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Abstract
The growing pressure on cloud application scalability has
accentuated storage performance as a critical bottleneck. Al-
though cache replacement algorithms have been extensively
studied, cache prefetching – reducing latency by retrieving
items before they are actually requested – remains an underex-
plored area. Existing approaches to history-based prefetching,
in particular, provide too few benefits for real systems for the
resources they cost.

We propose MITHRIL, a prefetching layer that efficiently
exploits historical patterns in cache request associations. MITHRIL
is inspired by sporadic association rule mining and only re-
lies on the timestamps of requests. Through evaluation of
135 block-storage traces, we show that MITHRIL is effective,
giving an average of a 55% hit ratio increase over LRU and
PROBABILITY GRAPH, and a 36% hit ratio gain over AMP
at reasonable cost. Finally, we demonstrate the improvement
comes from MITHRIL being able to capture mid-frequency
blocks.
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1 Introduction
As cloud tenants use increasing volumes of data, the pressure
mounts on the underlying storage systems to prevent high
access latencies for end-users. The prevalent techniques for
mitigating block storage access latencies are to cache recently
accessed blocks [26], and to prefetch blocks into the cache in
advance of anticipated accesses [14, 29].

Current approaches to cache prefetching can be divided into
two schools. On one hand, sequential prefetching techniques
(such as AMP [7]) anticipate access to consecutive block
identifiers, but rely on block I/O with progressive data layout.
On the other hand, history-based prefetching seeks to find and
exploit deep correlations among past accesses but normally
at substantial computational cost [18]. To mitigate overhead
and to make caching and prefetching more effective, several
applications choose to provide additional hints [23] with each
access [4, 9, 18, 19, 27]. Passing extra information, however,
requires restructuring, reorganization or modification to the
software stack [23], and is infeasible in scenarios where parts
of the stack is proprietary.

We argue that to avoid becoming a latency bottleneck, mod-
ern block storage systems need general prefetching techniques
that fulfill the following criteria.

• Exploit history. Various lower layers of storage sys-
tems perform sequential prefetching so the focus should
be on the more spatially and temporally sophisticated
patterns of reuse.
• Have low overhead. The methods must be simple, on-

line and impose low time and space overhead.
• Be backward compatible. The methods should imple-

ment standard legacy interfaces and treat other parts of
the storage system as a black-box.

Existing approaches fall short of one or more of these goals:
probability graphs and variants incur intensive space or com-
putation overhead [10, 18, 29]; QuickMine is an online al-
gorithm but relies on hints from the applications through

66

https://doi.org/10.1145/3127479.3131210
https://doi.org/10.1145/3127479.3131210


SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA J. Yang et al.

modified interfaces [23] with extra hints from system or ap-
plications.

In this paper, we propose MITHRIL, a lightweight online
history-based prefetching layer which meets all of the goals.
MITHRIL can be coupled with any existing caching layer,
even composed with a sequential prefetching layer such as
AMP [7]. MITHRIL harnesses several concepts from sporadic
association rule mining [16] from the data mining literature.
The central idea behind MITHRIL is to track temporal associ-
ations between only those blocks whose access patterns are
moderately frequent. Intuitively, items that are accessed reg-
ularly are already handled by an underlying caching system,
such as LRU, whereas items that are rarely accessed need
not occupy the precious cache memory. MITHRIL detects
associated access patterns between pairs of blocks without
relying on application-level hints. In contrast to other history-
based prefetching algorithms [10, 18, 19], MITHRIL is able
to discover relationships between interleaved requests that
are not consecutive – a ubiquitous scenario in modern multi-
tenant storage systems – without incurring high computation
overhead. The focus of this paper is on exploiting patterns
in block I/O workloads, but evidence shows that MITHRIL
works on proxy workloads as well. We evaluated MITHRIL
through experiments on traces from a commercial I/O caching
analytics service, CloudPhysics [26], as well as file system
traces from Microsoft Research (MSR) [22]. We found that
MITHRIL boosts the cache hit ratio by up to 7× over typical
cache strategies (LRU) and improves over the state-of-the-art
sequential prefetching algorithm AMP by 36% on average.

Our paper makes three contributions.

• A design of a history-based prefetching layer MITHRIL
that leverages a novel, low-overhead algorithm to mine for
regularity in request timestamps in an optimized manner.

• A trace-driven experimental evaluation of MITHRIL on
135 traces from real storage systems, showing that our
MITHRIL layer effectively discovers block associations for
prefetching. On average, MITHRIL increased hit ratio by
56% over LRU, and 36% over AMP. We also measured
the latency of MITHRIL on a real system.

• A demonstration that MITHRIL discovers associations be-
tween separated blocks from interleaved applications, and
the power of MITHRIL stems from being able to capture
mid-frequency blocks.

2 Background and Motivation
Caching has been widely studied over the past 70 years. The
standard algorithm of evicting the least-recently-used ele-
ments (LRU) has seen some structural improvements over
the years [15, 21, 24, 30]. A complementary approach is to
prefetch data into the cache before it is used, typically either
based on sequential or historical patterns [23, 29]. We argue

there is room for improvement for prefetching on block I/O
workloads.
Sequential prefetching is exploited at lower layers. In se-
quential prefetching, the storage server exploits spatial local-
ity in the I/O request stream by retrieving a batch of consecu-
tive blocks upon detecting a sequential access pattern [6, 17].
Static size sequential prefetching is well-understood, simple
to implement and has seen long deployment, but can cause
cache pollution in workloads where the sequential correlation
length is variable and affect accuracy.

Cloud environments, however, exhibit high levels of con-
currency. This results in I/O workloads where multiple appli-
cations interleave I/O accesses that break the continuity of
consecutive access patterns [23]. Adaptive algorithms such
as AMP (Adaptive Multi-stream Prefetching) [6, 7] and TAP
(Table-based Prefetching) [17] dynamically decide when and
how much to prefetch. AMP, for instance, dynamically adjusts
the number of pages to be prefetched to prevent both cache
pollution and prefetch wastage when the requests streams
are interleaved. AMP increases its prefetch degree if the
prefetched blocks are waited on by system, and decreased
if prefetched blocks are evicted without being used. Unlike
other prefetching algorithms, which use read cache to detect
sequential streams, TAP uses a table to detect sequentiality
and track longer history. Thus, TAP outperforms AMP on
interleaved workloads and at small cache sizes.

Sequential prefetching has been widely deployed and com-
monly used in operating systems [2, 20], databases [25] and
storage controllers [8]. The ubiquity and success of the ap-
proach at lower layers, however, makes the approach less
attractive for higher layers in the storage hierarchy, such as
at the virtualization layer. In modern workloads, the length
of contiguous I/O sequences, furthermore, tend to be short at
the lowest levels of the storage hierarchy [29] due to virtual-
ization, multi-tenancy, disk encryption and sophisticated file
system layouts. Together, these trends reduce the effectiveness
of sequential prefetching on today’s storage workloads.

History-based prefetching has been expensive. History-
based prefetching, in contrast, tolerates discontinuity across
repeating patterns at the cost of added complexity and over-
head [10, 14]. One approach is to generate a directed proba-
bility graph over accessed items, where an arc denotes one
item is likely accessed before the other, and arcs are weighed
by the probability of an access [1, 11, 29]. Many systems
try to prevent graph metadata from becoming unwieldy by
operating at the file-level instead of the block-level [1, 10, 11],
which has inherent limitations [14].

Another take on history-based prefetching is to leverage
data mining techniques to identify repeating sequences. By
mapping a block to an item, using frequent sequence mining
on the request sequence, we can obtain frequent subsequences
in an access stream. A frequent subsequence implies that the
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Table 1: Comparison of common prefetching approaches. Overhead and improvement is measured over over LRU on 135 traces (see Sec. 5). Backward
compatible algorithms require no hints or changes to legacy interfaces. General approaches generalize beyond block I/O traces.

Algorithm Time
overhead

Space
overhead

Avg. hit ratio
improvement

Max. hit ratio
improvement Online Backward

compatible General

AMP [6] Low Low 12.2% 139% ✓ ✓ ✗
PG [10] Low High 4.1% 156% ✓ ✓ ✓
C-Miner [18] High Moderate N/A N/A ✗ ✓ ✓
QuickMine [23] Moderate Moderate N/A N/A ✓ ✗ ✓
MITHRIL Moderate Moderate 54.3% 740% ✓ ✓ ✓

involved blocks are frequently accessed together. In other
words, frequent subsequences are good indicators for block
correlations in a storage system. C-Miner [18] and QuickMine
[23] employ this technique to discover block correlations in
storage systems. However, precise data mining technique
comes with high overhead. C-Miner only runs offline due to
its overhead. QuickMine improves on the issue by tagging
each application I/O block request with a context identifier
corresponding to the higher level application context (e.g., a
web interaction, database transaction, etc.). The tag enables
the request sequence to be split before mining, thus mak-
ing computation overhead manageable. The key novelty of
QuickMine lies in detecting and leveraging block correlations
within logical application contexts. Nevertheless, it depends
on explicit contextual hints from applications, which makes
it hard to deploy and impractical for legacy systems.

Current history-based prefetching approaches may capture
complex access patterns, but require either explicit contextual
information from applications or suffer from high runtime
overheads.

In addition to the high overhead imposed by history-based
prefetching itself, the ensuing small random read requests fur-
ther deteriorates performance on traditional mechanical disks,
although the problem is minimized by the rapid proliferation
of SSDs.

Temporal block associations should be exploited. Block
associations are common in storage systems [18]. Sequential
prefetching aims to exploit spatially associated blocks, yet
temporal associations are equally important for prefetching.
Lacking a fast history-based approach, our goal in this paper
is thus to efficiently find temporally associated blocks. Table
1 shows the main algorithms for comparison.

3 Data Mining Techniques

In search for an approach to efficiently gather history for
cache requests to improve on prefetching, we survey relevant
problems from the data mining literature before describing
our approach.

3.1 Sporadic Association Rule Mining

Frequent itemset mining aims to discover which items co-
occur frequently in a transaction database. In this field, a
group of items is called an itemset, and the number of transac-
tions containing this itemset in the database is called support.
Suppose we have a transaction database. We say an itemset
A is frequent if its support supportA is larger than or equal to
some threshold, minimum support R.

Association rule mining is the discovery of a relationship
between items a and b in a frequent itemset discovered from
the previous step. We say a ⇒ b if the probability of b ap-
pearing given a is above a threshold.

Sporadic association rule mining focuses on associations
composed of mid-frequency items. It usually consists of three
steps. In the first step, frequent itemsets are generated like
before. The following step filters out highly frequent itemsets,
which are defined as those appearing more than maximum
support S times; and the frequent itemsets left are called
sporadic frequent itemsets. In the third step, association rule
mining is used to generate association rules from the sporadic
frequent itemsets. By definition, only mid-frequency itemsets
and association rules are discovered during the process [13].

3.2 Generalizing to Block Associations

Let B = {b1,b2, . . . ,bn } be a sequence of cache block I/O
requests. In order to conduct effective prefetching, we need to
identify pairs of requests {bx ,by } that are likely to co-occur
but not too frequently to be captured by the underlying cache.
Notice the similarity to sporadic association rule mining: both
try to find related items that appear close by and have mid-
range frequency.

To discover such an association, the basic idea is to apply an
existing available sporadic association rule mining algorithm
[16]. However, there are several challenges. A typical storage
system can serve up to billions of requests per day, resulting in
an unmanageably long request B. In order to conduct sporadic
association rule mining on the data, we need to transform the
request sequence into a transaction database as the first step.

The first difficulty is determining how to split B into trans-
actions. One approach is to split B according to wall clock
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Figure 1: Schematic of the Mithril prefetching layer.

time, for example, splitting requests into transactions every
five seconds. Another approach is to split B using some fixed
number of requests per transaction, e.g., group every 20 re-
quests into a transaction. However, both approaches result
in information loss, because no evidence indicates that two
requests separated in different transactions are not associated.
Recall that only items in the same transaction can be discov-
ered as frequent itemsets and as being potentially associated.
To address this problem, Soundararajan’s approach [23] us-
ing a context given by an application to split the sequence
is effective but requires changes to the underlying system to
obtain such hints, which sacrifices the generality for which
MITHRIL is designed.

The second difficulty comes from the high time and space
complexity of the currently available sporadic association rule
mining algorithms. Koh [16] proposed an optimization for
mining sporadic association rules using APRIORI-INVERSE.
Their algorithm, however, still requires two phases: mining
all sporadically frequent itemsets and discovering sporadic
association rules. Although the algorithm avoids generating
and storing highly frequent itemsets, APRIORI-INVERSE still
needs to store and count all possible associated pairs at signif-
icant computation and storage overheads, as confirmed using
the SPMF library[5].

To efficiently discover associations between requests with-
out requiring extra application-level hints, we propose the
MITHRIL prefetching layer, whose algorithm provides a fast
approximation to sporadic association rule mining.

4 Design of MITHRIL

MITHRIL is a prefetching layer between the existing caching
layer and the backend, as shown in Figure 1. Without MITHRIL,
when a request arrives, it first touches the caching layer; if it
is a cache hit, it returns directly from the cache, otherwise, as
a cache miss, the application or caching layer needs to go to
the backend to fetch the item. When MITHRIL is added, when
a request arrives, MITHRIL records the request for mining,
checks the potential prefetching list, and sends the request(s)
to the caching layer for prefetching.

4.1 MITHRIL Mining

We now describe the algorithm at the core of our prefetching
layer. Let B be a sequence of unique block I/O addresses B =
{b1,b2, . . . ,bn } where a request bi has a logical time-stamp of
i, also known as its reference number. LetT be an n×S matrix
for S = maximum support, where ith row T⃗i corresponds to
request bi , and the cells of each row contain a sorted list of
increasing time-stamps. In addition, T is also sorted by the
first time-stamp of each block. Figure 2 illustrates the request
sequence and corresponding time-stamp matrix T (all the
symbols are listed in Table 2).

Table 2: Symbols used in the text

Symbol Meaning
T Time-stamp Matrix
R Minimum Support
S Maximum Support
∆ Lookahead range
M Maximum Metadata Size
P Prefetching List Size

An associated block pair refers to two blocks that are
repeatedly accessed in sequence. In modern systems, due
to multiple applications interleaving with each other, two
consecutive accesses from the same stream may not appear
consecutive in the final stream, so we define a lookahead
range ∆ that specifies the maximum allowed distance between
two associated blocks. In order to establish an association
between two blocks, not only do they need to appear within
∆ of each other, but also they need to appear with some
minimum frequency. We denote this threshold as minimum
support R. Since our prefetching layer assumes the presence
of a cache to catch frequent items, we specify maximum
support S as the upper bound for items to be considered for
mining within a certain time interval. We remark that each of
these requirements have conceptual counterparts in sporadic
association rule mining.

To further distinguish associated block pairs, as illustrated
in Fig 2, we define two blocks as being weakly associated if
each time-stamp pair of the two blocks is within ∆; further-
more, if a weakly associated pair is accessed strictly consecu-
tively (time-stamp difference 1) at least once, we define it as
being strongly associated.

The reason for distinguishing weakly associated pairs and
strongly associated pairs is that two blocks in a strongly-
associated pair are more likely to be related, which is pre-
ferred for prefetching. Moreover, this effectively limits the
number of associations we find. In cases where multiple ap-
plications interleaving and a strong association does not al-
ways exist for a block, then we consider its first (also closest)
weakly associated pairs. Therefore, only a strongly associated
pair and the closest weakly associated pair are considered.
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Requests
Timestamps

... a a b c b a c d c e f d g g e g d e g a g g g ...

... 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 ...

Blocks ts1 ts2 ts3 ts4 ts5 ts6

a 20 21 25 39

b 22 24

c 23 26 28

d 27 31 36

e 29 34 37

f 30 not enough info

g 32 33 35 38 40 41

a 20 21 25 39

b 22 24 X X

a 20 21 25

c 23 26 28

c 23 26 28

d 27 31 36

d 27 31 36
e 29 34 37

Different length

Timestamp matrix T

|28-36| > D

Not associated Associated

42 too frequent

Minimum support R=2
Maximum support S=6
Look	ahead range D=5

1: Record/
Convert

2: Mining

compare
each two rows

Weak association
23-20 ≤ D

|21-26| ≤ D, |25-28| ≤ D

Strong association
requirements of weak association

+
difference of one ts pair = 1

f # of ts < R

g deleted: # of ts > S

Ignored for mining

Figure 2: Illustration of mining procedure. If input is a request sequence, convert it into time-stamp matrix T . Blocks that have fewer than R time-stamps(ts) or
more than S time-stamps are not considered for mining. For each two-block pair, if they have different numbers of time-stamps, or the difference between at least
one time-stamp pair is greater than ∆, they are not associated. If all time-stamp pairs are within ∆, they are weakly-associated. Furthermore if they have at least
one time-stamp pair with difference 1, they are strongly-associated.

We present the basic version of MITHRIL in Algorithm 2.
The function checkAssociation (Algorithm 1) receives two
rows from T as input and checks whether the corresponding
two blocks are weakly or strongly associated or not.

Algorithm 2 shows the mining procedure, which uses O(N )
time to discover associated block pairs. N is the number of
unique blocks requested during the recording interval. The
input of the algorithm can be the request sequence B or the
time-stamp matrix T . If the input is B, then we need to first
convert it into T in O(N ) time.

In the outer loop, we iterate through all rows in T . For
each block bi , we check all other blocks in the inner loop
to find bj that are either strongly associated or are the first
weakly associated occurrence. Because T is sorted by first
time-stamp of each block, so at inner loop at most ∆ blocks
are checked. Typically, the number of blocks checked is much
less than ∆.

After an associated block pair is unveiled, it is stored in the
prefetching table, which is checked for prefetching upon each
request.

Algorithm 1: checkAssociation
Input: Rows R1 and R2 from time-stamp matrix T ,

associationType assoc, lookahead range ∆
Result: Whether b1 and b2 are associated

1 consecutive ← False

2 if len(R1) − len(R2) , 0 then
3 return False

4 for k ← 1 to len(R1) do
5 if abs (R1[k] − R2[k]) > ∆ then
6 return False

7 if abs (R1[k] − R2[k]) == 1 then
8 consecutive ← True

9 if assoc == weak then
10 return True

11 else if assoc == stronд then
12 return consecutive

4.2 Optimizations

When MITHRIL is run, a two-dimensional time-stamp matrix
T is initialized. For each new request, if it is found in T , the
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Algorithm 2: MITHRIL mining procedure
Input: time-stamp matrix T , minimum support R,

lookahead range ∆
Result: Associated block pairs

1 for i=1 to len(T)-1 do
2 if len(T [i]) < R then
3 continue

4 associationType ← weak

5 for j=i+1 to len(T) do
6 if checkAssociation(T [i], T [j], associationType) then
7 addAssociation(blocki , blockj )
8 associationType ← stronд

9 if (T [j][0] −T [i][0]) > ∆ then
10 break

current time-stamp is appended to the corresponding row.
Otherwise, the request is recorded in a new row. We append
the time-stamp to a row. When the row is full, the block is
considered frequent and deleted from the matrix and recorded
in the frequent block hashmap. Items from this hashmap are
ignored when encountered again before the mining process.
When the time-stamp matrixT is full, the mining procedure is
called and the associated blocks are saved in the prefetching
table. After mining completes, recording starts anew with a
clean state.

The version of MITHRIL described so far requires a large
matrix with maximum support S columns for storing time-
stamps, a hashmap mapping from block number to the corre-
sponding row in the matrix and a hashmap for determining
whether a block is frequent. Additionally, a prefetching table
is needed for storing associated block pairs for prefetching.
However, spending limited cache space on tracking large
metadata is not desirable. To address the metadata space us-
age of basic MITHRIL, we made the following optimizations,
which use bounded memory in exchange for some added
complexity.

4.2.1 Recording and Mining

Splitting recording table. The two-dimensional recording
table (time-stamp matrix) is a sparse matrix, since a typical
block, by definition, will be requested fewer than maximum
support S times within a recording period. A naïve implemen-
tation uses a linked list for each block instead of a fixed-size ar-
ray. However, the space for link pointers between time-stamp
nodes doubles the space overhead. We exploit the sparsity by
decomposing the large matrix into two smaller fixed-sized
tables: one with minimum support R columns, which is the
recording table, and the other one with maximum support S
columns, which we call the mining table. The recording table
is a circular array in which new entries replace old entries

in FIFO fashion. The mining table is a fixed-size array that
triggers the mining procedure when full.

When a block request arrives, the time-stamp is recorded
in the recording table. If the number of time-stamps in the
corresponding row of the recording table has reached min-
imum support R, in other words, when the row is full, it is
declared to be mining-ready and then transferred into the
mining table, which can store up to S time-stamps for each
block. After migrating one row from the recording table to
the mining table, the last row in the recording table is moved
up to the migrated row to make the table compact. When the
mining table is full, in other words, when there is no more
room to store new mining-ready blocks, the mining procedure
is triggered to discover associated block pairs and store them
in the prefetching table for prefetching. When the mining fin-
ishes, the mining table is cleared. When the recording table
is full, we replace the oldest entry with a new entry with the
assumption that the oldest block remaining in the table is rare
since it has not been requested R times within the interval.

Decomposing the original matrix not only saves space,
but also allows for more blocks to be tracked. Because the
recording table does not need to be cleared each time, we
retain extra information for blocks that are not mining-ready.
In the unoptimized approach, the large time-stamp matrix
was cleared each time the mining finishes, discarding all
information.

The primary drawback of splitting is that the mining table
needs to be sorted before mining. This is because Algorithm 2
requires input to be sorted by the first time-stamp, which oc-
curs automatically in our single-table construction. Since our
separate mining table is created by inserting elements in the
order of accumulating R time-stamps, sorting the mining table
before mining is necessary. In practice, however, the size of
the mining table is usually small and sorting is trivial. A sec-
ondary concern is that when mining begins, some associated
blocks may collect more time-stamps than others due to the
cut-off (misalignment) between the tables. This behavior is
rare and affects only a small number of associations found.
Since MITHRIL is an approximation, missing a few associa-
tions is not critical. Our focus is instead of on balancing the
overhead and the benefits.

Compressing time-stamps. To further reduce the space
used by the recording table and the mining table, we com-
press time-stamps by storing only the lower 15 bits. This
allows us to store four time-stamps in the lower 60 bits of one
64-bit integer with a time-stamp counter stored in the higher 4
bits. Moreover, one could further compress time-stamps by re-
moving the last ⌊log2 (∆)⌋ bits – we omitted this optimization
in our experiments to limit time overhead.

Removing the frequent block hashmap. A block that is
requested more than S times in each recording interval in the
original MITHRIL approach is considered to be a frequent
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block, so no information should be recorded. To track the re-
quests, one could use a hashmap or Bloom filter, but hashmaps
require extra memory and Bloom filters incur extra computa-
tion overhead. Instead, we decide to record a block only on
cache miss. In this way, all frequent blocks are automatically
filtered out by the underlying cache. There are several other
benefits. First, MITHRIL need not be invoked when cache
sizes are sufficiently large and minimum support R is greater
than 1. This behavior happens gradually over larger cache
sizes since the mining phase will be run less frequently. Sec-
ond, if a block is accessed frequently over a short period, the
optimized recording method cuts down overhead since it only
records cache misses, thus precluding spuriously recording
frequently accessed blocks. If the cache size is small, record-
ing bursts and thus prefetching frequent items is useful since
these blocks are constantly being evicted by the underlying
cache.

Our optimizations trade off storage, computation overhead,
prediction precision and hit-ratio improvement. The more
useful information we record, the higher hit rate and precision
can be achieved, but at the same time more overhead is in-
curred. Besides recording at cache miss as mentioned above,
optionally we can also record the time-stamp when a block is
evicted from the cache to obtain more information about the
block. Recording at eviction is similar to recording at cache
miss: in both approaches, the frequent blocks are filtered out
by the underlying cache.

4.2.2 Prefetching

Splitting the prefetching table into shards. We use a two-
dimensional array instead of lists to store associated block
pairs together for storage reduction for the same reason as
using an array in the recording table. In the prefetching table,
the first column stores the originated block number bx , while
the rest of the columns store the blocks that are associated
with by . The number of columns left is the maximum number
of possible block pairs, defined as prefetching list size P . We
use a default of three columns, indicating that, at most two
block pairs can be stored for each block. For example, in an
association bx → by , bx is stored in the first column and by is
stored in the second column. If there is another association,
bx → bz , then the third column stores bz . If more than two
associations are discovered, we replace the old associations in
a FIFO manner, which allows MITHRIL to adapt to changing
workloads. Meanwhile, we do not differentiate strong and
weak associations in the prefetching table.

Since cache behavior varies in different workloads, it is
impossible to know how many blocks will have associations
ahead of time, and thus how much memory will be needed.
Therefore, we introduce the concept of shards. A shard is a
prefetching table with 2000 rows that is dynamically allocated
when needed. When a user specifies a maximum metadata

size M can be used for MITHRIL, an upper bound is placed
on the number of possible shards. When all possible shards
are allocated, a new row will replace the oldest row.

By introducing shards, we aim to find a balance between
frequent allocation and overallocation of memory. In addition
to saving metadata memory usage, the maximum memory
usage is also bounded by maximum metadata size M .

Since prefetched blocks are also added to the original cache
pool, it is possible for a prefetched block to be evicted before it
is used. As other authors suggest [6, 8], we give the prefetched
block a second chance by re-adding it to the MRU end of
cache if it is going to be evicted without being accessed.

4.3 Using MITHRIL

Using MITHRIL as a prefetching layer requires minor modifi-
cations to the underlying caching layer. The complete flow of
MITHRIL is shown in Algorithm 3. A prefetch from MITHRIL
requires passing one parameter and two indicators. The param-
eter is the current block number, which is used for recording,
prefetching or both. The two indicators are pFlag and rFlag,
which indicates whether it is for recording or prefetching.

There are two scenarios where the MITHRIL API may be
called. First, when a request arrives, MITHRIL must check
whether prefetching is needed. In this situation, pFlag =
True and rFlag = False. Second, to handle recording
when rFlag = True and pFlag = False. This recording
may be invoked (a) at the arrival of each request, (b) only
at cache misses, (c) only during cache eviction, or (d) dur-
ing both misses and eviction. Recording at each request or
recording at both misses and evictions increases the compu-
tation overhead. As we demonstrate in Section 5.4, record-
ing on the arrival of each request optimizes performance,
whereas recording only at cache misses provides similar per-
formance at much lower overhead. In contrast, we find the
two approaches (c, d) recording on eviction do not to provide
competitive performance.

4.4 Complexity Analysis

Time complexity. Compared to LRU, the only operations
added to each request are to record the current logical time-
stamps in the recording table on a cache miss and check the
prefetching table and prefetch when needed. Each of these
operations has a time complexity of O (1), so the total compu-
tation overhead at each request is negligible. Periodically, the
mining procedure runs and is dominated by an O (N logN )
sort, where N is a fixed, typically small table size. The mining
process can furthermore be run in a background thread and
thus avoid blocking new requests.

Space complexity. In the optimized MITHRIL, we store
all time-stamps as 15-bit integers with four time-stamps in
one 64-bit integer. Thus if we have maximum support S=8,
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Algorithm 3: The MITHRIL main algorithm.
Input: recording table rTable, mining table mTable,

prefetching table pTable, minimum support R,
block# b, prefetchingFlag pFlaд, recordingFlag
rFlaд

Output: blocks to prefetch
1 ts ← 0
2 if rFlaд then
3 tsRow ← pTable[b]
4 append ts to tsRow

5 if len(tsRow ) ≥ R then
6 move tsRow to mTable

7 move last row in rTable to tsRow

8 if mTable is full then
9 mining()

10 clear mTable

11 ts ← ts + 1

12 if pFlaд then
13 if b in pTable then
14 return pTable[b]

15 return NULL (no need to prefetch)

minimum support R=4, recording table size 100,000 and min-
ing table size 1,250, recording and mining will need less than
2MiB. When calculating size of hashtable, which maps
from block address to index in recording table or mining ta-
ble, the 8 byte is used for storing block address, the 4 bytes is
used for storing the index.

Since all information is stored in a bounded array, the max-
imum metadata size M allocated is usually set to 10%, which
is more than enough in most cases. And in our evaluation, we
count in the memory usage for all metadata for fair compari-
son, which means when MITHRIL metadata uses 5% of cache
space, then only 95% of space will be used for store cache
data.

5 Evaluation
We now characterize MITHRIL experimentally with the fol-
lowing questions in mind:

• How much does MITHRIL improve the hit ratio? What are
the best and worst cases?

• How well does MITHRIL work with various cache replace-
ment algorithms, and how precise is prefetching?

• How do parameters affect MITHRIL?
• Is latency improvement enough to justify overhead?
• Why does MITHRIL work?

5.1 Methodology

As a history-based prefetching layer, ideally we should com-
pare MITHRIL with C-Miner [18] and QuickMine [23], which

are the two state-of-the-art algorithms in history-based prefetch-
ing. However, since C-Miner and QuickMine either runs of-
fline or requires context information from the applications,
which is not applicable in our setting. Instead we implemented
another history-based prefetching technique, PROBABILITY
GRAPH (PG) [10], together with a state-of-the-art sequen-
tial prefetching algorithm, AMP [6], and LRU to compare to
MITHRIL. Note that MITHRIL can be used on top of AMP.

We evaluated algorithms on 106 traces from commercial
I/O caching analytics services from CloudPhysics (CP) to-
gether with 29 traces obtained by Microsoft Research (MSR)
[22] (We omitted traces that have fewer than a half million
requests). The CloudPhysics traces are explained in detail by
Waldspurger et al. [26]. For simulation-based results, we used
the MIMIRCACHE [28] for profiling and analysis on a Mi-
croway server of dual E5-2670v3 CPUs with 512GB memory.
For the micro benchmark, we modified IOBlazer [3] and ran
it on AWS EC2 c3.large instance with an EBS magnetic disk.
In this section, if not specified, MITHRIL is used together
with LRU, and all experiments showing single trace used
trace w94 from CP [26], which is a week-long VM trace. The
cache size, if not mentioned, is set to 256MB, which exhibits
a range of LRU hit ratios between 10% to 99%. The profiling
platform and MITHRIL implementation will be released under
open-source after publication [28]. The CP data used in the
paper will be released by CloudPhysics separately.

5.2 Overall Hit Ratio Improvement

As a prefetching layer, MITHRIL is unaware of the underly-
ing caching algorithm, which might be either FIFO, LRU,
AMP or other possible cache replacement algorithms. In this
section, we show that MITHRIL provides benefits for LRU
and AMP.

Comparison with PG. PG is the most comparable history-
based algorithm, so we compare MITHRIL with PG in this
section. In Figure 3, we show the hit ratio of PG and MITHRIL
for all the traces. LRU is not shown in the trace because of
its high resemblance to PG in terms of average hit ratio and
correlation: the Pearson Correlation Coefficient between hit
ratio of LRU and PG is 0.993, while it is 0.801 between
LRU and MITHRIL. The low correlation between LRU and
MITHRIL implies that the performance of MITHRIL does not
completely depend on the performance of LRU. Compared to
LRU, on average MITHRIL provides 52% relative improve-
ment in the hit ratio on CP traces, and on average achieves
82% of the maximum obtainable hit ratio at small cache size,
which is calculated by excluding cold miss. On the 29 MSR
traces, MITHRIL provides on average a 64% hit ratio improve-
ment achieving 81% of the maximum obtainable hit ratio. As
shown in the figure, the hit ratio improvement for MITHRIL
varies between traces. For certain traces, it can provide up
to more than 7× improvement, but for some other traces, the
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Figure 3: Hit ratio of PG and Mithril for 106 CP traces and 29 MSR traces sorted by PG hit ratio. Hit ratio of LRU omitted as it is similar to PG (Pearson
r = 0.995 compared to r = 0.742 for LRU and Mithril). Compared to PG, Mithril overall provides significant improvement, even though parameters are not
fine-tuned for each trace.
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Figure 4: Left: Hit ratio of Amp and Mithril-LRU, right: Hit ratio of Amp and Mithril-AMP for CP and MSR traces sorted by Amp hit ratio. Left:
Mithril-LRU outperforms Amp in most traces. For some traces with strong sequentiality, Amp has better performance due to its ability to prefetch pages that
have never been requested. Right: Mithril-AMP improves or matches hit ratio for most traces compared to Amp.

improvement is more modest, particularly those whose PG
hit ratio is already high.

Comparison with AMP. As a prefetching layer, we also
compare MITHRIL with state-of-the-art sequential prefetch-
ing algorithm AMP, which dynamically captures the spatial
associations in the requests. Compared to AMP, MITHRIL on
average provides a 31% increase in hit ratio on CP traces and
51% on MSR traces, indicating that by exploring temporal
associations, MITHRIL can provide more benefit than AMP.
However, as shown in Figure 4, MITHRIL does not always
provide more benefit compared to AMP. In some traces where
sequentiality is not dominant, MITHRIL provides a great ben-
efit, more than a 7× improvement on hit ratio; in some other
traces where sequentiality dominates the disk access pattern,
AMP provides more benefit than MITHRIL. The reason AMP
outperforms MITHRIL lies in its ability to prefetch blocks
that have never been requested. In contrast, MITHRIL does
not have this ability. It can only prefetch blocks already seen
in the past.

Although AMP surpasses MITHRIL in some cases, MITHRIL
as a prefetching layer can be used on top of AMP. In Figure 4,
we show the hit ratio obtained by AMP compared to MITHRIL-
AMP. Using MITHRIL on top of AMP guarantees at least
similar performance as AMP, and still provides a large benefit
on most of the traces. This improvement implies that besides

spatial-locality, which has been captured by AMP, MITHRIL
is capable of further leveraging the temporal-locality asso-
ciations between requests to gain performance promotion.
Note that Figure 3 and Figure 4 cannot be directly compared,
because former one is sorted by PG, and latter one is sorted
by AMP. However, Figure 4 and Figure 4 are comparable
since curves in both figures are sorted by the AMP hit ratios.
Adding MITHRIL to AMP guarantees no performance loss
compared to AMP, however, MITHRIL-AMP does not guar-
antee a better performance than MITHRIL-LRU as we see in
some of the traces. The reason MITHRIL-LRU can be better
than MITHRIL-AMP is that AMP turns some cache misses
into cache hits due to its sequential prefetching ability. Thus
the relationship seen by MITHRIL is jeopardized, and the
associations captured by MITHRIL can be inaccurate. Overall,
MITHRIL significantly improves hit ratio over PG and AMP.

Behavior on representative traces. To better illustrate the
hit ratio improvement, we select six traces (three from CP
and three from MSR) to show typical examples of large (top
two), modest (middle two) and small (bottom two) perfor-
mance gains for MITHRIL in Figure 5. The top two traces
show the cases where MITHRIL outperforms the correspond-
ing caching algorithm by at least doubling the hit ratio. The
middle two figures show the traces that have relatively high
hit ratios under LRU. Adding MITHRIL provides a modest

74



SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA J. Yang et al.

performance improvement. In the bottom two traces, AMP
outperforms MITHRIL-LRU by being able to prefetch unseen
blocks. However, this can be changed by using MITHRIL
with AMP. Still, in these cases, MITHRIL-AMP usually does
not win much over AMP in terms of hit ratio because the hit
ratios of AMP are often already high, yielding limited poten-
tial benefit. In addition, MITHRIL can only prefetch blocks
that have already been seen, capping the maximum hit ratio
at 1 − cold miss ratio. PG is the only prefetching algorithm
in same category as MITHRIL. Its performance is unstable,
sometimes better than AMP, most of time worse than AMP.
For most traces, it outperforms pure LRU and is outdone by
MITHRIL.

MITHRIL is compatible with a range of caching algorithms.
The figures compare performance of using MITHRIL on top
of LRU, FIFO and AMP to that of the original cache replace-
ment algorithms. Adding MITHRIL consistently boosts hit
ratio, particularly for simpler cache replacement algorithms.
For example, by adding MITHRIL to FIFO, the performance
of MITHRIL-FIFO is similar to MITHRIL-LRU, which is
much better than FIFO. This property of MITHRIL opens
the possibility of using MITHRIL with particular cache re-
placement algorithms in appropriate situations, for instance
when running off of SSDs [24], MITHRIL with FIFO may
achieve the best performance. Investigating whether MITHRIL
can supplement a wider range of existing cache replacement
algorithms is left as future work.

5.3 Cache Size and Precision

To focus the discussion, we will hereby focus only on LRU
and MITHRIL-LRU. Our results so far are based on perfor-
mance at a single cache size. We now show the performance
of MITHRIL under a range of cache sizes. Figure 6 shows the
hit ratio curve (HRC) of LRU, PG and MITHRIL along with
the prefetching precision of the latter two. Shown in HRC,
the performance PG is always better than LRU, and as the
cache size increases, the gap between PG and LRU increases
due to more space allocated for PG’S pair-wise probability
matrix. However, the improvement of PG is limited due to its
large matrix. In contrast, MITHRIL provides a hit ratio boost
even at a small cache size.

The precision curve of PG has several peaks and troughs
because the size of its comprehensive conditional probability
matrix depends on cache size. As the cache size increases,
the matrix size grows. However, precision may not benefit
from the increasing probability matrix size due to wrong new
predictions. Similarly, the precision curve for MITHRIL is also
not monotonic, especially with a small cache size, due to the
eviction of prefetched blocks before being requested. When
comparing the prefetching precision of PG and MITHRIL,
we see that, in most situations, MITHRIL has better precision
than PG.
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Figure 5: Hit ratio of different algorithms. Example traces where Mithril
significantly improves hit rate (top two), where Mithril shows modest im-
provement (middle two), and where Mithril shows little or no performance
gain (bottom two).
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Figure 6: Hit ratio curve and prefetching precision of LRU, PG and
Mithril Left: Mithril outperforms LRU and PG. Right: The prefetching
precision of Mithril is higher than PG and both two curves are not mono-
tonic.

5.4 Effects of Parameters

MITHRIL uses several parameters that now investigate in iso-
lation in terms of impact on hit ratio and prefetching precision
using a representative CP trace (w94).
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Figure 7: Effect of parameters in Mithril.

Maximum support S decides the maximum allowed degree
of hotness of a block. This is decided by considering the row
length of the mining table. If a block is requested more than
S times before mining, it gets kicked out as a frequent block.
As shown in Figure 7a, S has a small effect on hit ratio and
prefetching precision since most of the frequent blocks are
already filtered out by an underlying caching layer. Recall
that MITHRIL records blocks only during cache misses.

Lookahead range ∆ decides the maximum allowed times-
tamp difference for two blocks to be considered associated. It
is obvious that ∆ should be a parameter related to the number
of concurrent running processes. If too large, non-associated
block pairs will be mistaken as associated, thus increasing the
false positive rate. On the other hand, being too small will re-
sult in many associations being ignored and thus a high false
negative rate. As shown in Figure 7b, when ∆ is small, as ∆ in-
creases, the hit ratio increases substantially, while prefetching
precision decreases slightly. After certain threshold, further
increasing ∆ will not increase hit ratio. This is because the
best ∆ should relate to the number of concurrent running ap-
plications (at least as large as it), the given trace shown in the
figure has its best ∆ around 50.

Prefetching list size P determines the space that can be
used for storing associated blocks, which is the row length
of the prefetching table. Recall that when more than P asso-
ciated blocks are discovered, the old blocks are replaced in
a FIFO manner. Figure 7c shows that increasing P dramati-
cally reduces prefetching precision because a large P means
stale associations are also stored for prefetching. On the other
hand, the hit ratio first increases and then decreases with an
increasing P . We notice that setting P as 2 gives an acceptable
trade-off between hit ratio and precision across the various
datasets we considered.

Maximum metadata size M decides the maximum space
MITHRIL can use for the recording table, mining table and
prefetching table. As illustrated in Figure 7d, if M is too small,
there are not enough spaces for the prefetching table, dramat-
ically reducing the effect of MITHRIL. After a threshold,
further increasing M won’t increase the hit ratio. However,
setting M too large in situations that MITHRIL does not have
good performance will waste space which should be used for
caching. We thus recommend a default value of 10% of the
entire cache space based on traces we have tested.

Minimum support R has the largest effect on the perfor-
mance of MITHRIL. It decides when a request is ready for
mining and is the row length of the recording table. In Fig-
ure 7e, we can see that increasing R will increase prefetching
precision, while reducing the hit ratio. Two requests are re-
quired to appear closely R times to be considered associated,
and when we have a larger R, the requirement for being asso-
ciated is stricter, which diminishes the number of associations
and grows the confidence of discovered associations.

Different recording locations also have a large effect on
the performance of MITHRIL. As mentioned in Section 4, we
record only at cache misses, which reduces computation by
recording only the most important information. As shown in
Figure 7f, besides recording a) at cache miss, we can also
record b) when a block is evicted from cache, c) at cache miss
and eviction, or d) each time a request arrives. Using c) and
d) usually give more information to MITHRIL at a cost of
more computation. In other words, we can trade CPU cycles
for potentially better hit ratio and precision. As we observe
across the traces, recording at evictions (b) usually cannot
provide good performance; recording at evictions and misses
(c) occasionally provides similar performance to the other two
approaches a and d, but most of the time only slightly better
than recording at evictions (b). In contrast, recording at the
arrival of each request (d) usually gives the best performance
with the highest precision. As an alternative, recording at
cache misses (a) can greatly reduce the overhead of MITHRIL,
while, as we have evaluated in most traces, it provides less
than a 10% performance loss compared to recording at each
request.
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Figure 8: Latency and CPU usage of using no cache, LRU, Amp and
Mithril-LRU. On the top, each latency point is the average latency of
40000 requests. At the bottom, it shows the relatively increased CPU usage
of Mithril due to mining and prefetching, compared to LRU and Amp, the
increase is less than 1%.

Table 3: Latency Percentile (microseconds)

Percentile 50% 75% 90% 99%
no cache 6971 10403 13625 18072
LRU 5883 7452 10038 15801
AMP 3934 5097 6163 7765
Mithril 2551 3063 4173 10330

5.5 Real System Performance

Latency. A high hit ratio may not mean low latency in a real
system because of factors such as CPU overhead and late
prefetch. Especially for a history-based prefetching, the cost
of prefetching a random block is large. In Figure 8, we justify
the overhead compared with benefit. It shows the latency of
four approaches on CP trace w94: using no cache, using LRU
cache, using AMP and using LRU cache with a MITHRIL
prefetching layer. Compared to no cache, LRU reduces aver-
age latency by more than 26%, especially at the peaks, where
the no-cache system shows a high latency. Using a sequen-
tial prefetcher Amp, the latency further decreases by 32%
over LRU on average, whereas Mithril with LRU reduced
latency by 52% over LRU. Besides average latency, the la-
tency percentiles in Table 3 further illustrate the effectiveness
of MITHRIL on reducing latency. However, we do see that
at 99% percentile, MITHRIL has a higher latency over AMP,
which is caused by latency peaks discussed below.

Late prefetches. Although latency reduction due to MITHRIL
prefetching is evident, we also see that 22.4% of prefetches
are late, which means the arrival of prefetched blocks happen
after the time they are requested. Late prefetches affect the
performance of MITHRIL by wasting one disk read unless
caught by the disk controller.

MITHRIL warm up time. In Figure 8, focusing on the
first 5% percent of the requests in a system with MITHRIL,

we can see the there is no latency reduction at beginning, and
latency decrease as time goes from 0% to 10%. The decrease
occurs because MITHRIL needs sufficiently many requests
for warm-up before it conducts mining and prefetching.

Existence of latency peaks. MITHRIL does not eliminate
all latency peaks. The peaks stem chiefly from two phenom-
ena: they are due to long disk rotational latency or a burst
of requests, or a mix of these aspects. When the peaks occur
due to long disk rotational latency, MITHRIL can effectively
reduce latency by prefetching. One extreme case would be
if each block request demands the disk to rotate half way
to retrieve the content, causing peaks in a system without
MITHRIL. However, in systems with MITHRIL, associations
between these requests would be unveiled and harnessed. In
other words, MITHRIL would prefetch associated block into
the cache ahead of its request time, thus lowering latency. On
the other hand, if the latency peak is caused by a large num-
ber of outstanding I/Os [12], MITHRIL provides less benefit
because issuing prefetches only increases the burden on the
disk. Consequently, not all latency peaks can be removed by
MITHRIL.

CPU usage. MITHRIL is based on approximate association
mining, which might be CPU-intensive. As shown in the
figure, we see some CPU consumption increase for MITHRIL,
however, the increase is minor and within the limits afforded
by many storage systems.

5.6 MITHRIL Analysis

In this section, we analyze the behavior of MITHRIL un-
derlying its performance. Figure 9a shows the associations
discovered by MITHRIL after a full trace run. Both horizontal
and vertical axes are logical block addresses (LBA): if two
blocks bx and by are associated, a dot is placed at point (x , y).
The association plot clearly shows that MITHRIL not only dis-
covers sequential block associations, denoted by the diagonal
in the graph, but also many non-sequential block associations.

As mentioned earlier, MITHRIL is designed to catch the
mid-frequency blocks since frequent blocks are captured by
the underlying caching layer and rare blocks are by definition
not worth chasing after. Figure 9b and Figure 9c show the
hit count obtained by LRU and MITHRIL; the horizontal
axis is sorted by the frequency of blocks in the original trace.
LRU gets cache hits on most of the frequent blocks (left
part of the figure). For mid or low frequency blocks, LRU
shows a bushy image because whether LRU can catch a
mid or low frequency block depends on if the block shows
small-range locality. If a block shows small-range locality, it
can be caught by LRU. For example, if a block is accessed
only twice throughout the trace and the two accesses are just
separated by a few requests, then it will be captured by LRU.
However, if its two accesses are far away from each other,
then it won’t be captured by LRU. For MITHRIL, besides
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high-frequency blocks being captured, mid-frequency blocks
can also be captured because MITHRIL can predict its access
ahead of time. As shown in the figure, MITHRIL has higher hit
counts for most blocks in the mid-frequency range. These two
figures illustrate the crux of why MITHRIL provides a high hit
ratio: it discovers sequential associations and non-sequential
associations, capturing the mid-frequency blocks that tend to
be ignored by common cache replacement policies.

(a) Associations discovered by Mithril

(b) Hit count in LRU (c) Hit count in Mithril

Figure 9: Mithril Analysis. a): associations discovered by Mithril contains
both sequential associations and non-sequential associations. The four rect-
angular areas in the figure may represent two major applications that interact
with each other. b), c): hit count of blocks sorted by frequency in original
trace illustrates Mithril is able to capture mid-frequency blocks, while LRU
cannot.

6 Conclusion
Storage systems increasingly rely on effective caching layers
to sustain mounting demands for performance. We proposed
a novel general history-based prefetching layer, MITHRIL,
to supplement the caching layers. MITHRIL is based purely
on the logical timestamp of cache requests without any extra
hints, making it easy to use and integrate into existing systems.
We evaluated MITHRIL on 106 week-long CP traces and 29
70-day-long MSR traces of real storage systems in terms of
the hit ratio. Our experimental results suggest that MITHRIL
is lightweight compared to other history-based approaches,
and provides 7 × greater hit ratio over LRU and 36% greater

hit ratio over AMP sequential prefetching algorithm at modest
costs.

Combining effective cache replacement algorithms with
MITHRIL may create a low-overhead caching strategy for
capturing often overlooked mid-frequency items and bolster
cache performance in today’s cloud storage systems. To fur-
ther explore the capabilities of MITHRIL, future work will
further consider a wider range of cache replacement algo-
rithms and evaluate the performance gain from intelligent
prefetching. Finally, the MITHRIL algorithm would benefit
from being self-adaptive to remove the need for optimizing
parameters.
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