
1

A University-Oriented Web 2.0 Services Portal1

Jia Zhang, Karthik Akula, Momtazul Karim, Raghu Kumar Reddy Ariga

Department of Computer Science, Northern Illinois University, USA

jiazhang@cs.niu.edu

Abstract

This paper reports several key challenges and solutions when we apply Web 2.0 mashup

technology to build a university-oriented services portal. A two-layer mashup service model is

proposed as the underlying basis to support multiple granularities of services mashup. We explore

a caching technique to facilitate personalizable services requests. We also report our study of

mashing up Facebook as a social relationship data source.

Keywords: Web 2.0, mashup portal, Facebook, social network

1. Introduction

For a college student, there is a relatively stable set of Internet-based services he/she accesses on

the daily basis. For example, a student accesses his/her email box constantly for course-related

information that may come from both instructors and group project teammates. Meanwhile, the

student goes to every registered course Web site (maybe via some course management system

(CMS) such as Blackboard system [1]) to view course news, lecture notes, newly published

homework and projects, and frequently asked questions and answers. Furthermore, the student

often accesses university Web site to view school news. Moreover, the student may also check

some other websites (e.g., weather forecast sites, news sites, and social networks) on the daily

basis.

The motivation of our project is that: the current business model has issues with supporting

the above business logic. On each day, students have to manually launch every one of these

websites individually. There lacks a centralized portal where students can seamlessly access

various information sources at one place.

This project aims to build a centralized services portal oriented to university students.

Instead of building a fixed set of services for all students, our ultimate goal is to construct a

platform to allow students to easily personalize and build interested services from various

information and services resources, internal and external of universities, by themselves. Since

1
 This paper is a significant extension to our conference version: J. Zhang, M. Karim, K. Akula,

and R.K.R. Ariga, “Design and Development of A University-Oriented Personalizable Web 2.0

Mashup Portal”, Proceedings of IEEE International Conference on Web Services (ICWS 2008),

Beijing, China, September 23-26, 2008, pp. 417-424.

2

providing personalizability and flexibility is our key intension, we decided to explore Web

services and Web 2.0 mashup technologies to build the portal.

A Web service is a programmable software module that is equipped with standard interface

descriptions and can be universally accessed through standard network communication protocols

[2]. The Web services technology provides a comprehensive set of standards, including languages,

protocols, and frameworks, to allow software applications to be published as machine discoverable

and understandable Web services on the Internet and allow existing Web services to be easily

incorporated and integrated, that is, be mashed up [2] to build new business services.

Many existing Web applications have become Web services compatible, which means that

they provide Web services interfaces in addition to their normal Web interfaces. For example,

popular weather report websites (e.g., Google) usually provide Web services interfaces. Therefore,

users may write code to access the applications through their Web services interfaces without

being forced to navigate through Web pages. Moreover, users may create new services by building

workflows among multiple Web services. For example, HousingMaps.com mashes up two Web

services: craigslist and Google Maps [3].

As the first step, we conducted a series of surveys at Northern Illinois University (NIU) to

identify an initial set of Internet services that NIU students tend to exploit on a daily basis; then we

explored the plausibility of using the aforementioned technologies to construct the services portal:

iNIU. In this paper, we report our strategies and solutions to address four key technical challenges

that we encountered in the process of design and development of iNIU.

The first issue is how to use mashup technology to allow students to utilize existing similar

services to obtain a more comprehensive service. Multiple service providers may offer the same

functionality with different emphases. Thus, a service receiver may have to integrate their data to

obtain a comprehensive view. Let us take weather report Web services as an example. Several

popular Web services exist, such as Google weather report and Global weather report. They both

provide satisfactory weather information. However, there are some differences between them:

Yahoo weather provides weather image while Global weather provides pressure information. To

obtain comprehensive weather data, a student may have to visit both service sites and manually

integrate the information. Our services portal explores to analyze the differences between multiple

services and allow students to seamlessly integrate services (i.e., a higher layer of services

mashup) and personalize their preferences over different services. We propose a two-layer mashup

service model to facilitate different granularities of services integration and mashup.

The second issue is how to build an integrated social network for students. Multiple social

networks exist nowadays represented by Facebook [4] and OpenSocial [5]. These social networks

provide similar functionalities to allow people to make friends and communicate with each other

over the Internet. However, social relationships contained in different social networks cannot be

shared with each other. Our surveys found that students typically simultaneously join multiple

social networks. As a result, students have to sign in multiple social networks to interact with

different social groups. In this project, we explore to retrieve social relationships from existing

social networks (i.e., Facebook).

The third issue is how to enhance performance of mashed-up services. Our surveys reveal

3

that many students access the same services every day, for example, they check local weather

forecast. Since these students come from the same location, it is much more efficient that the

services portal caches the weather data to serve students with the same requests. Services portal

may refresh the local cache periodically. Meanwhile, because students may establish different

preferences over different services, whether caching finalized services request results or individual

services data needs to be decided.

Fourth, one unique feature of the Web services paradigm is its remote hosting. Instead of

being deployed and installed on a local environment, a Web service is hosted by its service

provider. Therefore, Due to unpredictable network conditions, it is possible that a reliable Web

service may become unavailable at some time points. Therefore, backup services that may become

substitutes should be taken into consideration in our services portal. In addition, we allow students

to prioritize candidate services based on their own preferences.

The remainder of the paper is organized as follows. In Section 2, we discuss related work. In

Section 3, we present our designed surveys and obtained results. In Section 4, we present our

layered mashup service model. In Section 5, we present our services-oriented caching mechanism.

In Section 6, we discuss our Facebook connection service. In Section 7, we present the overall

architecture of iNIU. In Section 8, we make conclusions.

2. Related work

Mashup has been considered as an important technique for ad hoc Web services integration. For

example, HousingMaps.com [3] is an early practice of mashing up two Web services: craigslist

and Google Maps. As another example, Programmableweb.com [6] provides a mashup registry for

over 2000 mashup services.

Meanwhile, a number of mashup development tools have been produced, such as Google

Mashup Editor [7], IBM QEDWiki [8], Microsoft PopFly [9], and Intel Mash Maker [10]. These

tools provide visual editing platforms for users to integrate data elements from various resources

and create new mashup services. In contrast with these tools that provide generic mashup editing

platforms, our services portal intends to provide a university students-oriented mashup and

services provisioning environment, with an underlying mashup service model to guide service

integration and mashup. In addition, we focus on enabling a high level of services mashup that

integrates multiple services instead of merely mixing them. Moreover, we focus on portal caching

for enhancing services provisioning performance. Furthermore, we explore how to use existing

social networks as information resources.

Social networks aim to provide a platform and environment for people to facilitate

communication and share of information with friends, family members and colleagues. The

underlying framework is a social network that reflects a digital mapping of people's real-world

social connections. Example social networks are Facebook [4] and OpenSocial [5]. We chose to

explore how to utilize Facebook as a social relationship source since it is the most popular social

network platform in US academic world.

myNIU [11] was launched in 2008 to provide a personalizable portal serving NIU faculties

4

and students. However, it provides a fixed set of services based on information sources managed

by PeopleSoft software. External services cannot be integrated into the portal. In contrast to

myNIU, iNIU intends to allow students to mashup internal and external services. At the near

future, we also seek to utilize myNIU as one service base

We reported the overall architecture and implemented services of iNIU in our paper

participated in the 2008 global student contest on Services Computing [12]. In contrast to our

previous work introduces the system functions, this paper focuses on our detailed design and

solutions to four major technical challenges we encountered in the process of building iNIU.

3. Survey and results analysis

We designed and conducted a series of surveys, which main purpose is to identify students’

commonly used online services to form an initial candidate list for iNIU. The surveys were

conducted at two classes in the Department of Computer Science at NIU in Spring 2008. We chose

one class at the undergraduate level and the other one at the graduate level, so that we could obtain

students’ interests in a broader range. 32 students participated in the survey.

The surveys contain a set of multiple-choice questions. Table 1 summarizes the survey

questions, observations, and conclusions. Note that one row in Table 1 might represent a

combination of several related survey questions.

Question 1 intends to identify the most commonly used online services by students. The top

five services are: email, Instant Messenger (IM), weather, social networks, and news.

Question 2 intends to investigate how students would like to access course information. Our

results show three channels: centralized portals (e.g., some course management systems (CMS)

Table 1. Survey results.

No Question Observations Conclusions

1 commonly used online

services

top 5: email, IM, weather, social

networks, news

Students use some online services on

the daily basis.

2 ways to access course

information

centralized portal, course sites,

instructor emails

Students prefer a centralized portal to

access all course information.

3 centralized student portal all want it Students prefer a centralized portal to

access common services.

4 centralized portal

examples

igoogle, myNiu, Blackboard,

yodlee.com

Need for a student-central portal.

5 features of a centralized

portal

single sign-on, personalize services Two features are mostly expected.

6 ways to access online news centralized news portal, individual

websites, combination of both

A personalizable centralized news

portal is preferred.

7 news sources cnn, google, yahoo, msnbc, northern

star

Popular news sources.

8 priority of news news topic, news source, news search Top news personalization options.

9 account in social networks most have accounts Students use social networks often.

10 preferred social networks Facebook, orkut, myspace Need to incorporate different social

networks. iNIU can start with Facebook.

11 Facebook usages send messages, find old friends, chat

with friends, make new friends

Communication with friends is one

more important reason.

12 features used in Facebook news feed, groups, status, chat features Features to be considered in iNIU.

5

such as Blackboard), individual course websites, and instructor emails. Although a CMS provides

a single sign-on site for students to access multiple course information, its limitation is its

inflexibility since instructors have to use the CMS to manage all course information. Moreover,

each CMS instance has its time frame. When a class is over, its CMS instance is not accessible any

longer. Thus, many instructors still prefer to manage their own course websites. Email is another

way for instructors to send messages to students. However, it lacks the ability to store

communication history in a systematic manner. Therefore, we seek a light weight approach to

allow instructors to use a centralized portal to distribute course information.

Question 3 intends to find out whether students would be interested in a centralized portal

oriented to students. The answer is quite positive.

Question 4 intends to survey whether there exist some available centralized services portals.

Students list iGoogle as a centralized news portal, myNIU as a centralized NIU portal, Blackboard

as a centralized course portal, and yodlee.com as an online banking service center. As shown by

the results from Question 1, however, students’ commonly used services include both university

and external services. None of these existing portals allows students to personalize and customize

their various types of services across university boundaries.

Question 5 intends to explore what students consider the most important features of a

centralized portal. Results show that two features are mostly expected: single sign-on and

personalization ability. Students wish to use a single set of access code to navigate through

different services. Meanwhile, students wish to be able to personalize the portal.

Question 6 intends to check how students typically view everyday news. We found that they

either use some centralized news portal (e.g., google), or check individual websites, or use a

combination of both. We conclude that a personalizable centralized news portal is preferred.

Question 7 intends to identify some popular news sources. The top five sources are:

Google.com, Yahoo.com, MSNBC.com, and Northern Star (NIU news).

Question 8 intends to find out how students would like to sort news data. The results show

that students first prefer to sorting news by topics, then to sorting news by corresponding news

sources. They also would like to see an ability that allows them to perform some news search.

Question 9-12 intend to find out how students use social networks. The results show that

students use social networks often, mainly for the purpose of sending messages, finding old

friends, chatting with friends, and making new friends. Their mostly used social networks are:

Facebook, orkut, and myspace. Especially for undergraduate students, Facebook is their favorite

social network. This phenomenon is easy to be understood, as Facebook has been the most popular

social network in US academia for years. The students also identify their mostly used Facebook

features: news feed, groups, status, and chat features.

Our survey results provide guidance for us to design the functionalities of iNIU. As the first

step, we intend to construct a prototype platform comprising news services, weather services,

social networks, and several students-oriented services. More importantly, we explore to build an

underlying model for the portal.

6

4. Mashup service model

4.1. Layered mashup service model

Based on our survey results, we identified two layers for mashup services, as shown in Figure 1.

The lower level of mashup services refers to an intermingle level providing a centralized place to

mix services coming from different service sources, without changing individual services. The

higher level of mashup services refer to an integrated level representing new services, which may

take portions from different services and incorporate them. As shown in Figure 1, the original

services might not be able to be identified from a new integrated service.

Figure 1. Layered mashup service model.

As an example, Figure 2(a) shows a level-one mashup weather service that displays the

weather information for Chicago at some time point from two weather sources: Google weather

service and Global weather service. As shown in Figure 2(a), different services may provide

values of slightly different attributes. For example, Google weather service provides links for

people to download weather images, while Global weather service does not. Taking the attribute

“wind” as another example, Global weather service provides more precise wind direction than

Google service provides.

A level-two mashup service may be more desirable sometimes, when the results from

various service sources are integrated to provide a more comprehensive result. Figure 2(b) shows

the result of an integrated level mashup service, as a counterpart of that shown in Figure 2(b).

Weather data from the two sources are integrated to generate one single set of information. No

duplicated attributes are shown. For example, in Figure 2(a), both Google weather service and

Global weather service provide data for attribute humidity. In Figure 2(b), only one humidity item

is shown from Global weather service, based on the corresponding user’s preference (the user

ranks Global weather service with a higher preference).

7

 (a) (b)

Figure 2. (a) Level-one weather mashup service; (b) Level-two weather mashup service.

The aggregated attribute set can be predefined by users. For a specific attribute, if multiple

service sources provide different values, then user-specified preferences is taken into account to

help the selection process.

4.2. Problem modeling

Using the two-layer mashup service model, a weather service may allow a user to personalize

his/her preferences. A user may choose to configure to retrieve from a single Web service source

or request aggregated information from multiple Web service sources. In this section, we focus on

discussing how to build a level-two mashup service.

We formalize the problem as follows. Given a set of n services that provide similar

functions,

},...,{ 21 nwwwW =

One of its subset is defined as below.

nmwwwWWW msssss ≤=⊆ },,...,{, ,2,1,

jisjis wwnjWwmiw =⇒≤≤∈∃≤≤∀ ,, ,1,,1,

The subset represents an ordered set, given a predefined function r.

mbawrwr bsas ≤<≤> 1),()(,,

The ordered set represents users’ preferences ranked over the selected subset of services.

The algorithm of finding an available Web service (Algorithm 1) can be illustrated in the

following pseudo code:

8

;

;

)(

)(

()1lg

,

,

,1,

failreturn

wreturn

availablewif

wwloop

AfindWS

is

is

mss −

−

Looping through the ordered Web services list, the first available Web service is returned. If

no Web service is available at all, a failure message is returned instead. In short, Algorithm 1

allows us to retrieve the value of an available Web service according to a user’s predefined

preferences.

Given a set of predefined attributes that can be applied to the set of Web services, each

service is partitioned into a set of proprietary values. Another set T is used to represent whether a

service provides information for each attribute. “1” means a yes and “0” means a no.

nullaifttttT

aaaAw

aaaA

wllk

wkww

k

≠==

=

=

,21

,,2,1

21

,1},,...,{

},...,{|

},...,{

Algorithm 1 can be refined into Algorithm 2 as follows to show how to generate a level-2

mashup service result.

;

);|()(!

)(

)(

)(

()2lg

,,

1

,

,1,

failreturn

TafindWSaif

aalooploop

availablewif

wwloop

AfindWS

jwj

k

is

mss

is

−

−

−

After finding an available service according to a user’s preferences, each attribute is

examined. If no value is obtained, other services in the preference list that provides values for the

attribute are checked sequentially, until a value is obtained. Figure 2(b) shows the result of running

Algorithm 2 for the weather mashup service.

5. Services-oriented caching

5.1 Caching framework

Caching is a well-known technique to improve performance and enable faster services. Originally,

a cache refers to a smaller and faster memory used to store frequently accessed data. Numerous

caching strategies have been proposed at various granularities, either hardware or software level.

However, services-oriented caching support has not caught sufficient attentions. With the advance

of the Web 2.0 technology, the urgency regarding services-oriented caching has been greatly

increased. For example, our survey reveals that NIU students typically check only one weather

report site on the daily basis, even if they are aware that different sites may provide more precise

data in different aspects (e.g., Google weather service provides weather image links, while Global

9

weather service does not). Using Web 2.0, iNIU allows the students to freely mash up multiple

weather report services, as shown in Figure 2(b). Assuming that each student configures three such

sites to obtain a more comprehensive view, NIU students will generate extra 50,000 (2*25000

students) service calls every day for this service alone.

Recall that the main goal of iNIU is to support around 25,000 NIU students who share

similar contexts. Take the iNIU weather service as an example. It is reasonable to expect that by

average, every NIU student may check at least once the weather status of DeKalb, at which NIU

locates. If iNIU caches local copies, we may expect a significantly less hits to the corresponding

weather report service sites. Therefore, in this project we established a services-oriented caching

model at iNIU to ensure higher performance of services, while studying issues related to services-

oriented caching.

Figure 3 shows the overall architecture of our services caching framework. It contains eleven

major components: Interface, Client Interpreter, Cache Controller, Cache Finder, Gateway, Cache

Database, Cache Query Manager, Cache Updater, Result Composer, XML Parser, and Gateway.

Cache Controller is the headquarter of the caching framework that coordinates the operations

of other components. Gateway handles the communication between our caching framework and

external services registries. Interface provides connection points with iNIU users, either

administrators or normal users. Client Interpreter is directly connected to Interface. It interprets

client requests and sends them to Cache Controller for processing. Client Interpreter is equipped

with a Hash Calculator, which examines a client request and identifies comprising data (e.g.,

actual request (HTTP request), requested server, time, and date) and calculates a hash value. Cache

Query Manager provides an interface for Cache Database and handles all operations on it (i.e.,

read, write, update) as instructed by Cache Controller. It hides the complexity of Cache Database.

It also coordinates with Cache Finder and Cache Updater.

Cache Database is a local repository that stores temporary data. To further enhance

performance, we divided it into two parts: a data repository and a request repository. The former

stores actual cached services data; the latter stores conducted queries. Cache Finder reaches a hash

value from Client Interpreter and searches it from Cache Database entries. If Cache Finder cannot

find an item in the local cache, it forwards the request to Cache Controller that will search from the

Figure 3. Caching framework at service proxy.

10

external network (i.e., Internet) through Gateway. If data are found from external services, Cache

Controller stores the requests, results, and connections into Cache Database through Cache Query

Manager. Then Cache Controller sends the results back to users through Client Interpreter and

Result Composer. Recall that Client Interpreter separates client requests into different requests,

each producing corresponding search results. Result Composer is in charge of aggregating search

results coming back from different requests into one results and sending back to Interface.

Consistency Integrator is in charge of detecting and deciding whether some cached data can

be used or should be considered out of date. In our design, Consistency Integrator adopts an active

strategy by actively checking cached data. Cache Updater updates cache database through Cache

Query Manager.

5.2 Caching management

Figure 4 shows the core objects and relationships considered in our services-oriented caching

management. Our purpose is to enhance caching performance by facilitating user query in cached

data. As shown in Figure 4, we cache not only services data but also queries. All cached services

data have their corresponding queries stored in Request Repository. If a piece of services data is

considered as out of date, its associated query will be removed as well (e.g., marked as dirty).

When Client Interpreter identifies a new query, it initiates Cache Finder to search Request

Repository through Cache Query Manager. As shown in Figure 4, we adopt the three core data

types defined in UDDI specifications (business, service, and service type) to further enhance

caching performance. Duration time (when cached data are considered stale) is associated with

service type and can be configured and re-configured.

Figure 4. Caching management.

The following segment of pseudo code finds an available Web service either from the

original service sources or from the cache.

11

;

;

)(

)(

;)&(

()

,;,

,

,1,

failreturn

wreturnwcache

availablewif

wwloop

cachereturnvalidcacheif

findWS

isis

is

mss −

Since we allow students to configure their preferences for individual services in a mashup

service, we cache query results of individual queries instead of mashed up services. Using the

weather mashup service again as an example, we cache weather reports from global weather

service and Google weather service as two separate items in the Data Repository shown in Figure

4. Consider another student requests a weather service before cached data become stale. Assume

that his/her preferences over the two external weather services may be different (favoring Google

weather service more as shown in Figure 5 compared to favoring global weather service more as

shown in Figure 2(b)). Our caching service retrieves the cached weather information from the two

services and dynamically mashes them up to serve students. Figure 5 illustrates that the data come

from the cache repository.

Figure 5. Mashed up service from cache.

6. Social network mashup

In this section, we discuss how iNIU mashes up social networking services. Social networks

have been widely used by university students to conduct social activities, internal and external of

university boundaries. To date, many social networking websites exist, each exhibiting some

specific features. In this project, we studied the top 11 social networking websites, based on the

user count on September 12, 2007.

12

6.1 Social network comparison

The term of social network was coined by J.A. Barnes in 1954, to represent an association of

people drawn together by family, work, or hobby [13]. While the size of a social network was

defined as a group of about 100 to 150 people in 1950s, the Internet enables online social networks

comprising millions of members. In recent years, a number of social networking websites have

been developed to provide a virtual community for people with common interests to “hang out”

together. Members create their own online profiles with biographical data, pictures, likes, dislikes

and any other information. They communicate with each other by voice, chat, instant message,

videoconference, and blogs. Such websites typically provide a set of services to support member

communication and social networking.

We have conducted some preliminary research work on comparing the features of existing

social networking websites. Our experiment was designed as follows. In Spring 2008, a class of

student volunteers at NIU studied the most popular 11 social networking websites in a project of

forming study groups using the social networks. Our studied websites include Facebook,

MySpace, flickr, classmates, and so on.

A set of topics are provided for the students to select from. If a student is interested in a topic

(e.g., Web 2.0), she is asked to find members who are willing to work with her on the same

project. The students were asked to follow the following stepwise procedure. (1) Search for the

community group (e.g., Web 2.0) on the social networking website; (2) If the community exists,

then join; (3) If not, create a community; (4) Invite classmates to join the community; (5) Locate

classmates who are ready to work on the project; (6) Find how to share knowledge among

members in the community; and (7) Find how to communicate between members in the

community in real time.

Using the same scenario, we asked the students to exercise on each of the 11 websites to

form the team. Each student was asked to compare and identify features of each website, including

rating, uniqueness, negative sides, and overall ranking, and so on. Our initial results are

summarized in Table I and II.

Table I. Generic comparison of 11 social networking websites

URL User Count

(Mill)

Popular

rank

Membership Code open Storage

bebo.com 34 3 Free No unlimited

broadcaster.com 26 - Free No Unlimited

classmates.com 40 8 Free/Gold No Limited

cyworld.com 21 - Free No Unlimited

facebook.com 48 2 Free Yes Unlimited

flickr.com 4 - Free/Premium No 100MB

friendsreunited.com 19 - Free No 100MB

friendster.com 50 13 Free No Unlimited

myspace.com 206 1 Free No Unlimited

orkut.com 68 14 Free No 1GB

spaces.live.com 120 15 Free No 1GB

Table I shows that these websites all provide free memberships with significant storage

13

spaces. They are all popular and have a large user base. The websites typically do not provide open

source except Facebook.

Table II. Usability comparison of 11 social networking websites

URL Create

Profile

Check

other

profiles

Create

comm.

Commu-

nication

Uniqueness Negatives Comments

bebo.com Any

email id

yes Easy Text

messages,
blogs

Have mail,

music, video,
authors

No groups Good interface for

profiles

broadcaster.com Any

email id

yes Moderate Webcam,

text, audio,
video

Webcam live

chat, Video,
Liveweb cam,

music. movies

Groups

restricted

Good for online

webchat with text
audio video

classmates.com Any

email id

Yes Moderate Text

messages

Lot of

database
available

No create

generic groups

Good for finding

old friends

cyworld.com Any

email id

Yes Moderate Text, audio,

video

messages

Cool colors

and attractive

design with
profile widgets

New in US Good profile

design, easy

communication
with members

facebook.com Any

email id

yes Easy Text, audio,

video,

mobile

Most popular

among

students

Personal data is

open to app.

Developers,

privacy concern

Good interface

and lots of

applications

flickr.com Yahoo

id

no No Cannot

communicate

Album view is

good

No community

formation, no

communication

Only for photos,

nothing else

friendsreunited.c

om

Any

email id

yes Yes Text Dating, jobs,

forefathers,
connections

with friends

Poor design,

few applications

Bad designing,

hard to
communicate

friendster.com Any

email id

yes Yes Text

messages

Video, blog,

reviews,

photos,

bulletinboard

Video are

directed to other

websites

Lots of

advertisements

myspace.com Any
email id

Yes Easy Text, photos,
audio, video

All ages use
this

Lots of
advertisements

Almost every
feature needed

orkut.com Google

id

Yes

Limited

Easy Text Forums in

communities
good features

Not popular in

USA, no
applications

Simple design

and linked with
youtube.com

spaces.live.com Hotmail

or
Live id

No Hard Through text

messages

Good look New, not

popular

Offers skydrive

to store 1GB data

Table II reveals several facts. All these websites allow users to create their personal profiles.

Most sites allow users view their friends’ profiles marked as public. Their abilities to create

communities vary; and their provided channels for communication vary as well. Each site shows

some unique features, such as whether they can handle emails, video, images, and so on. For every

website, our students also identified some shortcomings that they do not like. For example,

MySpace has too many advertisements that may distract users. Finally, we summarized the

students’ overall comments for each website.

In summary, as shown in Table I and II, all social networking websites provide similar

functionalities to allow people to make friends and communicate with each other over the Internet.

Every website provides some unique and interesting features. However, each one shows some

limitations, from user perspective. That may explain why no social network website dominates.

Our survey also proves that students typically join multiple social networks simultaneously. As a

result, students have to sign in multiple social networks to interact with different social groups.

14

6.2 Challenges for social network mashup

Students create multiple accounts in various social networks that do not interoperate and

interact. As a result, the social relationships contained and maintained in different social networks

cannot be shared with each other. In our experiment of forming study groups, a student may have

to form two simultaneous communities in multiple social networks, because some of classmates

only have accounts in one social network while others only have accounts in another social

network.

Therefore, in this project, we aim to explore how to adopt the Web 2.0 technology to build a

social networks mashup platform. As shown in Figure 6(a), such a platform shall be able to

retrieve social relationships from existing social networks (e.g., Facebook, MySpace, and Orkut)

and allow users to exploit these data to create new business services (e.g., to form a study group as

in our experiment).

 (a) (b)

Figure 6. (a) Proposed social network mashup infrastructure; (b) Facebook invocation

Our idea is to treat all of these social networks as common data sources, so that their

comprising social relationships can be extracted, integrated, and utilized in the iNIU environment.

In other words, using the Web 2.0 technology, iNIU mashes up existing social networks and

provide further support for social connections. Then our challenges turn into how to allow iNIU to

automatically analyze and extract social relationships stored in various social networks.

Retrieving social relationships from various social networks is not a trivial task, even though

a social network website provides programming API such as Facebook. Figure 6(b) shows how a

user can access Facebook data via Facebook Java API. A user has to first create an account in

Facebook. Then the user has to apply to Facebook as a developer. Upon acceptance, the user can

create an application in the Facebook platform and apply to be listed as a plug-in. Upon approval,

a unique application-specific API key and secret key will be granted by Facebook. These two keys

are necessary for accessing Facebook through its Java API. In other words, a program can only

access Facebook through an approved plug-in application. The user also has to add the application

into the profile of the account before the API and secret keys can be used. Before a Facebook API

method can be invoked, as shown in Figure 6(b), the user has to log into Facebook and maintain an

15

active session, whose unique authentication token can be obtained and used to invoke Facebook

API calls, together with the API key and secret key.

6.3 Connection to Facebook

Our first step is to study whether social relationships can be extracted out of existing social

networks and construct a prototype system. As a starting point, we focus on Facebook. To date,

Facebook [4] is considered the most popular online social network for the US university students.

As revealed by our survey results, most NIU students have accounts in Facebook and they use

Facebook very frequently, if not on the daily basis, to communicate with their friends, inside and

outside of school boundary. Thus, we decided to start from Facebook and explore how to exploit

the knowledge stored in Facebook to enhance social networking at iNIU. For example, we intend

to allow NIU students to find other NIU students who have accounts in Facebook, by mining the

relationships stored in Facebook.

Facebook provides a set of Representational State Transfer (REST)-based Application

Programming Interfaces (APIs), meaning that Facebook method calls can be made over the

Internet by sending HTTP GET or POST requests to the Facebook REST server. However, a

significant technical challenge exists. Currently, Facebook does not provide APIs for external

applications to invoke its functionalities directly. All applications can only be built on top of the

Facebook platform as plug-ins, as shown in Figure 7. Facebook users must find a specific

application listed in the available application list and utilize the application.

For simplicity reason and as a starting point, we intend to extract the personal profile of a

Facebook user, such as the user’s personal information and all friends in the context of Facebook.

Our goal is to build a service with two functions. On one hand, it can automatically extract

information from Facebook. On the other hand, it can allow other programs to use the information

to develop new services.

For experimental purpose, we registered a developer application at Facebook named

“Personalized Profile Viewer,” as shown in Figure 7. Our method is a workaround to access

Facebook from a remote machine, where iNIU resides. Two major components enable the

connection service: a Facebook REST client and a Facebook engine. An instance of Facebook

REST client consists of a set of parameters (such as api_key, session_key, and call_id) that can be

used to create a session for users to access Facebook plug-in applications. Facebook engine is a

Java servlet residing on iNIU server. It uses an instance of Facebook REST client java class to

access profiles residing on Facebook platform with the URL as:

public static final String FB_SERVER = "api.facebook.com/restserver.php";

public static final String SERVER_ADDR = "http://" + FB_SERVER;

public static final String HTTPS_SERVER_ADDR = "https://" + FB_SERVER;

Our strategy and implementation are summarized in Figure 7. We will walk users through

our algorithm and procedure.

16

In Step 1, NIU students send requests to iNIU regarding Facebook information through the

Internet. Note that with this solution, NIU students have to hold a Facebook account before

exploiting our Facebook connection service. Besides Facebook accounts, students may or may not

add our “Personalized Profile Viewer” application to their Facebook accounts.

In Step 2, iNIU initiates two components to enable the communication to Facebook: a

Facebook engine and a Facebook REST client. The former checks for authentication token by

using the latter.

In Step 3, Facebook REST client checks whether there exist running sessions on Facebook

for the student who submits the request. If it does not exist, in Step 3.1, Facebook engine redirects

the student to Facebook login page. After logging into Facebook, the student may decide to add

“Personalized Profile Viewer” application to his/her profile and move to “Personalized Profile

Viewer” in Step 3.1.1. If running sessions exist, it means that the security token for the student is

available. As shown in Step 3.2, Facebook engine directly directs the student to “Personalized

Profile Viewer.”

In Step 4, Facebook checks whether the student has logged onto their website. If already

logged in, as shown in Step 4.1, our “Personalized Profile Viewer” retrieves the student’s

Facebook profile and social context by using Facebook APIs. Otherwise, as shown in Step 4.2, the

student is first directed to the Facebook login page and then our “Personalized Profile Viewer” can

retrieve the student’s Facebook profile information.

In Step 5, our “Personalized Profile Viewer” sends back profile information to Facebook

engine.

In Step 6, the data are sent back to Facebook Rest client to prepare return data.

In Step 7, Facebook Rest client returns prepared data to Facebook engine.

In Step 8, Facebook engine forwards the data through the Internet to the student.

Figure 7. Communication protocol to Facebook.

17

Our iNIU Facebook engine is able to add social context to iNIU portal by utilizing profiles,

friends, photos, and event data to an iNIU student as long as a student has a Facebook account and

has logged into Facebook.

6.4 Facebook connection Web service

Our iNIU engine has successfully extracted data from Facebook. However, it has several

limitations. First, since we used the Facebook Client APIs to fetch user profiles, a user has to log

into Facebook through its login page before using our service in iNIU. In addition, an active

session has to be maintained, so that we can obtain the authentication token (a unique

alphanumerical number that uniquely represents the session for the user) to fetch the user’s profile

from Facebook server. Otherwise, the users will be redirected to Facebook login page. This

prerequisite is undesirable, since iNIU shall keep transparent to users the Facebook-specific login

process. Second, a user has to add our Facebook application (“Personalized Profile Viewer”) to

his/her Facebook profile ahead of time. If the answer is a no, our engine will redirect the user to

the Facebook login page, so that the user can login and add our application. This action shall be

automated transparent to users. Third, single sign on (SSO) [14] has been widely utilized in

network computing to enable users to logon to the network and access resources from computers

or domains where they have no accounts. We intend to eliminate the need for users to remember

credentials for every social network. Instead, iNIU shall be able to manage automatic log in

process on behalf of users.

Recall that Facebook requires authentication token from an active Facebook session. After

experimenting various ways using Java APIs but still failed, we came across .NET APIs that allow

to authenticate a user without a browser. The core section of code fetching an authentication token

follows:

HttpSession session = request.getSession();

String sessionKey = (String) session.getAttribute("fbSession");

String fbtoken = request.getParameter("auth_token");

if (fbtoken != null) {

 fbRestClient = new FacebookXmlRestClient(apiKey, secretKey);

 try {

 sessionKey = fbRestClient.auth_getSession(fbtoken);

 session.setAttribute("fbSession",sessionKey);

 } catch (FacebookException e) {

 e.printStackTrace();

 }

}

We used HTTPWebRequest and HttpWebResponse to login virtually (similar to HttpUnit) in

.Net. We first create a request to the Facebook login page using the GET request type, then we

append the credentials to the corresponding fields of the login page (Textbox provided for

username and password). By using the POST request, we post the values to the server. Thus, we

can get an authentication token.

Further, we established a Web service for Facebook, as shown in Figure 8. The service is

independent of our iNIU system and resides on another machine. It is implemented in .NET, while

18

our iNIU system is implemented in Java. As shown in Figure 8, our Facebook Web service

handles all communication activities with Facebook. It hides all the complicated Facebook

invocation details and provides a Web service interface. Follows is the WSDL interface for

retrieving all Facebook friend information by providing a user id and password.

Figure 8. Facebook connection Web service.

<s:element name="GetFriends">

 <s:complexType>

 <s:sequence>

 <s:element minOccurs="0" maxOccurs="1" name="username" type="s:string" />

 <s:element minOccurs="0" maxOccurs="1" name="password" type="s:string" />

 </s:sequence>

 </s:complexType>

</s:element>

<s:element name="GetFriendsResponse">

 <s:complexType>

 <s:sequence>

 <s:element minOccurs="0" maxOccurs="1" name="GetFriendsResult"

type="tns:ArrayOfString"/>

 </s:sequence>

 </s:complexType>

</s:element>

…

<wsdl:operation name="GetFriends">

 <wsdl:input message="tns:GetFriendsSoapIn" />

 <wsdl:output message="tns:GetFriendsSoapOut" />

</wsdl:operation>

Based on the Facebook Web service constructed, inside of iNIU, we built a Facebook

gateway that acts as a stub, which is a Web service client on behalf of iNIU. Similarly, iNIU builds

19

a dedicated gateway for every social network. Such a design provides scalability if new social

networks are added into the scene. As shown in Figure 8, we built a Social Relationship Manager

module inside of iNIU comprising two major components: a Social Networks Mashup Manager

and a Social Networks Preference Manager. The former handles two-layer social relationship

mashup; the latter allows iNIU users to specify their personal preferences on utilizing social

relationships from available social networks. A local cache serves to enhance service performance.

The detailed techniques on layered service mashup and services-oriented caching are discussed in

Sections 4 and 5.

7. System implementation

Figure 9 shows the overall architecture of the iNIU portal. The eight core components are:

Web 2.0 Platform, Service Configuration Manager, Mashup Manager, Preference Manager, Cache

Manager, SOAP Message Generator, SOAP Message Interpreter, and Service Invoker. As shown

in Figure 9, various external Web services serve as backend data sources for iNIU: Amazon.com

services, Yahoo! services, Google services, Facebook, Global weather services, and various news

sources.

Web 2.0 Platform provides a user interface and mashup environment for NIU students.

Service Configuration Manager coordinates all comprising components and allows students to

design a personalized service portal. For example, a student may configure weather service and

news service, while another one may configure weather service and social networking service.

Two dotted boxes are Preference Manager and Mashup Manager. The former allows students to

specify their preferences on various data sources over a specific service; the latter allows students

to specify the level of mashup over a specific service. These two components combined help

Figure 9. iNIU architecture

20

students to configure their personalized portal. Note that they are both generic components. For

every specified service type, an instance pair will be created. For example, as shown in Figure 8, a

Social Relationships Manager is a conceptual module that comprises two components: Social

Networks Preference Manager and Social Networks Mashup Manager are two instances of the

above two generic components.

Cache Manager provides caching service for iNIU. SOAP Message Generator creates SOAP

messages. SOAP Message Interpreter analyzes incoming SOAP responses and conducts necessary

parameter conversions (e.g., meter to inch). Service Invoker is in charge of communicating with

external services. Four components maintain proprietary databases: Preference Manager, Mashup

Manager, Service Configuration Manager, and Caching Manager.

8. Conclusions

In this paper, we reported our design and solutions to four technical challenges when we construct

a university student-oriented services portal. We present a layered service model to provide

mashup services at multiple granularities. We also reported our service-oriented caching

mechanism, based on user preferences and service availability. Furthermore, we present our

strategy of utilizing Facebook as a resource base to mashup social relationships from various

social networking websites.

Our prototype of iNIU provides a proof of concept toward building a university-oriented

Web 2.0 mashup services portal. We plan to continue our research in the following several

directions. First, we plan to explore building an NIU-based social environment, by utilizing

knowledge contained in Facebook and other social networks. Second, we plan to build a

customizable news service, for students to personalize news sources as well as caching and

ranking preferences. Third, we plan to publish iNIU to NIU students to perform case studies.

9. Acknowledgement

This research is supported by the Computer Science Department of Northern Illinois University.

10. References

[1] Blackboard.com, "Blackboard Learning System", Available from:

http://www.blackboard.com/products/academic_suite/learning_system/index.

[2] L.-J. Zhang, J. Zhang, and H. Cai, Services Computing. Springer, 2007.

[3] HousingMaps.com, "HousingMaps.com", Available from:

http://www.HousingMaps.com.

[4] Facebook, "Facebook", Available from: http://www.facebook.com/.

21

[5] Google, "Google Launches OpenSocial to Spread Social Applications Across

the Web", 2007, Available from:

http://www.google.com/intl/en/press/pressrel/opensocial.html.

[6] programmableweb.com, "programmableweb.com", Available from:

http://www.programmableweb.com/.

[7] Google, "Google Mashup Editor", 2008, Available from:

http://code.google.com/gme.

[8] IBM, "IBM Mashup Starter Kit", 2007, Available from:

http://www.alphaworks.ibm.com/tech/ibmmsk.

[9] Microsoft, "Popfly", 2008, Available from: http://www.popfly.com/Overview.

[10] Intel, "Intel Mash Maker", 2008, Available from: http://mashmaker.intel.com/.

[11] NIU, "myMIU", 2008, Available from: http://myNIU.edu.

[12] R.K.R. Ariga, K. Akula, S.R. Gujjala, Momtazul Karim, S. Ramesh, and J.

Zhang, "iNIU - A Services Portal for NIU Students", in Proceedings of

Proceedings of IEEE Congress on Services Computing (SERVICES 2008), Jul. 8-

Jul. 11, 2008, Honolulu, Hawaii, USA, pp.

[13] J.A. Barnes, "Class and Committees in a Norwegian Island Parish", Human

Relations, 1954, 7: pp. 39-58.

[14] I. Ristic, "Apache Security", 2005, Available.

