
Bringing Engineering Rigor to Deep Learning

Kexin Pei
kpei@cs.columbia.edu

Columbia University

Shiqi Wang
tcwangshiqi@cs.columbia.edu

Columbia University

Yuchi Tian
yuchi.tian@columbia.edu

Columbia University

Justin Whitehouse
jaw2228@cs.columbia.edu

Columbia University

Carl Vondrick
vondrick@cs.columbia.edu

Columbia University

Yinzhi Cao
yinzhi.cao@jhu.edu

Johns Hopkins University

Baishakhi Ray
rayb@cs.columbia.edu

Columbia University

Suman Jana
suman@cs.columbia.edu

Columbia University

Junfeng Yang
junfeng@cs.columbia.edu

Columbia University

ABSTRACT

Deep learning (DL) systems are increasingly deployed in

safety- and security-critical domains including autonomous

driving, robotics, and malware detection, where the correct-

ness and predictability of a system on corner-case inputs

are of great importance. Unfortunately, the common prac-

tice to validating a deep neural network (DNN) – measuring

overall accuracy on a randomly selected test set – is not de-

signed to surface corner-case errors. As recent work shows,

even DNNs with state-of-the-art accuracy are easily fooled by

human-imperceptible, adversarial perturbations to the inputs.

Questions such as how to test corner-case behaviors more

thoroughly and whether all adversarial samples have been

found remain unanswered.

In the last few years, we have been working on bringing

more engineering rigor into deep learning. Towards this goal,

we have built five systems to test DNNs more thoroughly and

verify the absence of adversarial samples for given datasets.

These systems check a broad spectrum of properties (e.g.,

rotating an image should never change its classification) and

find thousands of error-inducing samples for popular DNNs

in critical domains (e.g., ImageNet, autonomous driving, and

malware detection). Our DNN verifiers are also orders of

magnitude (e.g., 5,000×) faster than similar tools. This article

overviews our systems and discusses three open research

challenges to hopefully inspire more future research towards

testing and verifying DNNs.

1 INTRODUCTION

Deep Learning (DL) has made tremendous progress over the

past few years, achieving or surpassing human-level perfor-

mance for a diverse set of tasks including visual recogni-

tion [37, 46, 69], speech recognition [39, 90], and playing

games [59, 68]. These advances have led to widespread adop-

tion and deployment of DL in security- and safety-critical

systems such as self-driving cars [6, 13, 15], malware detec-

tion [65, 92], and aircraft collision avoidance systems [43].

This wide adoption of DL presents new challenges as the

predictability and correctness of such systems are of crucial

importance. Unfortunately, DL systems, despite their impres-

sive capabilities, often demonstrate unexpected or incorrect

behaviors for several reasons such as biased training data,

overfitting, and underfitting of the models. In safety- and

security-critical settings, such incorrect behaviors can lead

to disastrous consequences such as a fatal collision of a self-

driving car. For example, a Google self-driving car recently

crashed into a bus partly because it expected the bus to yield

under a set of rare conditions, but the bus did not [33]. In

2016, a Tesla car in autopilot crashed into a trailer partly be-

cause the autopilot system failed to recognize the trailer as an

obstacle due to its “white color against a brightly lit sky” and

the “high ride height” [78]. A similar incident happened in

2019 [79]. These disasters call for more thorough validation

of DL systems against corner cases.

Unfortunately, prior approaches to validating DL systems

are not designed to thoroughly surface corner-case errors.

A common practice is to measure a DL system’s prediction

accuracy on a randomly selected test set, which often cov-

ers few or none corner cases. One can gather and label as

much real-world data as possible [1, 5], but given the enor-

mous input space, such blind gathering risks at once wasting

much manual effort and missing many corner cases. Unsur-

prisingly, recent work on adversarial DL [32, 56, 77] showed

that human-imperceptible perturbations easily fooled today’s

most accurate DL systems to the inputs. Adversarial DL itself,

however, is designed to find only the most effortless adver-

sarial samples quickly. It limits the perturbations to minimal

noise, not realistic transformations such as light condition

change [62]. Nor does it try to find as many adversarial sam-

ples as possible. Questions such as how to find more corner

59

cases under diverse transformations and whether all corner

cases for a given dataset have been found remain open.

This challenge of thoroughly checking DL systems sounds

extremely familiar as researchers have been working towards

the same goal for traditional software. Unfortunately, the

plethora of testing and verification tools created for traditional

software cannot directly apply to DL because the two pro-

gramming paradigms are drastically different. In traditional

software engineering, developers translate the decision logic

in their brains into program statements, each of which grad-

ually progresses toward a final goal. In DL engineering, the

decision logic is automatically extracted from a vast dataset

and embedded in millions of opaque weight parameters. Con-

sider statement coverage, the predominant empirical metric

to quantify testing thoroughness of traditional software. Such

traditional software testing metric is meaningless in a DL sys-

tem as any single input can exercise all statements executed

by DL inference.

In the last three years, we have been building new testing

and verification tools to bring more rigor to DL engineering.

Given the challenges in specifying a full functional spec of

a deep neural network (DNN) as it would amount to spec-

ifying that for human brains, we design our tools to check

transformation-invariant properties such as “slight light con-

dition change must not change the image class." They explore

design tradeoffs between scalability (whether the tool can

scale to large DNNs), completeness (whether the tool can

find all property violations for a given dataset), and domain

knowledge needed (whether the tool requires access to the

DNN internals). We briefly describe each system below.

• DeepXplore is a whitebox testing tool that defines the

first test coverage metric for DNNs we call neuron

coverage – the percentage of activated neurons by a test

set, and uses this metric to guide the generation of new

inputs to increase coverage [61].

• DeepTest leverages neuron coverage to test autonomous-

driving systems by adding fogs or rains to road scenes [80].

• VeriVis is a blackbox verification tool that exhaustively

checks a computer vision system correctly handles cer-

tain transformations of an image (e.g., all rotations

within five degrees have the same correct image la-

bel) [62].

• ReluVal is a whitebox verification tool that, given an

input range, leverages interval arithmetic and symbolic

analysis to compute rigorous DNN output bounds for

property verification [86]. It can prove the absence of

adversarial examples or find all input sub-intervals that

may contain adversarial examples.

• Neurify improves upon ReluVal and leverages what we

call linear relaxation to tighten the DNN output bounds

further and reduce false positives [85].

A key additional benefit of exhaustive testing and verifi-

cation is that our tools can serve as an objective, rigorous

benchmark for many DNN techniques. For instance, any tech-

nique purporting to make DNNs robust against adversarial

attacks should not be evaluated only on the attacks designed to

find adversarial samples quickly. Instead, they should be eval-

uated on the exhaustive set of attack samples that our tools,

especially the verifiers, generate. Experiments using tools did

reveal such issues in prior robustness training techniques.

Our tools have found thousands of corner-case errors over

a broad spectrum of DL systems including ImageNet-scale

image classifiers, object detectors, malware detectors, self-

driving car systems, and cloud computer vision systems built

by Google, Amazon, IBM, and Microsoft. They also verified

some of these DL systems on popular datasets.

Our verification tools outperform other tools of the same

kind by orders of magnitude (5,000× on average). We are

encouraged to see that the concepts and algorithms in our

tools start to gain adoption by other research groups and the

industry [14, 27, 35, 49–52, 58, 74, 89, 93, 94].

This article overviews our tools because we are most fa-

miliar with them; we are by no means the only group in this

emerging area of testing and verifying DL. In fact, multiple

groups have also begun working in this area [28, 31, 44, 55,

70, 71, 81, 88]. We hope our article will help inspire more

researchers to join us in tackling this important and exciting

challenge of robust DL.

2 THE PROPERTIES TO CHECK

We design our tools to check transformation-invariant prop-

erties: given input x and transformation T such as lighting

condition change, a DNN’s prediction on the transformed

sample T(x) should be similar to that on the original sample

x , in most cases the same label. (It is conceivable to relax

the property and include a set of related labels, though our

systems did not use this relaxed form.) If the DNN outputs a

real number such as the driving angle in autonomous driving,

the difference between the predictions on the two samples

should be smaller than a given threshold.

Our rationale behind this design choice is that the decision

logic contained in a DNN is often opaque even to its design-

ers. For instance, creating a complete specification for the

correct behavior of a self-driving car under different driving

conditions essentially equals recreating the logic of a human

driver, computationally infeasible and not practical. In addi-

tion, the nature of optimization means that there are multiple

acceptable ways through different internal states for satisfy-

ing the final goal. For instance, a car can be safely driven

on the road with many slightly different but similar steering

60

Table 1: Transformations supported by our tools to check

safety properties. The ✓mark indicates that the tool sup-

ports the transformation, and ✗otherwise.

Transformation

T

D
ee

pX
pl

or
e

D
ee

pT
es

t

V
er

iV
is

R
el

uV
al

N
eu

ri
fy

L-norm ✗ ✗ ✗ ✓ ✓

Smoothing ✗ ✓ ✓ ✗ ✗

Contrast ✗ ✓ ✓ ✗ ✓

Brightening ✓ ✓ ✓ ✗ ✓

Occlusion ✓ ✓ ✓ ✗ ✗

Affine ✓ ✓ ✓ ✗ ✓

Weather ✗ ✓ ✓ ✗ ✗

angles. Therefore, we conjecture that DL testing and verifica-

tion should focus on partial, input-output correctness rather

than complete functional correctness.

Although simple, transformation-invariant properties can

express crucial safety requirements of a wide range of DL

systems. For example, they can ensure that the recognized

phrases/sentences of a speech recognition system will not

change under different background noises. Malware detec-

tion systems should not change their classifications from

malware to benign due to varying types of code obfusca-

tion/transformation techniques that do not affect malicious

functionality [91].

One caveat is that, like all other DL testing and verification

tools, our tools check properties on the individual, not all pos-

sible, inputs. A fundamental assumption in DL (and machine

learning in general) is that the decision logic learned from

a representative dataset will generalize to all data produced

by the same underlying distribution as the dataset. Therefore,

the guarantees achieved on individual inputs should hopefully

also generalize.

Table 1 summarizes the transformations supported by our

tools to check safety properties. We consider seven general

categories of transformation functions, much more complete

and realistic than adding slight noise as in prior adversarial

DL. Many of these transformations are widely used by com-

puter vision researchers to emulate the naturally occurring

distortions and deformations and motivate the new design

of model architectures to be invariant against such transfor-

mations [17, 23, 87]. The first category of transformation is

more general that computer vision. It covers domains such

as malware detection or aircraft collision avoidance. For in-

stance, changing the number of authors of a malicious PDF

file should not change its classification. We describe each

transformation category in the following.

L-norm bounded perturbation. Testing and verifying L-

norm based properties includes perturbing the input x into

x ′
= T(x) so that Lp (x

′−x), the distance between x and x ′, is

bounded a user-defined value. Our tools support L1-norm or

L∞-norm. This property category is widely used in adversarial

testing of image classifiers [32], malware detectors [61], self-

driving cars [61, 62, 80, 85] and aircraft collision avoidance

systems [44, 85, 86].

Smoothing. This transformation emulates the blurring ef-

fect that may be encountered in different scenarios, such as

autonomous driving or face authentication. It is part of the

convolution-based transformations which apply a convolution

kernel on the input image and produce the output images

such that each pixel values are determined by its local neigh-

bors and the corresponding kernel weights. In particular, the

smoothing transformations we consider include the average

blurring, median blurring, erosion, and dilation, which com-

pute the average, median, minimum, and maximum of the

pixel values within the kernel, respectively, and replace the

center pixel value of the kernel with the result of the compu-

tation.

Contrast, Brightening, and Occlusion. These transforma-

tions emulate the lighting effect, variations of camera config-

urations (in rendering visual inputs), and occlusions by unex-

pected objects in front of the camera. Specifically, changing

the contrast or brightness of a visual input involves multi-

plying or adding the same constant c for each pixel values.

Adding occlusions is straightforward: defining a patch using

another image with a smaller size and overlaying it in the

original image.

Affine transformation. Affine transformations emulate the

potential distortions of the image that may happen in the real

world. They operate on the coordinates of pixels. In partic-

ular, this category includes five operations: rotation, shear,

scale, translation, and reflection. All the operations include

multiplying with the matrix of the pixel coordinates with a 3-

by-3 affine transformation matrix. We refer interested readers

to [62, 80] for a detailed description of such transformations.

Weather. Finally, it is important to check whether a model,

especially those working with visual inputs in the wild (e.g.,

autonomous driving and collision avoidance), is robust against

different weather conditions. However, it is challenging to

mathematically represent weather conditions without making

strong assumptions. To emulate such transformations, we

employ a simple patch image such as rain or fog effect and

directly overlay it on the original image. There exist more

advanced techniques using the generative adversarial network

(GAN) [48]. We discuss this in our future research problem

in Section 5.

61

3 THE TOOLS

This section overviews the five tools we have built, discussing

each’s key techniques and related work. All are open sourced.

3.1 DeepXplore

DeepXplore is the first (to the best of our knowledge) sys-

tematic white-box testing system for DNNs. It has two key

techniques. First, it defines neuron coverage as a new metric

to measure the test coverage of DNNs. The intuition is that

the neurons in a DNN are for recognizing features in input,

with earlier layers recognizing lower-level features and later

layers higher-level features. Thus, the neurons activated by a

test input serves as a good indicator of the decision logic exer-

cised by the test. Neuron coverage is analogous to statement

coverage, the empirical test coverage metric for traditional

software.

Second, given an input, DeepXplore uses neuron cover-

age to guide the generation of new inputs that (1) increase

neuron coverage and (2) are realistic transformations of the

given input. The basic idea works as follows. To increase

neuron coverage, DeepXplore computes a change to the in-

put that maximizes a particular neuron’s activation. Since

DNNs are differentiable, DeepXplore leverages gradient de-

scent to compute this input change. However, this greedily

computed change is not necessarily a realistic transforma-

tion of the input. For instance, it may alter the pixel values

by different amounts when the transformation we wanted is

brightening, which requires that all pixel values change by

the same amount. DeepXplore thus revises the greedy change

based on these constraints, computing a new input that can

indeed be a realistic transformation of the given input.

Many follow-up projects improved different aspects of

DeepXplore, such as the coverage metric [14, 49, 58, 89], the

application domains and properties [27, 52, 80, 93, 94], the

test generation algorithm [35, 50, 51, 74].

3.2 DeepTest

DeepTest extends the coverage guided training developed

in DeepXplore in testing autonomous driving DNNs. It sup-

ports a much broader set of transformations, including dif-

ferent weather conditions. Some of them are not differen-

tiable, so gradient descent is not directly applicable. DeepTest

proposes neuron coverage guided greedy search to generate

error-inducing inputs and maximize neuron coverage. In this

greedy algorithm, different transformations are combined,

and those transformations that can successfully increase the

neuron coverage will be recorded and prioritized while more

images are synthesized.

DeepTest also leverages metamorphic relations to identify

erroneous behaviours. Intuitively, the steering angle of a self-

driving cars on synthesized inputs should not differ much

from the steering angle on original inputs. However, there is

no one true steering angle given each input for an autonomous

car. For examples, small variations of steering angles can still

be tolerated by cars. Therefore, a tighter metamorphic relation

will result in more false positives. To strike a balance between

false positives and false negatives, the following metamorphic

relations are defined. The predicted labels of original images

are {θo1,θo2,,θon}. The predicted labels of synthesized

images are {θt1,θt2,,θtn}. The respective manual labels

are ({θ̂1, θ̂2,, θ̂n}). The metamorphic relation are defined as

(θ̂i − θt i)
2 ≤ λ MSEor iд . while MSEor iд =

1

n

∑n
i=1(θ̂i − θoi)

2.

λ is a parameter used for making trade-off between false

positives and false negatives.

3.3 VeriVis

Despite finding thousands of corner-case errors, our testing

tools cannot guarantee that all errors are found or there are no

errors for a given input and transformation. This limitation is

analogous to the testing of traditional software.

To provider stronger guarantees, we build VeriVis, a black-

box verification tool for computer vision systems that can

fully verify a DNN against a given image and a supported

transformation (Section 2). For instance, it can verify however

one rotates an image within five degrees, the resultant images

all have the same label as the given image.

A difficult challenge is that the parameter of a transforma-

tion is often continuous and can be an arbitrary real number,

such as the rotation degree which can be 1, 0.1, 0.01, etc. How

to exhaustively verify a model against the infinitely many pos-

sible transformed inputs? Fortunately, our key insight is that

the image space itself is discrete because the pixel values are

integers from 0–255 and coordinates are integers bounded

by the image size. Leveraging this insight, VeriVis reduces

the continuous, infinite transformation parameter space into a

finite number – polynomial to the image size – of parameter

values. For instance, up to n3 (n = w ·h is the image size) num-

ber of rotation degrees can provably cover all possible rotated

images. This technique is analogous to the state-space reduc-

tion in model checking [12, 20, 30] and helps DeepXplore

avoid redundantly checking many equivalent inputs.

3.4 ReluVal

There are two challenges of whichVeriVis falls short. First,

many safety-critical DNNs work in continuous input and

output space. For instance, the unmanned aircraft collision

avoidance system X (ACAS Xu), which uses DNNs to predict

the best actions such as "90-degree left" according to the

distance, speed, and approaching angle of an intruder plane

in the vicinity. NASA and FAA [2, 53] successfully tested it

and is on schedule to install it in over 30,000 passengers and

cargo aircraft worldwide [57] and US Navy’s fleets [7]. It is

62

thus paramount to guarantee that ACAS Xu predicts robust

actions for given input ranges. Second, a discrete space can

still be too large to check exhaustively. For instance, a 28-by-

28 MNIST hand-written digit data [47] with L∞ = 1 bounded

perturbation can have up to 2
784 number of concrete images

to check.

We build ReluVal to address these difficult challenges. It

focuses on verifying properties of the following form: a DNN

never violates any safety property (e.g., , no collisions) for

any (maliciously fed) values in an input range (e.g., , between

0 and 500 mph for the intruder speed). Mechanically, given

an input range X , ReluVal propagates it through the layers

of a DNN and computes a sound overapproximation of the

output bound Y leveraging a classic static analysis technique

called abstraction interpretation [25]. It does so by executing

every operator of the DNN abstractly in the interval domain

leveraging interval arithmetic [63]. If Y contains no property

violations, ReluVal has soundly verified that the DNN has no

violations on X .

A key challenge in ReluVal is the inherent overestima-

tion caused by input dependencies [26, 63, 86] when interval

arithmetic is applied to complex functions. Specifically, the

operands of each hidden neuron depend on the same input

to the DNN, but interval arithmetic assumes that they are

independent and may thus compute an output range much

larger than the true range. For instance, consider a simplified

neural network in which input x is fed to two neurons that

compute 2x and −x respectively, and the intermediate outputs

are summed to generate the final output f (x) = 2x − x . If

the input range of x is [0, 1], the true output range of f (x) is

[0, 1]. However, naive interval arithmetic will compute the

range of f (x) as [0, 2] − [0, 1] = [−1, 2], introducing a huge

overestimation error.

Much of our research effort in ReluVal focuses on mitigat-

ing this challenge; here we describe two effective techniques

to tighten output bounds. The first is symbolic interval, similar

to symbolic execution for traditional software [16, 45, 66, 67].

In particular, ReluVal tracks the intermediate computations

using not only the intervals but also the symbolic values when-

ever possible. In the preceding example, ReluVal tracks the

intermediate outputs symbolically ([2x , 2x] and [−x ,−x] re-

spectively) to compute the range of the final output as [x ,x].

When propagating symbolic bound constraints across a DNN,

ReluVal correctly handles non-linear functions such as ReLU

(max(x , 0)), one of the most common neuron activation func-

tions, and calculates proper symbolic upper and lower bounds.

The second is iterative interval refinement. When the out-

put range of the DNN is too large to be conclusive, ReluVal

iteratively bisects the input range and repeats the range prop-

agation on the smaller input ranges. This technique is in a

spirit similar to abstraction refinement [11, 38]. Mathemati-

cally, we prove that interval refinement on practical DNNs

always converges in finite steps.

Compared to the state-of-art DNN verifier Reluplex which

leverages SMT and linear programming solvers, ReluVal is

on average over 200× faster. In addition, ReluVal is amenable

to massive parallelization so that the speedup could be much

bigger compared hard-to-parallelize SMT solvers. Concurrent

to ReluVal, other DNN verifiers [28, 81, 88] have also been

developed. To the best of our knowledge, ReluVal is the only

one that scales to DNNs with tens of thousands of neurons.

3.5 Neurify

We build Neurify to address two challenges in ReluVal. Con-

sider ReLU (x) =max(x , 0). When the symbolic input interval

may span 0, ReluVal concertizes the output interval to [0,u]

where u is the concrete upper bound of x , shown in Fig-

ure 1(a). It does so to avoid symbolic reasoning of both linear

pieces of the ReLU, which may easily explode considering

the large number of ReLU nodes in a DNN. However, this

concretization method eliminates any symbolic dependencies

tracked. Second, ReluVal bisects the DNN input interval to

refine the DNN output bound, but doing so at the DNN in-

put is not efficient or direct because overestimation happens

actually at internal ReLU nodes.

Neurify solves these challenges using two techniques. First,

instead of concretizing the output interval of an overestimated

node to [0,u), Neurify uses symbolic interval relaxation to

bound the output as shown in Figure 1(b), simultaneously

simplifying the symbolic constraints to avoid explosion while

retaining more accurate dependencies. This technique is simi-

lar to linear relaxation in [88], but Neurify adapts it to repre-

sent the bounds symbolically. Second, Neurify splits directly

at an overestimated node and produces two sets of linear equa-

tions, one covering the case when the node input is smaller

than or equal to 0, the other the node input is greater than 0.

Each set of linear equations is then solved efficiently using

off-the-shell LP solvers.

These techniques cut down overestimation errors by up to

59.64% compared to ReluVal. As a result, Neurify is over

20× faster than ReluVal and 5,000× faster than Reluplex.

4 A TASTE OF THE RESULTS

We evaluate our comprehensive toolset on a wide range of ap-

plications including the safety-critical domains as well as com-

mon benchmarks. These include (1) 12 ImageNet classifica-

tion models [18, 37, 40, 41, 69, 75, 76, 95]; (2) 6 self-driving

systems such as Nvidia’s DAVE2 [3, 4, 10, 15, 21, 22, 83]; (3)

5 online commercial vision APIs [8, 19, 34, 42, 54] built by

the largest companies including Google, Microsoft, Amazon,

and IBM; (4) 4 handwritten digit classification models [47];

63

�

�✁
✂

✄☎✆ ✝☎✞✟✠ ✡☛☞✡✌✠✍✞✎☎✞☛☞

�

�✁
✏

✑

� ✒ ✓

� ✔ ✕

✑ ✂✏

✖ ✗
✘

✘ ✙ ✚
✛✜

✖ ✢
✘

✘ ✙ ✚
✄✛✜ ✙ ✚✆

✄✣✆ ✤✥✦✣☛✧✞✡ ✧✞☞✠☎✌ ✌✠✧☎★☎✍✞☛☞

Figure 1: Subfigure (a) shows how ReluVal concretizes

the output interval of a ReLU when its input spans 0, and

(b) how Neurify uses symbolic linear relaxation to sim-

plify constraints while retaining dependencies.

Turn right (Spurious) Move forward

No pedestrian (Spurious) Pedestrian detected

Figure 2: The right shows error-inducing inputs gener-

ated from the original inputs (left). The properties and

models under test are (from top to bottom): blurring on

Rambo, brightening on Faster-RCNN Inception-V2.

(5) 42 models in aircraft collision avoidance systems (ACAX

XU) [44]; and (6) 6 malware detectors for Android and PDF

files [9, 24, 36, 60, 72, 73, 82, 84].

As our extensive evaluation on these datasets and systems

shows, our tools effectively found thousands of error-inducing

inputs even for models with state-of-the-art accuracy. They

also verified the absence of errors for up to 32% of the im-

ages ImageNet dataset are robust against transformations de-

scribed in Section 2. Figure 2 presents some interesting errors

found. The upper row shows that Rambo [22], Top-ranked

self-driving models in Udacity challenge [3, 4, 22] is not

robust against blurring effect. The lower row shows that state-

of-the-art object detection model – faster RCNN [64] detects

spurious pedestrian when the lighting condition changes. Be-

sides images, our tools also found errors in non-visual DNNs

such as malware detectors [60, 72]. For instance, changing

three attributes of a malicious PDF file – size from 1 to 34,

number of actions from 0 to 21, and number of font objects

from 1 to 20 – causes the malware detector to classify it as

benign.

5 CONCLUSIONS AND OPEN

CHALLENGES

In this article, we reviewed the tools and core techniques we

have developed in the last three years towards rigorous testing

and verification of DL systems. Although the initial results

are auspicious, several difficult open challenges remain to be

addressed.

First, as discussed in Section 2, all current DNN verifica-

tion tools focus on verifying properties on a limited set of

samples with the hope that the guarantees achieved on indi-

vidual samples generalize to unseen samples. We believe this

fundamental question requires making certain probabilistic

assumptions on the distributions of the dataset (i.e., the dis-

tribution of available data is the same with those unseen) –

the same underlying assumption for why machine learning

generalizes. The next concrete research question is how we

can adapt existing specific testing and verification techniques

(e.g., interval analysis, mixed-integer programming) on rea-

soning distributions of inputs.

Second, the properties and specifications considered so far

are largely “syntactic" such as changing the lighting effect

should not change an image’s semantics. How can we support

verification of richer properties and semantic transformations

such as "changing the season from summer to winter?"

Third, although our tools support many operations (e.g.,

convolutions and ReLUs) in DNNs, they cannot handle batch

normalization or other activation functions such as Sigmoid [29].

How to define reasonable coverage metric or compute inter-

vals or sound overapproximation for these operations?

These open research questions are by no means a complete

list in this exciting new research area. For instance, robust

training is another exciting direction that leverages the errors

found to train more robust DNNs. We hope our initial research

findings and insights introduced in this article helps shed light

on these important topics and inspire more research effort

towards reliable DL.

64

6 ACKNOWLEDGEMENTS

We thank everyone who helped with the work [61, 62, 80,

85, 86] summarized here. It was sponsored in part by NSF

grants CNS-18-54000, CNS-16-18771, CNS-16-17670, CNS-

15-63843, and CNS-15-64055; ONR grants N00014-17-1-

2010, N00014-16-1-2263, and N00014-17-1-2788; faculty

fellowships from Google, DiDi, and J.P. Morgan; and Amazon

Cloud Credits for Research. Opinions, findings, conclusions,

or recommendations expressed herein are those of the authors,

and do not necessarily reflect those of the US Governments.

REFERENCES
[1] 2010. ImageNet crowdsourcing, benchmarking & other cool things.

http://www.image-net.org/papers/ImageNet_2010.pdf.

[2] 2015. NASA, FAA, Industry Conduct Initial Sense-and-Avoid

Test. https://www.nasa.gov/centers/armstrong/Features/acas_xu_paves_

the_way.html.

[3] 2016. Chauffeur model. https://github.com/udacity/self-driving-car/

tree/master/steering-models/community-models/chauffeur.

[4] 2016. Epoch model. https://github.com/udacity/self-driving-car/tree/

master/steering-models/community-models/cg23.

[5] 2016. Report on autonomous mode disengagements for waymo

self-driving vehicles in california. https://www.dmv.ca.gov/

portal/wcm/connect/946b3502-c959-4e3b-b119-91319c27788f/

GoogleAutoWaymo_disengage_report_2016.pdf?MOD=AJPERES.

[6] 2017. Baidu Apollo Autonomous Driving Platform. https://github.com/

ApolloAuto/apollo.

[7] 2018. NAVAIR Plans to Install ACAS Xu on MQ-

4C Fleet. https://www.flightglobal.com/news/articles/

navair-plans-to-install-acas-xu-on-mq-4c-fleet-444989/.

[8] amazon [n. d.]. Amazon Rekognition, deep learning-based image

recognition search, verify, and organize millions of images. https:

//aws.amazon.com/rekognition/.

[9] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon,

Konrad Rieck, and CERT Siemens. 2014. DREBIN: Effective and

Explainable Detection of Android Malware in Your Pocket.. In Pro-

ceedings of the 21st Annual Network and Distributed System Security

Symposium.

[10] autopilot:dave 2016. Nvidia-Autopilot-Keras. https://github.com/

0bserver07/Nvidia-Autopilot-Keras.

[11] Thomas Ball and Sriram K Rajamani. 2002. The S LAM project: de-

bugging system software via static analysis. In ACM SIGPLAN Notices,

Vol. 37. ACM, 1–3.

[12] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu.

1999. Symbolic model checking without BDDs. In International con-

ference on tools and algorithms for the construction and analysis of

systems. Springer, 193–207.

[13] Cara Bloom, Joshua Tan, Javed Ramjohn, and Lujo Bauer. 2017. Self-

driving cars and data collection: Privacy perceptions of networked

autonomous vehicles. In Symposium on Usable Privacy and Security

(SOUPS).

[14] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2017.

Coverage-based greybox fuzzing as markov chain. IEEE Transactions

on Software Engineering (2017).

[15] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard

Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Mon-

fort, Urs Muller, Jiakai Zhang, et al. 2016. End to end learning for

self-driving cars. arXiv preprint arXiv:1604.07316 (2016).

[16] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE:

Unassisted and Automatic Generation of High-Coverage Tests for Com-

plex Systems Programs.. In OSDI, Vol. 8. 209–224.

[17] Gong Cheng, Peicheng Zhou, and Junwei Han. 2016. RIFD-CNN:

Rotation-Invariant and Fisher Discriminative Convolutional Neural

Networks for Object Detection. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR).

[18] François Chollet. 2016. Xception: Deep Learning with Depthwise

Separable Convolutions. arXiv preprint arXiv:1610.02357 (2016).

[19] clarifai 2013. Clarifai API: Large Scale Visual Recognition. https:

//developer.clarifai.com/models/general-image-recognition-model/

aaa03c23b3724a16a56b629203edc62c.

[20] Edmund M Clarke, Orna Grumberg, Marius Minea, and Doron Peled.

1999. State space reduction using partial order techniques. International

Journal on Software Tools for Technology Transfer 2, 3 (1999), 279–

287.

[21] clone:dave 2016. Behavioral cloning: End-to-end learning for self-

driving cars. https://github.com/navoshta/behavioral-cloning.

[22] clone:dave 2017. Rambo model for Udacity self-driving car

challenge 2. https://github.com/udacity/self-driving-car/tree/master/

steering-models/community-models/rambo.

[23] Taco Cohen and Max Welling. 2016. Group equivariant convolutional

networks. In International conference on machine learning. 2990–

2999.

[24] contagio 2010. Contagio, PDF malware dump. http://contagiodump.

blogspot.de/2010/08/malicious-documents-archive-for.html.

[25] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a

unified lattice model for static analysis of programs by construction or

approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-

SIGPLAN symposium on Principles of programming languages. ACM,

238–252.

[26] Luiz Henrique De Figueiredo and Jorge Stolfi. 2004. Affine arithmetic:

concepts and applications. Numerical Algorithms 37, 1 (2004), 147–

158.

[27] Andrea Drmic, Marin Silic, Goran Delac, Klemo Vladimir, and

Adrian S Kurdija. 2017. Evaluating robustness of perceptual image

hashing algorithms. In 2017 40th International Convention on Informa-

tion and Communication Technology, Electronics and Microelectronics

(MIPRO). IEEE, 995–1000.

[28] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Ti-

wari. 2018. Output range analysis for deep feedforward neural networks.

In NASA Formal Methods Symposium. Springer, 121–138.

[29] Mahyar Fazlyab, Manfred Morari, and George J Pappas. 2019. Safety

Verification and Robustness Analysis of Neural Networks via Qua-

dratic Constraints and Semidefinite Programming. arXiv preprint

arXiv:1903.01287 (2019).

[30] Cormac Flanagan and Patrice Godefroid. 2005. Dynamic partial-

order reduction for model checking software. In ACM Sigplan Notices,

Vol. 40. ACM, 110–121.

[31] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov,

Swarat Chaudhuri, and Martin Vechev. 2018. Ai2: Safety and robustness

certification of neural networks with abstract interpretation. In 2018

IEEE Symposium on Security and Privacy (SP). IEEE, 3–18.

[32] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Ex-

plaining and Harnessing Adversarial Examples. In Proceedings of

the 3rd International Conference on Learning Representations. http:

//arxiv.org/abs/1412.6572

[33] google-accident 2016. A Google self-driving car caused a crash

for the first time. http://www.theverge.com/2016/2/29/11134344/

google-self-driving-car-crash-report.

[34] google-vision-api 2011. Cloud Vision API - Derive insight from images

with our powerful Cloud Vision API. https://cloud.google.com/vision/.

65

[35] Divya Gopinath, Kaiyuan Wang, Mengshi Zhang, Corina S Pasare-

anu, and Sarfraz Khurshid. 2018. Symbolic execution for deep neural

networks. arXiv preprint arXiv:1807.10439 (2018).

[36] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael

Backes, and Patrick McDaniel. 2016. Adversarial perturbations against

deep neural networks for malware classification. arXiv preprint

arXiv:1606.04435 (2016).

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep

residual learning for image recognition. In Proceedings of the 29th

IEEE Conference on Computer Vision and Pattern Recognition. 770–

778.

[38] Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire

Sutre. 2002. Lazy abstraction. ACM SIGPLAN Notices 37, 1 (2002),

58–70.

[39] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman

Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick

Nguyen, Tara N Sainath, et al. 2012. Deep neural networks for acoustic

modeling in speech recognition: The shared views of four research

groups. IEEE Signal Processing Magazine 29, 6 (2012), 82–97.

[40] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,

Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.

2017. Mobilenets: Efficient convolutional neural networks for mobile

vision applications. (2017).

[41] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der

Maaten. 2017. Densely connected convolutional networks. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition,

Vol. 1. 3.

[42] ibm [n. d.]. IBM Watson Visual Recognition Service. https://www.ibm.

com/watson/developercloud/doc/visual-recognition/index.html.

[43] Kyle D Julian, Jessica Lopez, Jeffrey S Brush, Michael P Owen, and

Mykel J Kochenderfer. 2016. Policy compression for aircraft collision

avoidance systems. In Proceedings of the 35th IEEE/AIAA Digital

Avionics Systems Conference.

[44] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J.

Kochenderfer. 2017. Reluplex: An Efficient SMT Solver for Verify-

ing Deep Neural Networks. In Proceedings of the 29th International

Conference On Computer Aided Verification.

[45] James C King. 1976. Symbolic execution and program testing. Com-

mun. ACM 19, 7 (1976), 385–394.

[46] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Im-

ageNet Classification with Deep Convolutional Neural Networks. In

Proceedings of the 25th International Conference on Neural Informa-

tion Processing Systems.

[47] Yann LeCun, Corinna Cortes, and Christopher JC Burges. 2010.

MNIST handwritten digit database. AT&T Labs [Online]. Available:

http://yann.lecun.com/exdb/mnist 2 (2010).

[48] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. 2017. Unsupervised

image-to-image translation networks. In Advances in Neural Informa-

tion Processing Systems. 700–708.

[49] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo

Li, Chunyang Chen, Ting Su, Li Li, Yang Liu, et al. 2018. Deepgauge:

Multi-granularity testing criteria for deep learning systems. In Proceed-

ings of the 33rd ACM/IEEE International Conference on Automated

Software Engineering. ACM, 120–131.

[50] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-

Xu, Chao Xie, Li Li, Yang Liu, Jianjun Zhao, et al. 2018. Deepmutation:

Mutation testing of deep learning systems. In 2018 IEEE 29th Interna-

tional Symposium on Software Reliability Engineering (ISSRE). IEEE,

100–111.

[51] Lei Ma, Fuyuan Zhang, Minhui Xue, Bo Li, Yang Liu, Jianjun Zhao,

and Yadong Wang. 2018. Combinatorial testing for deep learning

systems. arXiv preprint arXiv:1806.07723 (2018).

[52] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth

Grama. 2018. MODE: automated neural network model debugging

via state differential analysis and input selection. In Proceedings of the

2018 26th ACM Joint Meeting on European Software Engineering Con-

ference and Symposium on the Foundations of Software Engineering.

ACM, 175–186.

[53] Mike Marston and Gabe Baca. 2015. ACAS-Xu initial self-separation

flight tests. NASA Technical Reports Server (2015).

[54] microsoft [n. d.]. Microsoft Computer Vision API. https://azure.

microsoft.com/en-us/services/cognitive-services/computer-vision/.

[55] Matthew Mirman, Timon Gehr, and Martin Vechev. 2018. Differen-

tiable abstract interpretation for provably robust neural networks. In

International Conference on Machine Learning. 3575–3583.

[56] Anh Nguyen, Jason Yosinski, and Jeff Clune. 2015. Deep neural net-

works are easily fooled: High confidence predictions for unrecognizable

images. In Proceedings of the 28th IEEE Conference on Computer Vi-

sion and Pattern Recognition.

[57] MIT Tech Notes. 2015. Airborne Collision Avoidance System X. MIT

Lincoln Laboratory (2015).

[58] Augustus Odena and Ian Goodfellow. 2018. Tensorfuzz: Debug-

ging neural networks with coverage-guided fuzzing. arXiv preprint

arXiv:1807.10875 (2018).

[59] OpenAI. 2018. OpenAI Five. https://blog.openai.com/openai-five/.

[60] pdfrate 2012. PDFRate, A machine learning based classifier operating

on document metadata and structure. http://pdfrate.com/.

[61] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepX-

plore: Automated whitebox testing of deep learning systems. In Pro-

ceedings of the 26th ACM Symposium on Operating Systems Principles.

[62] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Towards

practical verification of machine learning: The case of computer vision

systems. arXiv preprint arXiv:1712.01785 (2017).

[63] Michael J. Cloud Ramon E. Moore, R. Baker Kearfott. 2009. Introduc-

tion to Interval Analysis. SIAM.

[64] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster

R-CNN: Towards Real-time Object Detection with Region Proposal

Networks. In Proceedings of the 28th International Conference on

Neural Information Processing Systems - Volume 1 (NIPS’15). MIT

Press, Cambridge, MA, USA, 91–99. http://dl.acm.org/citation.cfm?

id=2969239.2969250

[65] Joshua Saxe and Konstantin Berlin. 2015. Deep neural network based

malware detection using two dimensional binary program features.

In 2015 10th International Conference on Malicious and Unwanted

Software (MALWARE). IEEE, 11–20.

[66] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. 2010.

All you ever wanted to know about dynamic taint analysis and forward

symbolic execution (but might have been afraid to ask). In 2010 IEEE

Symposium on Security and Privacy. IEEE, 317–331.

[67] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic

unit testing engine for C. In ACM SIGSOFT Software Engineering

Notes, Vol. 30. ACM, 263–272.

[68] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis

Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker,

Matthew Lai, Adrian Bolton, et al. 2017. Mastering the game of go

without human knowledge. Nature 550, 7676 (2017), 354.

[69] Karen Simonyan and Andrew Zisserman. 2014. Very deep convo-

lutional networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556 (2014).

[70] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel,

and Martin Vechev. 2018. Fast and effective robustness certification. In

Advances in Neural Information Processing Systems. 10802–10813.

[71] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev.

2019. An abstract domain for certifying neural networks. Proceedings

66

of the ACM on Programming Languages 3, POPL (2019), 41.

[72] Charles Smutz and Angelos Stavrou. 2012. Malicious PDF detection

using metadata and structural features. In Proceedings of the 28th

Annual Computer Security Applications Conference.

[73] Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas

Schreck, and Johannes Hoffmann. 2013. Mobile-sandbox: having

a deeper look into android applications. In Proceedings of the 28th

Annual ACM Symposium on Applied Computing.

[74] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta

Kwiatkowska, and Daniel Kroening. 2018. Concolic Testing for Deep

Neural Networks. In Automated Software Engineering (ASE). ACM,

109–119.

[75] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A

Alemi. 2017. Inception-v4, inception-resnet and the impact of residual

connections on learning.. In AAAI, Vol. 4. 12.

[76] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and

Zbigniew Wojna. 2016. Rethinking the inception architecture for com-

puter vision. In Proceedings of the 29th IEEE Conference on Computer

Vision and Pattern Recognition.

[77] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,

Dumitru Erhan, Ian Goodfellow, and Rob Fergus. 2014. Intriguing

properties of neural networks. In Proceedings of the 2nd International

Conference on Learning Representations.

[78] tesla-accident 2016. Understanding the fatal Tesla accident on

Autopilot and the NHTSA probe. https://electrek.co/2016/07/01/

understanding-fatal-tesla-accident-autopilot-nhtsa-probe/.

[79] tesla-accident-2019 2019. Understanding the fatal Tesla accident on

Autopilot and the NHTSA probe. https://abcnews.go.com/Politics/

teslas-autopilot-engaged-fatal-florida-crash-ntsb/story?id=63107290.

[80] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest:

Automated testing of deep-neural-network-driven autonomous cars. In

Proceedings of the 40th international conference on software engineer-

ing. ACM, 303–314.

[81] Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. 2019. Evaluating

Robustness of Neural Networks with Mixed Integer Programming.

In International Conference on Learning Representations. https://

openreview.net/forum?id=HyGIdiRqtm

[82] virustotal 2004. VirusTotal, a free service that analyzes suspicious files

and URLs and facilitates the quick detection of viruses, worms, trojans,

and all kinds of malware. https://www.virustotal.com/.

[83] visualize:dave 2016. Visualizations for understanding the regressed

wheel steering angle for self driving cars. https://github.com/jacobgil/

keras-steering-angle-visualizations.

[84] Nedim Šrndic and Pavel Laskov. 2014. Practical evasion of a learning-

based classifier: a case study. In Proceedings of the 35th IEEE Sympo-

sium on Security and Privacy.

[85] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman

Jana. 2018. Efficient formal safety analysis of neural networks. In

Advances in Neural Information Processing Systems. 6367–6377.

[86] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman

Jana. 2018. Formal security analysis of neural networks using symbolic

intervals. In 27th {USENIX} Security Symposium ({USENIX} Security

18). 1599–1614.

[87] Xiaolong Wang, Abhinav Shrivastava, and Abhinav Gupta. 2017. A-

Fast-RCNN: Hard Positive Generation via Adversary for Object De-

tection. In Conference on Computer Vision and Pattern Recognition

(CVPR).

[88] Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter.

2018. Scaling provable adversarial defenses. In Advances in Neural

Information Processing Systems. 8400–8409.

[89] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Hongxu Chen, Minhui Xue,

Bo Li, Yang Liu, Jianjun Zhao, Jianxiong Yin, and Simon See. 2018.

Coverage-Guided Fuzzing for Deep Neural Networks. arXiv preprint

arXiv:1809.01266 (2018).

[90] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike

Seltzer, Andreas Stolcke, Dong Yu, and Geoffrey Zweig. 2016. Achiev-

ing human parity in conversational speech recognition. arXiv preprint

arXiv:1610.05256 (2016).

[91] Weilin Xu, Yanjun Qi, and David Evans. 2016. Automatically evading

classifiers. In Proceedings of the 2016 Network and Distributed Systems

Symposium.

[92] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. 2014.

Droid-sec: deep learning in android malware detection. In ACM SIG-

COMM Computer Communication Review.

[93] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sar-

fraz Khurshid. 2018. Deeproad: Gan-based metamorphic autonomous

driving system testing. arXiv preprint arXiv:1802.02295 (2018).

[94] Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2018. Generating Nat-

ural Adversarial Examples. In International Conference on Learning

Representations (ICLR).

[95] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2017.

Learning transferable architectures for scalable image recognition.

arXiv preprint arXiv:1707.07012 (2017).

67

