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Abstract—Skyline queries are important in many application
domains. In this paper, we propose a novel structure Skyline
Diagram, which given a set of points, partitions the plane into a
set of regions, referred to as skyline polyominos. All query points
in the same skyline polyomino have the same skyline query results.
Similar to k"-order Voronoi diagram commonly used to facilitate
k nearest neighbor (kKNN) queries, skyline diagram can be used to
facilitate skyline queries and many other applications. However,
it may be computationally expensive to build the skyline diagram.
By exploiting some interesting properties of skyline, we present
several efficient algorithms for building the diagram with respect
to three kinds of skyline queries, quadrant, global, and dynamic
skylines. Experimental results on both real and synthetic datasets
show that our algorithms are efficient and scalable.

1. INTRODUCTION

Similarity queries are fundamental queries in many appli-
cations which retrieve similar objects given a query object.
One class of the similarity queries, kNN queries, have been
extensively studied which retrieve the k nearest (or most simi-
lar) objects based on a predefined distance or similarity metric.
For objects with multiple attributes, the similarity or distance
on different attributes are typically aggregated with predefined
weights. In many scenarios, it may not be clear how to
define the relative weights in order to aggregate the attributes.
Skyline, also known as Maxima in computational geometry or
Pareto in business management, is important for multi-criteria
decision making or multi-attribute similarity retrieval. Without
assuming any relative weights of the attributes, the skyline of
a set of multi-dimensional data points consists of all objects
that are not dominated by any others, i.e., no other objects
are better (or more similar to the query object) in at least one
dimension and at least as good (as similar) in all dimensions.

Skyline Queries. There are many example applications that
skyline queries may be desired. For instance, a physician
who is treating a heart disease patient may wish to retrieve
similar patients based on their demographic attributes and
diagnosis test results in order to enhance and personalize the
treatment for the patient. A car dealer who wishes to price a
used car competitively may attempt to retrieve all similar cars
(competitors) on the market based on a set of attributes such as
mileage and year. For simplicity, we use the running example
below to illustrate the skyline definition as well as algorithm
descriptions throughout the paper.

Consider a hotel manager who wishes to retrieve all
competing hotels that are similar to his/her hotel with respect

to price and distance to downtown. Figure 1(a) illustrates
a dataset P = {py,p>,.., P11}, each point representing a
hotel with two attributes: the distance to downtown and the
price. Figure 1(b) shows the corresponding points in the two-
dimensional space.
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Fig. 1: A skyline example of hotels.

Given a query hotel g = (10, 80), if we only consider the
hotels with higher price and longer distance to downtown,
i.e., the points in the first quadrant with ¢ as the origin, the
skyline points are ps, ps, p1o as shown in Figure 1(b) (we
refer to this as quadrant skyline). If we consider all hotels,
we can compute the skyline in each quadrant independently,
i.e., only considering dominance within each quadrant, and
take the union which is ps, ps, pio, Pe, P11 (we refer to this
as global skyline). Alternatively, if we consider the absolute
difference to the query point on each dimension, hence a point
can dominate another point in a different quadrant, we have
dynamic skyline'. To compute dynamic skyline, we can map
all data points to the first quadrant with g as the origin and the
distance to g as the mapping function, and then compute the

Iwe follow the name conventions in the literature [5] for these different
types of skyline queries.



traditional skyline from all the mapped points. The mapped
points with #[j] = |pi[j] — qljll + ¢[j] on each dimension j
are shown in Figure 1(c) and (d). It is easy to see that ¢ and
t11 are skyline in the mapped space, which means pg and pj;
are the dynamic skyline with respect to query g. We note that
dynamic skyline is always a subset of global skyline since the
mapped points may dominate some points that are otherwise
global skyline.

Skyline Diagram. Given the importance of such skyline
queries, it is desirable to precompute the skyline for any
random query point to facilitate and expedite such queries in
real time. Voronoi diagram [3] is commonly used to compute
and facilitate kNN queries. Inspired by the Voronoi diagram
which captures the regions with same kNN query results, we
propose a fundamental structure in this paper, referred to as
skyline diagram, to capture the query regions with the same
skyline result and to facilitate skyline queries.
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Fig. 2: Voronoi diagram of kNN queries. Fig. 3: Skyline diagram of quadrant sky-
line.

Given a set of points (seeds), Voronoi diagram (as shown
in Figure 2) partitions the plane into a set of polygons
corresponding for each point, each query point in the region
is closer to the point than to any other points. These regions
are called Voronoi cells. In other words, the query points in
the same Voronoi cell have the same nearest neighbor which
is the point in the cell. For example, the query points in the
shaded region in Figure 2 have ps as the nearest neighbor.
This is the case of kNN query where k = 1, similarly, k-
order Voronoi diagram can be built for kNN queries (k > 1),
where the query points in each Voronoi cell have the same
kNN results (may not correspond to the point in the cell as in
the Voronoi diagram).

Analogously, given a set of points (seeds), our proposed
skyline diagram partitions the plane into a set of regions,
which we call skyline polyominos, and the query points in
each skyline polyomino have the same skyline results. Figure 3
shows an example skyline diagram for quadrant skyline queries
given the same points. The query points in the shaded region
have the same skyline result of pg, pio.

Given the precomputed skyline diagram, skyline queries
can be quickly answered in real time. In addition, it can be used
for other applications such as: 1) to facilitate the computation
of reverse skyline queries [5], [23], similar to using Voronoi
diagram for reverse k nearest neighbor (RKNN) queries [22],
2) to authenticate skyline results from outsourced computation,
similar to using Voronoi diagram for authenticating ANN
queries [25], and 3) to enable efficient Private Information
Retrieval (PIR) based skyline queries, similar to using Voronoi
diagram for PIR based kNN queries [24].

Challenges. While there are many applications of skyline
diagram, it is non-trivial to compute the diagram. For quadrant
or global skyline queries, a straightforward approach is to draw
vertical and horizontal grid lines crossing each point, which
divides the plane into O(n?) cells. We can easily show that each
of these cells has the same skyline since there are no points
within the cell that would change the dominance relationship
of the points. Thus, we can compute the skyline for each cell,
each requiring O(nlogn) time. The time complexity of such a
baseline algorithm is O(n*log n) which is not efficient.

The time complexity of computing the skyline diagram
for dynamic skyline can be significantly higher. Because of
the mapping function, a straightforward approach is to draw
horizontal and vertical bisector lines of each pair of points
on each dimension, in addition to the grid lines crossing each
point. These resulting subcells are guaranteed to have the same
dynamic skyline since there are no points or mapped points in
each subcell that would change the dominance relationship of
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the points. Since the plane is divided into 0((;) ) subcells, such

a baseline algorithm requires O(n’ logn) complexity which is
prohibitively high.

Contributions. In this paper, we formally define a novel
structure, skyline diagram, which enables precomputation of
skyline queries as well as other applications. We study the
skyline diagram with respect to three different skyline query
definitions, quadrant, global, and dynamic skyline, and propose
efficient algorithms. To facilitate the presentation, we focus on
the algorithms for two-dimensional space first and if not specif-
ically mentioned, all time complexities refer to the case of two
dimensions, then briefly show that our proposed algorithms
are extensible to high-dimensional space. We summarize our
contributions as follows.

e  We define a novel structure, skyline diagram, to enable
precomputation of skyline queries. The skyline dia-
gram consists of skyline regions, referred to as skyline
polyominos, each of them corresponding to the same
set of skyline result. Similar to Voronoi diagram for
kNN queries, skyline diagram has many applications
including precomputation of skyline queries, reverse
skyline queries, authentication of outsourced skyline
queries, and PIR based skyline queries.

e To compute the skyline diagram for quadrant/global
skyline, we present a baseline algorithm with on?)
time complexity and define an important notion of
skyline cell. Furthermore, based on the observation of
some interesting properties, we propose two improved
O(n?) algorithms, which perform much better than the
baseline algorithm in practice. Finally, we quantify
the exact relationship between the skyline results of
neighboring cells, and present an O(n*) sweeping
algorithm which further improves the performance.

e  To compute the skyline diagram for dynamic skyline,
we first present a baseline algorithm with O(n’) time
complexity and define an important notion of skyline
subcell. Furthermore, based on the observation that
dynamic skyline query result is a subset of global
skyline, we present an improved subset algorithm
utilizing the skyline diagram of global skyline, which
requires O(n°) but is better in practice. Finally, based
on the relationship of the skyline results of neighbor-



ing subcells, we present a scanning algorithm which
achieves O(n* log n) time.

e  We conduct comprehensive experiments on real and
synthetic datasets. The experimental results show our
proposed algorithms are efficient and scalable.

Organization. The rest of the paper is organized as follows.
Section II presents the related work. Section III introduces
some background knowledge and formally defines skyline
diagram. The algorithms for computing the skyline diagram
for quadrant/global skyline and dynamic skyline are presented
in Sections IV and V respectively. We report the experimental
results and findings in Section VI. Section VII concludes the

paper.

II. ReLAaTED WORK

The skyline computation problem was first studied in
computational geometry [9] which focused on worst-case
time complexity. [8], [16] proposed output-sensitive algorithms
achieving O(nlogv) in the worst-case where v is the number
of skyline points which is far less than n in general. Since the
introduction of the skyline operator by Borzsonyi et al. [1],
skyline has been extensively studied in the database field [2],
(51, [26], [11], [15], [17], [18], [19], [20], [21], [23].

The most related works to our skyline diagram are the
“safe zone” for location-based skyline queries [7], [10], [13],
[4]. Huang et al. [7] proposed the first work on continu-
ous skyline query processing. Given a set of n data points
< Xi, Yi3 Vxis Vyis Dils oo Pim > (i = 1,...,n), where x; and y; are
positional coordinates in two-dimensional space, v,; and v,; are
the velocity in the X and Y dimensions, while p;;(j = 1,...,m)
are the m static nonspatial attributes, which will not change
with time. For a query point ¢ starting from (x,,y,) moving
with (v4x, Vgy), g poses continuous skyline query while moving,
and the queries involve both distance and all other static
dimensions. Such queries are dynamic due to the change in
spatial variables. In their solution, they compute the skyline
for x4,y, at the start time 0. Subsequently, continuous query
processing is conducted for each user by updating the skyline
instead of computing from scratch. Lee et al. [10] studied a
similar problem to [7]. Both of them rely on the assumption
that the velocities of the moving points are known. Generally
speaking, they compute the skyline for query points moving on
a line segment. Lin et al. [13] studied a problem of computing
the skyline for a range. They employed the similar idea for
authenticating skyline queries in [12], [14]. Cheema et al. [4]
proposed a safe zone for a query point g. A safe zone is the
area such that the results of a query g remain unchanged as
long as the query lies inside the area. Both [13] and [4] studied
the location-based skyline problem with m static attributes and
one dynamic attribute, which is the distance to the query point.

The main difference between the above work and our work
is that they only consider one dynamic attribute, while in our
case all attributes can be dynamic. The skyline polyomino can
be considered as a generalization of the safe zone in two or
high-dimensional space. Furthermore, it is non-trivial to extend
these query techniques from one dynamic attribute to two
or high-dimensional case, as fundamentally these algorithms
convert the problem to nearest neighbor queries for the single
dynamic attribute and utilize Voronoi diagram.

III. PRELIMINARIES AND PROBLEM DEFINITIONS

In this section, we introduce our skyline diagram definition
and related concepts as well as their properties which will be
used in our algorithm design. For reference, a summary of
notation is given in Table L

TABLE I: The summary of notations.

Notation Definition
P dataset of n points
pilj] the ;" attribute of p;
q query point
n number of points in P
d number of dimensions in P
S; domain size of i dimension
Cij Cell with bottom left corner coordinate (i, j)
Sky(Ci ;) the skyline of Cell C;;
SCi, Subcell with bottom left corner coordinate (i, j)
Sky(SCij) the skyline of Subcell C;;
S kyline(P") the skyline of dataset P’

Definition 1: (Skyline). Given a dataset P of n points in
d-dimensional space. Let p and p’ be two different points in
P, we say p dominates p’, denoted by p < p’, if for all i,
plil < p’[i], and for at least one i, p[i] < p’[i], where p[i] is
the i dimension of p and 1 < i < d. The skyline points are
those points that are not dominated by any other point in P.

Definition 2: (Dynamic Skyline Query [5]). Given a
dataset P of n points and a query point g in d-dimensional
space. Let p and p’ be two different points in P, we say p
dominates p’ with regard to the query point g, denoted by
p < p’, if for all i, |p[i] — qlil] < |p’[i] — qli]], and for at least
one i, |p[i]1-qlill < |pli1-qlill, where p[i] is the i"* dimension
of pand 1 <i < d. The skyline points are those points that
are not dominated by any other point in P.

The traditional skyline computation is a special case of
dynamic skyline query where the query point is the origin.
On the other hand, computing dynamic skyline given a query
point ¢ is equivalent to computing the traditional skyline after
transforming all points into a new space where g is the origin
and the absolute distances to ¢ are used as mapping functions.
Take Figure 1 as an example, given a query point g = (10, 80),
pe dominates p; because pg’s corresponding point #; in the
mapped space dominates p;’s corresponding point 7. Because
no other points can dominate 7 and #;, the result of dynamic

skyline query given q is {ps, p11}-

The dynamic skyline query considers the dominance
among all points. Given a query point, if we consider each
quadrant divided by the query point independently, i.e., only
consider dominance among points within the same quadrant,
we can define global skyline query below.

Definition 3: (Global Skyline Query [5]). Given a dataset
P of n points and a query point g in d-dimensional space.
The query point ¢ divides the d-dimensional space into 2¢
quadrants. Let p and p’ be two different points in the same
quadrant of P, we say p dominates p’ with regard to the query
point g, denoted by p < p’, if for all i, |p[i]—q[i]| < |p’[i1-4li]l,
and for at least one i, |p[i] — g[i]| < |p’[i] — qli]|, where p[i] is
the i dimension of p and 1 < i < d. The skyline points are
those points that are not dominated by any other point in P.

Given a query point, we refer to the global skyline from a
single quadrant as Quadrant Skyline Query. In other words,
the global skyline is the union of the quadrant skyline from
all quadrants. Back to Figure 1, given the query point g, the



quadrant skyline is {ps, ps, p1o} in the first quadrant, {ps} in
the second quadrant, @ in the third quadrant, and {p;;} in
the fourth quadrant. The global skyline is the entire set of
{p3, Ps» Ps»> P10, P11} It is easy to see that the dynamic skyline
is a subset of the global skyline. This property will be used in
our algorithm design for dynamic skyline diagram.

Similar to the definition of Voronoi cell and k"-order
Voronoi diagram for kNN query, we define the skyline poly-
omino and skyline diagram for skyline query as follows.

Definition 4: (Skyline Polyomino). A polyomino S P; is
a skyline polyomino (hereinafter to be referred as skymino),
if given any two query points g, and g, in S P;, g,’s skyline
result Sky(q,) equals to gp’s skyline result Sky(g;), while for
any query point g, outside S P;, the skyline result Sky(g.) of
q. is not equal to Sky(q,).

Definition 5: (Skyline Diagram). Given a dataset P of n
points (seeds) py, ..., p,. We define the Skyline Diagram of P
as the subdivision of the plane into a set of polyominos with
the property that any query points in the same polyomino have
the same skyline query result.

Problem Statement. Given n points, we aim to compute
the skyline diagram for quadrant/global skyline queries and
dynamic skyline queries efficiently.

IV.  SkYLINE D1AGRAM OF QUADRANT AND GLOBAL SKYLINE

In this section, we present detailed algorithms for com-
puting skyline diagram of quadrant in two-dimensional space
and briefly show that they are extensible to high-dimensional
space. Note that global skyline can be simply computed by
taking a union of all quadrant skylines. We first show an
O(n?) baseline algorithm and define an important notion of
skyline cell, which will be used by all our proposed algorithms.
We then present two improved algorithms based on directed
skyline graph and relationship between neighboring cells. Both
algorithms have O(n?) time complexity but they are much
faster than the baseline in practice. Finally, we quantify the
exact relationship between the skyline results of neighboring
cells, and present an O(n*) sweeping algorithm which further
improves the performance. For two-dimensional space, we use
x and y to denote the two dimensions (instead of the ;™
attribute as listed in Table I).

A. Baseline Algorithm

We first show a baseline algorithm for computing skyline
diagram and introduce an important notion, skyline cell. The
key for computing skyline diagram is to find regions such that
any query points in the same region have the same skyline
result. Intuitively, we can find small regions that are guaranteed
to have the same results and then merge them to form bigger
regions.

Skyline Cell. If we draw one horizontal and one vertical
line over each point, these O(n) grid lines divide the plane
into O(n?) cells. For example, in Figure 4, the horizontal and
vertical lines over each of the 11 points divide the plane into
144 cells. It is clear that any query points inside each cell are
guaranteed to have the same quadrant/global skyline because
there are no points in the cell that would change the dominance
relationship of the points with respect to the query point. We
name the cell as Skyline Cell.

Definition 6: (Skyline Cell). The horizontal and vertical
lines over each point divide the plane into skyline cells. Any
query points in the same skyline cell have the same skyline
results for quadrant/global skyline.
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Fig. 4: Quadrant skyline query.

Finding skyline for each skyline cell. Since we know that
query points in each skyline cell have the same skyline results,
we can employ any skyline algorithm to compute the skyline
for each cell. Given a cell C;;, we denote Sky(C;;) as its
skyline result. We can then merge the skyline cells with the
same results to form skyline polyominos. Since the skyline
computation given n points for each cell takes O(nlogn) time
and there are O(n?) skyline cells, the total time complexity is
O(n3 logn). If the n points are sorted on x-coordinate, we can
compute the skyline for one cell in O(n) time. Therefore, the
total time can be reduced to O(n?). This baseline algorithm
is shown in Algorithm 1. After the points are sorted (Line
1), the steps for computing skyline in O(n) based on ordered
points are shown in Lines 5-12, where g; ; is the left lower
intersection of skyline cell C; ;.

Algorithm 1: The baseline algorithm for skyline
diagram of quadrant skyline queries.

input : a set of n points and skyline cells C; ;.
output: skyline of each skyline cell Sky(C; ;).

1 sort the points in ascending order on x-coordinate;
2 for i=0 to n do

3 for j=0 to n do
4 for k=1 to n do
5

6

if pilx] > gi ;[x1&&pxly] > gi;[y] then
L add py to the candidate list;

7 choose the first element pyis; as the first skyline;
8 Ptemp = P firsts
9 for /=2 to |candidate list| do
10 if pi[y] < premply] then
11 add p; to skyline pool;
12 Premply] = piy];
13 | return skyline pool as Sky(C;;);

Merging skyline cells into skyline polyominos. Once we have
the skyline results for each cell, we can merge the cells with
same results to form skyline polyominos. For each skyline cell,
we search its upper and right cells and combine those cells if
they share the same skyline. The entire merging requires O(n?)
time.

Example 1: In Figure 4, the skyline cells Cs9, C4,1, and
Cs, share the same skyline result {pg, pio}, and hence are
combined to form a skyline polyomino.

Complexity. As we analyzed above, finding skyline phase
requires O(n’) time, and merging phase requires O(n?) time.



Therefore, the total time complexity for the baseline algorithm
is O(n®). We have O(n?) skyline cells or skyminos and each
skymino requires O(n) to store. Thus, the space complexity
is O(n®). The above analysis assumes attribute domain is
unlimited. In practice, the data attributes often have a domain
with limited size (or can be discretized), hence the actual
complexity is also bounded by the domain size (the number of
possible values) of each dimension. Given a domain size s, the
number of skyline cells is bounded by O(min(s?, n%)), hence
both the time and space complexity for the baseline algorithm
is O(min(s*, n*)n). We note that the remaining algorithms have
the same space complexity due to the output structure in this
section.

B. Directed Skyline Graph Algorithm

In the baseline algorithm, we need to compute skyline for
each skyline cell from scratch which is costly. In this subsec-
tion, based on the observation of some interesting relationships
of the skyline results of neighboring cells, we propose an
incremental algorithm utilizing the directed skyline graph for
computing skyline for neighboring cells. Note that the merging
step of the skyline cells remains the same as the baseline.

Our algorithm is based on the key observation that when
moving from one cell to its neighboring upper or right cell, the
only point that will cause the skyline result to change is the
point on the crossed grid line. For example, in Figure 4, given
cell Coyp, the skyline is {p1, ps, p11}. When moving to its right
cell Cy across the p; grid line, the new result is the skyline
of the remaining points after removing p;, that is {pe, p11}.
Similarly, when moving from Cy to its upper cell Cy; across
the p;; grid line, the new result is the skyline of the points after
removing pii, that is {p1, ps, p1o}. Based on this observation,
we propose to use a data structure called the directed skyline
graph to facilitate the incremental computation of the skyline
from one cell to its neighboring cell.
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We first briefly describe the directed skyline graph (DSG)
adapted from [15] and explain how it can be used to facilitate
the incremental skyline computation and then present our
algorithm utilizing the graph for computing the skyline for
all skyline cells.

Given n points, we first compute its skyline layers by
employing the skyline layer algorithm from [15]. The skyline
layers of our running example are shown in Figure 5. The
first skyline layer consists of all skyline points in the original
dataset. The second skyline layer consists of all skyline points
of the remaining points after removing the points from the first
skyline layer. And similarly for the remaining skyline layers.
There are several properties for skyline layers: 1) the points
on the same layer cannot dominate each other, 2) the points

on a lower layer may dominate the points on a higher layer,
and 3) the points on a higher layer cannot dominate the points
on a lower layer. Based on these skyline layers, we obtain the
directed skyline graph which captures all the direct dominance
relationships between the points as shown in Figure 6. For
example, pg directly dominates p; and ps. We note that the
directed skyline graph algorithm from [15] includes both direct
and indirect dominance relationships (e.g., ps dominates py
indirectly). We adapted it such that we only include the direct
links which are needed to solve our problem.

Algorithm 2: The directed skyline graph algorithm
for skyline diagram of quadrant skyline queries.

input : a set of n points and skyline cells C; ;.
output: skyline of each skyline cell Sky(C; ).

1 compute the directed skyline graph DSG;

2 Sky(Cop) = Sky(P);

3 for i=0 to n-1 do

4 tempDSG=DSG;

5 for j=1 to n do

6 delete the point p; between C; ;- and C;; from DSG;

7 delete the link between p; and its directed children;

8 Sky(Cij) = Sky(Cij-1) - p; + the children of p; without any

remaining parent;

9 DSG=tempDSG;

10 delete the point p; between C;o and Ci, 10 from DSG;

1 delete the link between p; and its directed children;

12 Sky(Cis10) = Sky(Cip) - p; + the children of p; without any remaining
parent;

We now show how we can incrementally compute the sky-
line from one cell to its neighboring cell utilizing the skyline
graph. When moving from one cell to its right neighboring cell
across the grid line over p, there are two changes in the skyline
result caused by the point p: 1) p is no longer a skyline point,
2) new skyline points may appear since they are not dominated
by p anymore with respect to the query point in the new cell.
So all we need to do is to remove p as well as its dominance
links from the skyline graph, any of the children points of p
without remaining parents will be a new skyline (since it is no
longer dominated by any points).

Given any cell, we can also compute its upper neighboring
cell in a similar way. Hence our algorithm starts from the
origin cell Cpp, and incrementally computes the first row of
cells from left to right. Then it incrementally computes all the
rows from bottom to up. The algorithm is shown in Algorithm
2. The directed skyline graph is computed in Line 1 and the
skyline for Cy is computed in Line 2. The skyline for the each
row is computed in Lines 5-8. Lines 9-11 copy and update the
DSG for next row.

Example 2: Given Cyq in Figure 4, its skyline is the set
of points on the first skyline layer, {p1, ps, p11}. When moving
from Cyy to its right neighboring cell C; across the p; grid
line, to compute the new skyline, all we need to do is to remove
p1 (p1 does not have any direct dominance links), hence the
skyline for C ¢ is simply {ps, p11} after removing p; from the
skyline set. When we move further to Cj’s right neighboring
cell Cy across the pg grid line, we just need to remove pg and
remove the dominance links from pg to ps; and ps. Since ps
is no longer dominated by any points after p¢ is removed, it
becomes a new skyline. Hence the skyline for C, consists of
the remaining skyline p;; and the new skyline ps, i.e., {ps, p11}-

Complexity. As we iterate through all the cells in one row,



we are removing dominance links from the skyline graph.
Each link costs one update and the total number of links
is O(n*). Therefore, it requires O(n?) time to compute the
skyline for cells in one row. Since there are n rows, the time
complexity for the directed skyline graph algorithm is O(n?).
We note that in practice, the number of links is much smaller
than n?. Hence the algorithm is much faster than the baseline
algorithm in practice. Similar to the analysis in baseline
algorithm, given a limited domain size s, the total number
of links is O((min{s®, n})?). Therefore, the time complexity
for the directed skyline graph algorithm is O((min{s?, n})*n).
The space complexity stays the same as the baseline algorithm
which is O(min(s?, n*)n).

C. Scanning Algorithm

The previous algorithm still involves computation of sky-
line. Ideally, we would like to avoid the computation as much
as possible. We observed earlier that the skyline results for
neighboring cells are different only due to the point on the
shared grid line. For example, in Figure 7, Sky(C;,) and
Sky(Cy,) are different due to ps, same for Sky(C;3) and
Sky(C,3). Similarly, Sky(C;,) and Sky(C,3) are different due
to pg, same for Sky(C,2) and Sky(C,3). In this subsection,
we observe an interesting property of the exact relationship
between the skyline results of neighboring cells, and present a
new O(n?) time algorithm utilizing this property for computing
skyline for all cells. Again, the merging of cells into skyline
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Fig. 7: Scanning algorithm.

Theorem 1: Given any skyline cell C;; (except the ones
that have a point as its upper right corner), and its right cell
Cit1,j, upper cell C; .1, and upper right cell Ci j41, their
skyline results have a relationship as follows.

Sky(Cij) = Sky(Cis1j) + Sky(Ci ju1) = Sky(Cixr j+1)?

Proof: Given a cell C; ;, we define the following. pr (pc)
denotes the point that lies on the upper (right) grid line of C; ;.
Range A is the rectangle formed by the grid lines crossing
pr and pc (excluding the two points). Range B is the right
rectangle of A. Range C is the upper rectangle of A. And
Range D is the upper right rectangle of A. An example is
shown in Figure 7.

Consider C; ;’s upper right cell Cyy j,1, we denote SkyP(A)
as the set of points in range A contributed to Sky(Cit1 j+1).

2multiset operation.

And similarly for SkyP(B), SkyP(C), and S kyP(D). Note that
SkyP(D) will be empty if SkyP(A) is not empty which will
dominate all points in D.

We can compute the skyline results of the four cells as
follows.

Sky(Ci ;) = {pr} U{pc}tU SkyP(A)
Sky(Cis1,j) = {pr} U SkyP(A) U SkyP(C)
Sky(Ci j+1) ={pc} U SkyP(A) U SkyP(B)
Sky(Cir1js1) = SkyP(A) U SkyP(B) U SkyP(C) U SkyP(D)

Then we have:
Sky(Cis1,j) + Sky(Ci j+1) = Sky(Ciz,j+1)
= ({pr} U SkyP(A) U SkyP(C)) + ({pc} U SkyP(A) U SkyP(B))
—(SkyP(A) U SkyP(B) U SkyP(C) U S kyP(D))

= {pr} U{pctU SkyP(A) = Sky(Ci ;)
|

Example 3: Given cell C;, in Figure 7, pg is pg and pc
is pe. Consider the skyline result of its upper right cell C,3,
we have SkyP(A) = {ps}, SkyP(B) = 0 as p; is dominated
by ps, SkyP(C) = {p3} as p», ps are dominated by pg, and
SkyP(D) = 0 as ps4 is dominated by pg. We have skyline result
for the upper right cell Sky(Cy3) = {ps,ps}, the upper cell
Sky(C13) = {pe, ps}, and the right cell Sky(C22) = {p3, ps, po}-
It is easy to see that the skyline for the given cell is Sky(C») =
Sky(Cap2) + Sky(C13) = Sky(Ca3) = {ps, ps, po}.

We note that the above property holds for all skyline cells
except the ones that have a point as its upper right corner.
For these cells, their skyline is the upper right point because
this point dominates all the upper right region. For example,
in Figure 7, Sky(Cy43) = {ps} and Sky(Cs6) = {ps}.

Algorithm 3: The scanning algorithm for skyline
diagram of quadrant skyline queries.

input : a set of n points and skyline cells C; ;.
output: skyline of each skyline cell Sky(C; ;).
1 for i=0 to n do
L Sky(Cin) = 0
Sky(Cpi) = 0;

2
3
4 for i=n-1to 0 do

5 for j=n-1to 0 do

6 if there is a point p on the upper right corner of C;; then
7 | Sky(Cij=(p});

8 else

9 | SKky(Cij) = Sky(Cis1,j) + Sky(Ci js1) = Sky(Cisn ju1);

Based on these properties, we present a scanning algorithm
as shown in Algorithm 3. The basic idea is to start from the
top and rightmost cell, and scan the cells from the top down
and right to left, then utilizing the property in Theorem 1 to
compute the skyline for each cell. We first initialize the skyline
results for the skyline cells on the top row and rightmost
column to @ (Lines 1-3). Then for each cell C;;, if there is a
point p on its upper right corner, we set Sky(C; ;) = {p} (Line
7). Otherwise, we use Sky(C; ;) = Sky(Cis1,j) + Sky(Ci js1) —
Sky(Cit1,j+1) to compute the skyline of C;; (Line 9).



Complexity. There are O(n?) cells, each cell requires O(n)
time for multiset computation. Therefore, Algorithm 3 requires
O(n?) time in total. We note that in practice, the time for
multiset computation is much smaller than n. Thus the algo-
rithm is much faster than the baseline algorithm in practice.
Given a domain size s for each dimension, the number of
cells is bounded by O(min(s*,n?)), hence Algorithm 3 requires
O(min(s?,n*)n) time in total. The space complexity stays the
same as the baseline algorithm which is O(min(s?, n*)n).

D. Sweeping Algorithm

All previous algorithms involve computing skyline for each
skyline cell (divided by the grid lines) and then merging them
into skyline polyominos. Ideally, if we can find the skyline
polyominos directly rather than combining the skyline cells,
we can save the cost of computing skyline for each skyline
cell. In this subsection, we show a sweeping algorithm that
achieves this goal.
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We observed previously that when we move from one cell
to its right cell, the only change in the skyline result is caused
by the point on the crossed grid line. In fact, we can further
observe that if the point on the crossed grid line lies below
the cell, then the skyline result does not change at all. This is
because we are only considering the points in the cell’s upper
right quadrant. For example, C3; has skyline result {pg, pio}.
When we move from Cs; to Cy4; crossing point py, the skyline
remains the same because p;; is below the cells and does not
affect the result. Similarly, when we move from one cell to its
upper cell, if the point on the crossed grid line is to the left
of the cells, the skyline result does not change either. In other
words, each point only affects the skyline result of its lower
and left cells, not its upper or right cells. Motivated by this
observation, instead of drawing grid lines over each point to
divide the plane into skyline cells, we can draw two half-open
grid lines starting from each point, one downward and another
leftward. These O(2n) grid line segments divide the plane into
a set of polyominos, each containing one or more cells. Since
we know that each point will not affect the skyline result of
its upper and right cells, we can show that any query points
in such formed polyominos have the same skyline results. We
have a theorem as follows.

Theorem 2: Given a set of points, if we draw two half-
open grid lines starting from each point, one downward and
another leftward, each polyomino formed by these O(2n) lines

is a skyline polyomino and all query points inside have the
same first quadrant skyline query results.

Proof: Given a skyline polyomino formed by these half-
open grid lines, if we consider the upper right corner query
point for each of the skyline cells in the polyomino, they have
the same set of points in their upper right quadrant, thus they
have the same skyline results. We have shown earlier all points
in the same skyline cell have the same quadrant skyline results,
hence all query points in the same polyomino have the same
first quadrant skyline results. ]

Algorithm 4: The sweeping algorithm for skyline
diagram of quadrant skyline queries.

input : a set of n points.

output: skyline polyominos.

/*compute all the intersection points and link them by left and right
neighbors in Lines 4-10%/;

sort the points in descending order on y-coordinate, p; (p,) is the point with
highest (lowest) y-coordinate;

-

)

3 pileft =0, pilyD;

4 for i=2 to n do

5 insert p; into sorted queue X by x-coordinate and its new index is j;
6 pileft = (pj-1lx], pily]);

7 (pj-1lx], pilyD.right = pi;

8 for j=i to 1 of sorted queue X do

9 pj-11x], pilyD-left = (pj-2[x], pilyD:

10 (pj-2lx], pilyD.right = (pj-1[x], pilyD;
11 /*similarly, we can compute the lower/upper neighbor of each intersection

point*/;

12 for each intersection point g, do

13 skyminog = {go}; g= go;

14 skymino,.append(g.left); g = g.left;

15 while g[x]! = go[x] do

16 skyminog.append(g.lower); g = g.lower; skyminog.append(g.right);

g = g.right;
17 return skymino,;

While it is straightforward to visually see the skyline poly-
ominos from the figure (e.g., Figure 8), we need to represent
the skyline polyominos computationally by its vertices, which
are the intersection points of the half-open grid lines including
the points themselves. We now show how to compute the
coordinates of these vertices and then how to find the vertices
for each polyomino.

We observe that for each point p, its horizontal grid line
only intersects with the vertical grid lines from its upper points,
i.e., with larger y coordinates. Hence, given a point p(x,y), we
can compute all the intersection points on its horizontal grid
line as g(x;,y), where x; is the x coordinate from those points
with larger y coordinates than p. For each intersection point,
we record its left and right neighbor, so that we can retrieve
the vertices for each polyomino. Similarly, for each point,
we compute the intersection points on its vertical grid line,
and record the lower and upper neighbor for each intersection
point. The detailed algorithm is shown in Algorithm 4.

Example 4: For ps in Figure 8, its horizontal
line intersects with the vertical lines of po,ps,pi,
hence the intersection points on its horizontal line are
(palx], palyD, (p3lx], palyD), (p1lx], paly]), and (O, paly]). For
each point, it has a left/right and upper/lower neighbor, e.g.,
(p2lx), paly)).right = pa.

Once all the intersection points are computed and linked
by their left/right and lower/upper neighbors, we can retrieve
the sequence of vertices for each polyomino. We can see



that each intersection point has a uniquely corresponding
polyomino with the point as its upper right corner. Therefore,
for each intersection point g, we find the sequence of vertices
forming its corresponding polyomino. The polyominos are
either rectangles or half-rectangles with lower left side shaped
like steps. Hence we first retrieve g’s left neighbor. We then
repeatedly find the next lower neighbor and right neighbor
until the right neighbor reaches the same y coordinate as the
original intersection point g.

Example 5: For the intersection point g(ps[x], p1o[y]) in
Figure 8, we first find its left vertex g»(ps[x], pioly]). We
then find the lower vertex gs3(ps[x], p11[y]), and the right
vertex g4(p11lx], p11[y]) in the first iteration. Because g4 is
not meeting the grid line at g; yet, it continues to find the
next lower vertex gs(pi1[x], 0) and the right vertex ge(ps[x], 0).
Now the algorithm stops as gg reaches the y grid line of g;.
The sequence of vertices for the skymino corresponding to g;
is g1, 82, 83, 84, 85> &6-

Complexity. The computation of intersection points requires
O(n?) time. Because each grid line segment between two
neighboring intersection points will be used at most twice for
constructing skyminos, the skymino constructing step requires
O(n?) time. Therefore, Algorithm 4 requires O(n?) time. Given
a domain size s for each dimension, the number of intersec-
tion points is bounded by O(min(s*, n*)), hence Algorithm 4
requires O(min(s*>,n?)) time. The space complexity stays the
same as the baseline algorithm which is O(min(s?, n*)n).

E. Extension to High-dimensional Space

In this subsection, we show how to adapt the baseline
algorithm as well as the directed skyline graph algorithm and
scanning algorithm from two dimensions to high dimensions.
The sweeping algorithm, although provides the best perfor-
mance on correlated dataset for two-dimensional space, it can
not be easily extended to high-dimensional space and we leave
its extension to future work.

1) Baseline Algorithm: We can construct O(n?) skyline
(hyper) cells and easily see that each cell has the same skyline.
For each cell, we find those points that lie on its first orthant
(the counterpart of quadrant in high-dimensional space) and
then use O(nlog?~! n) skyline algorithm to compute the skyline
results for each cell. The cells with the same results are merged
into polyminos.

Complexity. We have O(n) skyline cells, and each cell
requires O(nlog?~!'n) time for finding the skyline because
there is no monotonic property in high-dimensional space.
The merging phase (which is the same for all algorithms)
requires O(n?) time for searching in d-dimensional space.
Thus, the baseline algorithm requires O(n®*'log? ! n) time.
Since we have O(n) skyminos and each skymino requires O(n)
space, the space complexity is O(n?!). The above analysis
assumes unlimited domain. Given limited domain size s; for
i dimension, the number of skyline cells or skyminos is
bounded by O(mm(l—[l 1s,, n?)). Hence, the time complexity
is O(mm(]—[l 1s,, n“)nlog?~" n) and the space complexity is
O(mm(]_[l= si,n®)n). We note that all the high-dimensional
algorithms have the same space complexity due to the same
output structure.

2) Directed Skyline Graph Algorithm: Directed skyline
graph in high-dimensional space can be constructed in O(n?)
time [15]. Given directed skyline graph, the algorithm for
high dimensions is exactly the same as the algorithm for two
dimensions.

Complexity. Similar to the two-dimensional case, each “row”
requires O(n®) to update the links and we have O(né™')
rows in d dimensions. Thus, directed skyline graph algorithm
requires O(n?*!) time. Given domain size s; for i dimension,
the number of links is bounded by O((mm{]—[l | Sish n})?) and
the number of rows is bounded by O(I—[“’1 s;), hence the
complexity becomes O(H, | slmm{l—[ si,n})?). The space
complex1ty stays the same as the basehne algorithm which
is O(mm(l—[l | Si> nn).

3) Scanning Algorithm: Similar to Theorem 1 of Scanning
algorithm in two dimensions, we have a relationship for high
dimensions as follows.

# of “Ditl”
pg) = Skyline(

is odd

Sky(Cp, Sky(Cp, +0,1},...D4+(0,1})

.....

# of “Di’ is even
where D; is the i dimensional coordinate of skyline cell
Cp,.p,...n;» +10,1} means the coordinates either add 1
or 0 due to the neighbor relationship, and all operations
are multiset operation. For example in three dimensional
space, Sky(Cp,p,p;,) = Skyline(Sky(Cp,+0,p,+0.05+1) +
Sky(Cp,+0,0,+1,05+0) + Sky(Cp,+1,0,+0,D5+0) +
Sky(Cp,+1,0,+1,D5+1) - Sky(Cp,+0,0,+1,05+1) -

Sky(Cp,+1,0,+0,05+1) Sky(Cp,+1,0,+1,05+0))- The  proof
can be derived similar to Theorem 1.

Sky(Cp, +0,1},...0,+(0,1)

Complexity. We have O(n?) skyline cells, each cell requires
O(nlog®! n) time to do the multiset operations. Thus, scanning
algorithm requires O(n®*! log?™! n) time. We note that in prac-
tice, the number of remaining points is much smaller than n.
Thus the algorithm is much faster than the baseline algorithm
in practice. Given domain size s; for i dlmensmn the number
of skyline cells is bounded by O(mm(ﬂl | Siy ")) hence the
time complexity becomes O(mm(nl | Six d)nlog" 'n). The
space complexity stays the same as the baseline algorithm
which is O(min([T1Z, si, n%)n).

V. SKYLINE D1AGRAM oF DyNAMIC SKYLINE

In this section, we study algorithms for skyline diagram of
dynamic skyline in two dimensions. They can be extended to
high dimensions similar to skyline diagram of quadrant/global
skyline. We first present a baseline algorithm and define an
important notion of skyline subcell. Then based on the obser-
vation that dynamic skyline query result is a subset of global
skyline, we present an improved subset algorithm utilizing
the skyline diagram of global skyline. Finally, based on the
relationship of the skyline results of neighboring subcells, we
present a scanning algorithm with improved complexity.

A. Baseline Algorithm

Similar to the skyline diagram of quadrant/global skyline,
we can first find small regions that are guaranteed to have the
same dynamic skyline, and then merge them to form skyline
polyominos.



Skyline Subcell. In skyline diagram of quadrant/global sky-
line, each point contributes a horizontal and vertical grid line
to divide the plane into skyline cells which are guaranteed to
have the same result for quadrant skyline queries. For dynamic
skyline, all points will be mapped to the first quadrant with
respect to the query point and may dominate the points which
are otherwise global skyline points. Hence the points in the
skyline cell are not guaranteed to have the same dynamic
skyline. Therefore, to account for mapped points, in addition to
the grid lines over each point, we draw a vertical and horizontal
bisector line between each pair of points. In total, we have 0('2’)

2
horizontal lines and 0(’;) vertical lines which leads to 0((;) )

regions. Figure 9 shows an example with 4 points. The (;
bisector lines between each pair of points and the 4 grid lines
over each point divide the plane into 121 regions. We can see
that these regions are guaranteed to have the same dynamic
skyline, since there are no points or mapped points in each of
these regions that would change the dominance relationship of
the points. To distinguish with skyline cell for quadrant/global
skyline, we name these regions skyline subcells for dynamic
skyline.

4 pips  pPiP2 P3ps Pp4
9 N N N N
3 & § P ....... ............... ............. D1P2
N U A O N S S, U p1P3
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Fig. 9: Skyline subcells for dynamic skyline (solid grid lines for cells and dotted lines
for subcells).

Definition 7: (Skyline Subcell). The vertical and horizon-
tal bisectors of each pair of points divide the plane into skyline
subcells. Any query points in the same skyline subcell have
the same dynamic skyline.

Algorithm 5: The baseline algorithm for skyline
diagram of dynamic skyline.

input : skyline subcells SC; ;.
output: skyline of each skyline subcell Sky(SC; ).
1 for i=0 to mx do
2 for j=0 to my do
3 for k=1 to n do
a Pl = |pilx] = SC L]l
5 pely) = Ipely] = SCijlylks

6 employ skyline algorithm on p; for k= 1,...,n to compute the
skyline as the output of SC; j;

Finding skyline for each skyline subcell. Once we have the
skyline subcells, we can compute the skyline for each subcell.
The baseline algorithm is straightforward and similar to the
skyline computation for skyline cells as shown in Algorithm
5. For each subcell SC;;, it first maps all the points to the
first quadrant with respect to the subcell (Lines 4-5). It then
computes the skyline of the mapped points.

Complexity. Since skyline can be computed in O(n) time if
the points are sorted on one dimension, and there are on*)

subcells, the entire algorithm (Algorithm 5) can be finished
in O(n®). Similarly, the space complexity is O(n’). We note
that the remaining algorithms in this section have the same
space complexity due to the same output structure. In practice,
given a limited domain size s for each dimension, the number
of subcells is bounded by O(min(s?,n*)) because most of
the bisector lines are coincident. Hence the time and space
complexity becomes O(min(s?, n*)n).

B. Subset Algorithm

As we discussed earlier, the mapped points may dominate
additional points that would have been global skyline points.
As a result, the dynamic skyline of each subcell SC;; is a
subset of the global skyline of the skyline cell it belongs to.
For example, in Figure 9, Sky(S Cs) is a subset of Sky(Cy ).
Therefore, we can first use the algorithms in the previous
section to compute the global skyline of the skyline cells, and
then compute the dynamic skyline of each subcell from this
set rather than the entire n points. The detailed algorithm is
shown in Algorithm 6 which is very similar to the baseline
algorithm. The only difference is we just need to consider the
output of global skyline results of each skyline cell rather than
the entire n points.

Algorithm 6: The subset algorithm for skyline dia-
gram of dynamic skyline.

input : global skyline result of each skyline cell Sky(C; ;).

output: dynamic skyline result of each skyline subcell Sky(SC; ).
1 for k=0 to mx do

2 L for (=0 to my do

3 find C;; such that SCy; € C; j;
4 Sky(S Cy;) = dynamic skyline of the points in Sky(C; ;)

Complexity. Although the worst case time complexity is
the same as the baseline algorithm o), on average, the
number of skyline for n points is only O(logn). Therefore, the
amortized time complexity of the subset algorithm is reduced
to O(n* log n). We will show that the subset algorithm is indeed
significantly faster than the baseline algorithm in practice in
Section VI. Again, given a limited domain size s for each
dimension, the number of subcells is bounded and hence the
time and space complexity is O(min(s*, n*)n).

C. Scanning Algorithm

The baseline and subset algorithms compute the skyline for
each subcell from scratch. To further improve the efficiency, in
this subsection, we propose an incremental scanning algorithm
based on the relationship of the dynamic skyline results of
neighboring subcells. This is due to the observation that as we
move from one subcell to its neighboring subcell on the right,
the only difference of the skyline result is caused by the two
points that contributed to the bisector line between the two
subcells. We just need to consider these two points in addition
to the skyline result of the previous subcell. For example in
Figure 9, Sky(SCy4,) = {p3}, for SC4;, we only need to check
{p3} U {p3, pa} = {p3,ps}. Because ps, p4 cannot dominate
each other, therefore, Sky(SCs;1) = {p3, pa}. So similar to
the scanning algorithm for quadrant skyline queries, we first
compute Sky(S Cpp) for the lower left subcell. We then scan
the subcells from left to right on the first row and compute the
skyline incrementally. We then compute each of the remaining
rows from bottom up. The detailed algorithm is shown in
Algorithm 7.



Algorithm 7: The scanning algorithm for skyline
diagram of dynamic skyline.

input : a set of n points and skyline subcells SC; ;.
output: skyline of each skyline subcell Sky(SC; ).
employ skyline algorithm to compute the skyline of Subcell SCop;
2 for i=1 to mx do
Sky(SCip) = Sky(SCi-10) U the points contributing to the bisectors
between SCi_1o and SC;p;

-

4 for i=0 to mx do
L for j=1 to my do

R

Sky(SC; ;) = skyline from Sky(SC; ;1) the points contributing
to the bisectors between SC; ;1 and SC;;

The key step in the above algorithm is to compute the

updated skyline given the skyline result of the previous cell and
the new points contributing to the bisectors (Line 3 and Line 8).
When adding a new point, there are two cases: 1) the new point
becomes a skyline point which may dominate some existing
skyline points, or 2) the new point is dominated by existing
skyline points. To determine if the new point is dominated by
existing skyline points, we can do a binary search to find the
skyline point p; such that p;[x] < p[x] and p[x] < pis[x]. If
pily]l > ply], the new point is a skyline point, otherwise, the
new point is dominated by p;. This procedure can be finished
in O(logn) time. If the new point is a skyline point, we need
to remove those points dominated by the new point. If we
sort the skyline points in ascending order on x-coordinate and
descending order on y-coordinate, we can delete those points
in O(logn) time.
Complexity. Since the computation of updated skyline for each
subcell only costs O(logn) time, and there are O(n*) subcells,
the overall worst case time complexity for the scanning al-
gorithm is O(n*logn). Again, given a limited domain size s
for each dimension, the number of subcells is bounded and
hence the time complexity is O(min(s*,n*)logn). The space
complexity is the same as the baseline algorithm which is
O(min(s%, n*)n).

VI. EXPERIMENTS

In this section, we present experimental studies evaluating
our proposed algorithms.

A. Experiment Setup

We first evaluate the algorithms for computing skyline
diagram of quadrant/global skyline, and then the algorithms
for dynamic skyline. Since this is the first work for skyline di-
agram with the new definition, our performance evaluation was
conducted against the baseline algorithms. We implemented all
algorithms in Python and to avoid the effect of /O, final results
are not stored. We ran experiments on 1) a desktop with Intel
Core 17 running Ubuntu 14.04 with 64GB RAM for serial
implementations, and 2) a computation server with dual Intel
Xeon E5-2660 v3 with 512GB RAM running Ubuntu 14.04 for
parallel implementations. We compare four algorithms (QBase:
Baseline algorithm, QGraph: Skyline graph algorithm, QS-
can: Scanning algorithm, and QSweep: Sweeping algorithm)
for quadrant skyline diagram and three algorithms (DBase:
Baseline algorithm, DSubset: Subset algorithm, and DScan:
Scanning algorithm) for dynamic skyline diagram.

We used both synthetic datasets and a real NBA dataset in
our experiments. To study the scalability of our methods, we

generated independent (INDE), correlated (CORR), and anti-
correlated (ANTI) datasets following the seminal work [1].
We also built a dataset® that contains 2384 NBA players who
are league leaders of playoffs. Each player has five attributes
(Points, Rebounds, Assists, Steals, and Blocks) that measure
the player’s performance.

B. Skyline Diagram of Quadrant Skyline

Figures 10(a)(b)(c) present the time cost of QBase,
QGraph, QScan, and QSweep with varying number of points
n for the three synthetic datasets. For this set of experiments,
we used unlimited domains and enforced no two data points
lie on the same x-coordinate or y-coordinate, which can be
considered as a stress test for the algorithms. We evaluate the
impact of domain size in Section VI-F. The results of QBase
algorithm on CORR, INDE, and ANTI dataset are almost the
same which means the data distribution has no impact on
baseline algorithm. We did not report the result of the baseline
algorithm in some figures due to the high cost when # is large.
All the proposed algorithms scale well with the increasing
number of points.

We first examine each algorithm and compare its per-
formance on different datasets. For the QGraph algorithm,
the time on INDE dataset is higher than CORR and ANTI
datasets. This is because the number of links between parent
and children nodes in the directed skyline graph is larger for
INDE dataset. For the QScan algorithm, the time on ANTI
dataset is much higher than INDE dataset which is much higher
than CORR dataset. This is because the number of skyline in
each cell in ANTI dataset is much more than INDE and CORR
datasets. Therefore, it requires more time to do the multiset
operation on ANTI dataset. For the QSweep algorithm, it is
much faster than QGraph and QScan on CORR dataset because
there are much fewer intersections thus fewer polyominos on
CORR dataset. However, the performance of QSweep is not so
good on ANTI dataset due to the huge number of intersections
on ANTI dataset.

Comparing different algorithms, QGraph, QScan, and
QSweep significantly outperform QBase, which validates the
effectiveness of our algorithms. QSweep outperforms QScan
on all datasets thanks to its combined steps of finding skyline
polyominos directly (but we will see an opposite result on real
NBA dataset later). For CORR and INDE datasets, QSweep
is the most efficient out of all algorithms, while for ANTI
dataset, QGraph has the best performance due to the reason
we explained earlier.

Figure 10(d) reports the time cost of QBase, QGraph,
QScan, and QSweep with varying number of points n for
the real NBA dataset. The difference between the previous
synthetic datasets and this NBA dataset is that the latter has
a limited domain which leads to fewer number of cells even
given the same number of points. Herein, the time cost of
2100 points on NBA is significantly smaller than that of 2000
points on synthetic datasets. Comparing different algorithms,
the performances of QScan and QSweep are similar and
QScan is slightly better than QSweep which is opposite to the
performances on synthetic datasets. The reason is that on NBA

3Extracted from http://stats.nba.com/leaders/alltime/?Is=iref:nba:gnav on
04/15/2015.
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dataset, the number of cells is much smaller but the number
of intersections is similar. However, both QScan and QSweep
outperform QGraph.

C. Extension to High-dimensional Space

Figure 11 reports the time cost of QBase, QGraph, and
QScan with varying number of dimensions d for the real NBA
dataset. In two-dimensional space, QScan is much better than
QGraph, but in high-dimensional space, QScan and QGraph
are very similar. The reason is that QScan algorithm needs
too many multiset operations in high-dimensional space. Both
QGraph and QScan significantly outperform QBase, which
verifies the effectiveness and scalability of our proposed al-
gorithms in high-dimensional space.
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Fig. 11: Impact of dimensions d. Fig. 12: Query time using skyline diagram.

D. Query Time Using Skyline Diagram

As we discussed, skyline diagram can be used as a structure
for answering skyline queries, reverse skyline queries, as
well as other applications. State-of-the-art skyline algorithms
without any precomputed structure requires O(nlogn) time
(O(n logd‘1 n) for d-dimensional space). Once we have the
skyline diagram precomputed, the online time for answering
skyline queries can be implemented with only O(1), which
is desirable in many real time scenarios. To demonstrate the
benefit, we compare the query time using skyline diagram
with a skyline query algorithm without precomputed structure.
Figure 12 shows the comparison on INDE dataset in two
dimensional space. We chose the query point randomly and
ran the experiment 1000 times, the time was accumulated. We
can see that the queries based on skyline diagram are 10° times
faster and not affected by the increasing number of points,
while skyline queries without any structure requires more than
one second when n is large.

E. Skyline Diagram of Dynamic Skyline

Figures 13(a)(b)(c)(d) present the time cost of DBase,
DSubset, and DScan with varying number of points n for the
three synthetic datasets (s = 10%) and the NBA dataset. We

0
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2100

10: The impact of n on skyline diagram of quadrant skyline queries (unlimited domain).

used a fixed domain size (s = 10%) in this experiment and
show the impact of domain size in Section VI-F. All algorithms
have the same performance on CORR and ANTI datasets.
DSubset significantly outperforms DBase, which verifies its ef-
fectiveness. For the dataset with large n, DSubset significantly
outperforms DBase and DScan because when n is much larger
than s, the number of global skyline is very small, of which
dynamic skyline is a subset.
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FE. Impact of Domain Size

In this experiment, we evaluate the impact of domain size
on both quadrant and dynamic skyline diagram algorithms.
Figure 14 reports the time cost of different algorithms with
varying domain size s on INDE dataset (n = 200,d = 2). We
observe that the time increases with increasing s as expected.
On the other hand, when s is much larger than »n, increasing s
does not have an impact unless 7 increases. In addition, when s
is much larger than n, we see that DScan outperforms DSubset
because the number of global skyline is very large in dataset
with large domains.

G. Parallel Implementations

From our results above, we see that the time for dynamic
skyline diagram is still high, especially for large dataset or
data with large domain. In order to further reduce the time,
we demonstrate that our algorithms can be parallelized by
dividing and assigning tasks to each core. To show the effect
on improving scalability for large n and s, we evaluated two
settings using INDE datasets: large data with small domain
(n = 10°,s = 200), and small data but with large domains
(n = 200, s = 10%). For small domain in Figure 15(a), DSubset
outperforms DScan due to the small number of global skylines.
The parallel algorithms cannot provide the linear speedups
because the initial phase such as computing global skyline
and constructing skyline cells dominates the time. However,
for large domain in Figure 15(b), parallel algorithms are much
more efficient and provide almost linear speedups. Parallelizing
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the global skyline computation and construction of skyline
cells can be a promising direction for future research to further
enhance the performance for large dataset.
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Fig. 15: Performance improvements of parallelizations.

VII. ConcLusioNs AND FUTURE WORK

In this paper, we proposed a novel concept called skyline
diagram. Given a set of points, it partitions the plane into a set
of skyline polyominos where query points in each polyomino
have the same skyline query results. We studied skyline dia-
gram for three kinds of skyline queries and presented several
efficient algorithms to compute the skyline diagram. There are
several interesting directions for future research including: 1)
adapting the sweeping algorithm for high-dimensional space,
2) extend the skyline diagram with precomputed skyline cube
for each cell to support subspace skyline queries [20] [21],
3) implementing skyline diagram based solutions for other
applications, including reverse skyline, authentication of sky-
line queries, and PIR based skyline queries, and 4) extend the
skyline diagram structure for non-Euclidean spaces such as
skyline for road networks [6].
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