =
1

D

∑
i

Var[yi] =
σ2

D

∑
i

∑
j

W 2
ij =

∥W∥2F
D

σ2 =
∥W∥2F
D

Var[x]. The backward pass is similar.

Proof of Corollary 3.7 The backward derivative for the batch normalization layer is (following the notation in the main

paper):
∂ℓ

∂xi
=

1

σx
[
∂ℓ

∂yi
− yi

B

B∑
j=1

∂ℓ

∂yj
yj−

1

B

B∑
j=1

∂ℓ

∂yj
]. Refer to Ioffe and Szegedy (2015) for the proof of this result. Note

that
B∑
i=1

yi = 0, we have
B∑
i=1

∂ℓ

∂xi
= 0, which means the sample mean of the batch normalization layer input derivative is

0 and E
∂ℓ

∂x
= 0 where x is the input to the batch normalization layer.

Let y = f(x) be the previous layer of the last batch normalization layer, i.e., the output of f is the input of the last

batch normalization layer. We have E
[
∂ℓ

∂y

]
= 0 since y is the input to the batch normalization layer. Further E

[
∂ℓ
∂x

]
=

E
[
∂ℓ
∂yf

′(x)
]
= E

[
∂ℓ
∂y

]
E [f ′(x)] = 0 during assumption 2.

We can continue to prove for all layers before the last batch normalization recursively.

Revisiting Exploding Gradient

Proof of Proposition 3.8 Recall the backward for the batch normalization layer:
∂ℓ

∂xi
=

1

σx
[
∂ℓ

∂yi
− yi

B

B∑
j=1

∂ℓ

∂yj
yj −

1

B

B∑
j=1

∂ℓ

∂yj
] and

B∑
i=1

∂ℓ

∂xi
= 0, we have:

Var[
∂ℓ

∂x
] =

1

B

B∑
i=1

(
∂ℓ

∂xi

)2

=
1

Bσ2
x

B∑
i=1

(∂ℓ
∂yi
− 1

B

B∑
j=1

∂ℓ

∂yj
)− yi

B

B∑
j=1

∂ℓ

∂yj
yj

2

=
1

Bσ2
x

 B∑
i=1

(
∂ℓ

∂yi
− 1

B

B∑
j=1

∂ℓ

∂yj
)2 − 1

B
(

B∑
j=1

∂ℓ

∂yj
yj)

2


=

1

σ2
x

Var[
∂l

∂y
]− 1

B2
(

B∑
j=1

∂ℓ

∂yj
yj)

2


Let si =

∂ℓ

∂yi
/

√
Var[

∂l

∂y
], we have Var[

∂ℓ

∂x
] =

1

σ2
x

Var[
∂ℓ

∂y
](1 − 1

B2
(

B∑
j=1

siyi)
2) where si and yi are independent and

Esi = Eyi = 0,Es2i = Ey2i = 0. Let z =
1

B
(

B∑
j=1

siyi)
2. Expand the equation, we have E[z] = 1,E[z2] = 3+O(1

B), and

Var[z] ≈ 2. Thus the backward scaling ratio is Rb(B) =
1

σ2
(1− z

B
) where B is the batch size and z is a positive random

variable that Ez = 1,Var[z] = 2.

Please refer to Chernoff (1981) for the proof of proposition 3.

Proof of Proposition 3.14 We know Var[σ(x)] = E[σ2(x)] − (E[σ(x)])2. Since the distribution of x is symmetric

centered at zero, E[σ2(x)] =
1

2
E[x2] =

1

2
, E[σ′(x)2] = P (x > 0) =

1

2
, and E[σ(x)] =

1

2
E[|x|]. Thus Var[σ(x)] ≤

E[σ′(x)2]− 1

4
E[|x|].

Proof of Proposition 3.17 Consider a residual block y = x + F(x), Shao et al. (2020) prove that Var[y] = Var[x] +

Var[F(x)] +O(1
d
) where d is the dimension of x. Then the equation for forward pass is trivial given the definition. The

backward pass is proved similarly.

Proof of Proposition 4.1 The four ratios are all functions of the initialized weights. We use the weight distribution
to estimate the expectation of the ratios, which indicates the approximation of these ratios at different initialization time
following the Gaussian distribution. The proof sketch is to first derive the ratios as functions of the weights, and then do
some simple statistics to get the expectation. We only give the proofs of Rf (g) and Rb(g). The proofs of Rf (h) and Rb(h)
are similar but much simpler.

Proof of Rf (g): g(x) = W⊤ReLU(Wx) =
1

2
(W⊤Wx+W⊤|Wx|). Thus the second order momentum of g(x) is:

E[g(x)g(x)⊤] =
1

4
Ex

[
(W⊤Wx+W⊤|Wx|)(W⊤Wx+W⊤|Wx|)⊤

]
=

1

4
ExW

⊤Wxx⊤W⊤W +
1

4
ExW

⊤|Wxx⊤W⊤|W +
1

4
ExW

⊤|Wx|x⊤W⊤W +
1

4
ExW

⊤Wx|x⊤W⊤|W

=
1

4
ExW

⊤Wxx⊤W⊤W +
1

4
ExW

⊤|Wxx⊤W⊤|W

=
1

4
W⊤WW⊤W +

1

4
W⊤Ex

[
|Wxx⊤W⊤|

]
W

(2)

Revisiting Exploding Gradient

Since x ∼ N (0, 2/D), the last two terms of Cov[g(x)] is zero. Let M = Ex

[
|Wxx⊤W⊤|

]
and wi be the i-th row of

W , we have Mij = Ex|w⊤
i xw

⊤
j x|. If i = j, Mii = Ex|w⊤

i xw
⊤
i x| = Ex(w

⊤
i x)

2 = w⊤
i Exxx

⊤wi = w⊤
i wi.

Now we consider the case i ̸= j. Let u = (∥wi∥, 0, · · · , 0)⊤, there exists an orthogonal matrix R such that w⊤
i R = u⊤.

Let y = R⊤x,v = Rwj , we know y is also N (0, 1) and has has a one-one mapping with x. We have

Mij = Ex|w⊤
i RR⊤xw⊤

j RR⊤x| = Ex|u⊤yv⊤y| = Ey|u⊤yv⊤y| = ∥wi∥Ey

∣∣∣∣∣y1

d∑
k=1

vkyk

∣∣∣∣∣ .
The term in the expectation can be written into two terms: y1

d∑
k=1

vkyk = v1y
2
1 + y1

∑
k>1

vkyk. Recall that max{|a| −

|b|, |b| − |a|} ≤ |a+ b| ≤ |a|+ |b|, we have:

Ey

∣∣∣∣∣y1

d∑
k=1

vkyk

∣∣∣∣∣ ≤ Ey|v1y
2
1 |+ Ey|y1

∑
k>1

vkyk| = |v1|Ey|y2
1 |+ Ey|y1|Ey|

∑
k>1

vkyk|

= |v1|+
2

π

√∑
k>1

v2
k ≤ |v1|+

2

π
∥v∥

Ey

∣∣∣∣∣y1

d∑
k=1

vkyk

∣∣∣∣∣ ≥ −Ey|v1y
2
1 |+ Ey|y1

∑
k>1

vkyk| = −|v1|Ey|y2
1 |+ Ey|y1|Ey|

∑
k>1

vkyk|

= −|v1|+
2

π

√∑
k>1

v2
k ≥ −|v1|+

2

π

√√√√ d∑
k=1

v2
k −

2

π
|v1|(Pythagorean inequality)

Thus the expectation term is very close to
2

π
∥v∥ (also

2

π
∥wj∥):∣∣∣∣∣Ey|y1

d∑
k=1

vkyk| −
2

π
∥v∥

∣∣∣∣∣ ≤ 2|v1|.

We can write Ey|y1

d∑
k=1

vkyk| as
2

π
∥wj∥ + ϵj where ϵ2j ≤ c/D for some constant c with high probability, and Mij =

2

π
∥wi∥wj∥+ ϵij where ϵ2ij ≤ cd/D2 for some constant c with high probability.

Now we compute the trace of E[g(x)g(x)⊤]. First we have tr(W⊤WW⊤W) = ∥W⊤W ∥2F =

d∑
i=1

d∑
j=1

(
D∑

k=1

wkiwkj)
2.

The trace of the second term is

tr(W⊤MW) =

d∑
i=1

D∑
l=1

D∑
k=1

mklwkiwli

=

d∑
i=1

D∑
k=1

mkkw
2
ki +

d∑
i=1

∑
k ̸=l

mklwkiwli

=

d∑
i=1

D∑
k=1

∥wk∥2w2
ki +

d∑
i=1

∑
k ̸=l

(
2

π
∥wk∥∥wl∥+ ϵkl)wkiwli

=

d∑
i=1

D∑
k=1

(

d∑
j=1

w2
kj)w

2
ki +

d∑
i=1

∑
k ̸=l

(
2

π
∥wk∥∥wl∥+ ϵkl)wkiwli

Revisiting Exploding Gradient

Estimate it using the distribution of the weights.

EW tr(W⊤WW⊤W) = EW

d∑
i=1

d∑
j=1

(

D∑
k=1

wkiwkj)
2

= EW

d∑
i=1

(

D∑
k=1

w2
ki)

2 + EW

d∑
i̸=j

(

D∑
k=1

wkiwkj)
2

=

d∑
i=1

(
[EW (

D∑
k=1

w2
ki)]

2 + VarW (

D∑
k=1

w2
ki)]

)
+ d(d− 1)DVarW [wkiwkj]

= d(4 + 4/D) + d(d− 1)D · 4/D2 = 4d(1 + d/D)

Similarly, tr(W⊤MW) = 4d2/D.

tr(E[g(x)g(x)⊤]) =
1

4
tr[EW tr(W⊤WW⊤W) + tr(W⊤MW)] = d(1 + 2d/D)

Next we consider the trace of E[g(x)]E[g(x)]⊤. Since x ∼ N (0, Id),Wx ∼ N (0, [WW]⊤). Thus EReLU(Wx) =√
2

π
diag(WW⊤) and E[g(x)] =

√
2

π
W diag(WW⊤). The the trace of E[g(x)]E[g(x)]⊤ is give by:

E
2

π
tr[W diag(WW⊤)W⊤] = E

2

π

d∑
i=1

D∑
k=1

w2
ik

d∑
t=1

w2
kt =

2d2

Dπ

. The estimation of Rf (g) is:

ERf (g) =
1

d
[tr(E[g(x)g(x)⊤])− E[g(x)]E[g(x)]⊤] = 1 + 2d/D · (1− 1

π
).

Proof of Rb(g): Let z = Wx,a = ReLU(z),y = W⊤a. Let I(x) = (x > 0) be element-wise for vectors. We have
∂ℓ

∂x
= W⊤diag(I[z])W

∂ℓ

∂y
.

Since z (comes from x) and ∂ℓ
∂y (with zero mean) are independent, E[

∂ℓ

∂x
]=0,Cov[

∂ℓ

∂x
]=E[

∂ℓ

∂x

∂ℓ

∂x

⊤
].

Recall that
∂ℓ

∂y
∼ N (0, Id), Cov[

∂ℓ

∂x
] = E

[
W⊤diag(I[z])WW⊤diag(I[z])W

]
. Let δi(i ∈ [D]) be i.i.d. Bernoulli with

parameter p = 0.5 and Λ = diag(δ1, · · · , δD).

Recall Var[
∂ℓ

∂x
]=

1

d
trace(Cov[

∂ℓ

∂x
]) and Var[

∂ℓ

∂y
] = 1, we have

Rb(g)=Var[
∂ℓ

∂x
]/Var[

∂ℓ

∂y
]=

1

d
trace(EΛ

[
W⊤ΛWW⊤ΛW

]
).

Let wij be element i, j of W , we have:

Rb(f) =
1

d
EΛ

d∑
s=1

d∑
t=1

D∑
i=1

D∑
j=1

δiδjwsiwtiwtjwsj

=
1

2d

d∑
s=1

d∑
t=1

D∑
i=1

w2
siw

2
ti +

1

4d

d∑
s=1

d∑
t=1

∑
i ̸=j

wsiwtiwtjwsj .

Now we estimate the range of Rb(g) given the initialization wij ∼ N (0, 2/D). This is similar to that of Rf (g) and we

directly give the results: E [Rb(f)] = 1 +
2d

D
+

3

D
,Var [Rb(f)] <

8

D2
.

