
• At the end of each trial, the correct category was revealed and the subjects 
recorded the accuracy of their category guess. 
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• Advanced composition results allows analysts to adaptively select 
private algorithms to run while maintaining privacy [1, 2, 5]. 

• However, analysts cannot adaptively pick privacy parameters.
• Privacy Filters/Odometers allow analysts to adaptively choose 

privacy parameters to meet a desired privacy level.
• Existing filters only apply for special cases (e.g., probabilistic DP 

[3], Rényi DP [4]), and are looser than advanced composition.
• We eliminate the limitations by designing essentially tight filters 

and flexible odometers.

• The privacy loss of an algorithm  acting on input  vs. input  is 
the random variable  where  and 

 are the densities for  and  respectively.
• An algorithm is probabilistically differentially private (pDP) if, for any 

neighboring datasets, the privacy loss is small with high probability. 

• The nth algorithm in a sequence is conditionally pDP if, 
conditioned on the outputs of the previous  algorithms, the 
nth algorithm is pDP, i.e.

• Likewise, the nth algorithm in a sequence is conditionally DP if,

A x x′ 

L(x, x′ ) := log (px(A(x))/px′ 
(A(x))) px

px′ 
A(x) A(x′ )

n − 1

Filter Theorem (Informal): Suppose we have a sequence of 
algorithms which are conditionally -pDP,  where  and are 
adaptively chosen. Fix , . Define the times  and 

 by

Then, the time  is an -privacy filter.

Fully Adaptive Theorem (informal): We can get the same 
guarantee as the Filter Theorem, replacing the assumption of 
conditional -pDP with the weaker assumption of conditional 

-DP.
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τ := T1 ∧ T2 (ϵ, δ)
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General Odometers via Stitching

A comparison of the original odometer found in [3] with our 
odometers. Here, we compose 100 algorithms, all with the same 
privacy parameters of (0.1, 0)-DP.  Both the mixture odometer and 
the stitched odometer significantly improve over the original 
odometer, optimizing tightness at different points in time.

Privacy Filters and Odometers

sup
x∼x′ 

ℙ (L(x, x′ ) > ϵ) ≤ δ

sup
x∼x′ 

ℙ (Ln(x, x′ ) > ϵn ∣ A1:n−1(x)) ≤ δ

ℙ (An(x) ∈ B ∣ A1:n−1(x)) ≤ eϵℙ (An(x′ ) ∈ B ∣ A1:n−1(x)) + δ, ∀x ∼ x′ , ∀G

• Filters: An -privacy filter is a data-dependent stopping 
rule  such that the mechanism which releases the outputs of the 
first  algorithms is -DP, i.e. 

• Odometers: A 𝛅-privacy odometer is a sequence of upper 
bounds  satisfying:
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Stitched Odometer (Informal): Given a sequence of 
algorithms which are conditionally -pDP and  

,  the sequence  given by

is a -privacy odometer.

Conjugate Mixture Odometer (Informal): Given the 
same setup as above, we have that  given by

is a -privacy odometer for any  > 0.
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ℙ (∃n ∈ ℕ : Ln(x, x′ ) > Un) ≤ δ

ℙ (A1:τ(x) ∈ B) ≤ eϵℙ (A1:τ(x′ ) ∈ B) + δ, ∀x ∼ x′ , ∀G
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T2 := inf n ∈ ℕ : δ′ ′ ≤ ∑
m≤n+1

δm .
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