

Fig. 1 Different ways of accessing NEX components.

Bridging VisTrails Scientific Workflow Management System to High Performance

Computing

Jia Zhang
1
, Petr Votava

2
, Tsengdar J. Lee

3
, Owen Chu

1
, Clyde Li

1
, David Liu

1
, Kate Liu

1
, Norman Xin

1
,

Ramakrishna Nemani
2

1
Carnegie Mellon University – Silicon Valley, USA

2
NASA Ames Research Center, USA

3
Science Mission Directorate, NASA Headquarters, USA

jia.zhang@sv.cmu.edu, petr.votava@nasa.gov, tsengdar.j.lee@nasa.gov, rama.nemani@nasa.gov

Abstract—NASA Earth Exchange (NEX) is a

collaboration platform whose goal is to accelerate Earth

science research, by leveraging NASA’s vast collections of

global satellite data together with access to NASA’s High-

End Computing (HEC) facilities. NEX also aims to

facilitate the sharing of experimental results as well as

scientific processes (workflows) with the Earth science

community through integration with VisTrails workflow

management system. While VisTrails is used internally, it is

not easily accessible from remote computers without

directly logging into the NASA HEC systems through two-

factor authentication and a bastion host. This paper

describes the initial design of an extensible architecture that

facilitates easier workflow interaction on NEX, by enabling

users to develop and execute workflows in a

supercomputing environment directly from their local

VisTrails installation. This architecture helps domain

scientists seamlessly leverage distributed computing and

storage resources and it is potentially applicable to other

scientific workflow management software. We further

describe the architecture of the VisTrails-HEC plugin (as

well as the VisTrails-Amazon plugin) and the

implementation of a working prototype to demonstrate the

feasibility of our solution.

I. INTRODUCTION

The data volumes accumulated by NASA’s Earth

observing satellites and climate models continues to grow

rapidly. Analyzing such a vast amount of data requires

significant computing power and data storage, which are

usually not available to most research labs and individual

researchers. In order to help scientists conduct research and

analysis on large Earth science datasets, the NASA Earth

Exchange (NEX) [1] project has been established. NEX

combines state-of-the-art supercomputing, Earth system

modeling, remote sensing data from NASA and other

agencies, and a scientific social networking platform to

deliver a complete work environment in which users can

explore and analyze large Earth science data sets, run

modeling codes, collaborate on new or existing projects, and

share their results with the community. As NEX provides

centralized access, not only does data not have to be moved

back and forth to scientists’ local places, but also data

analysis procedures can be operated remotely on the NEX

by leveraging NEX’s computing power. As Fig. 1

illustrates, NEX offers workflows as one way to access the

super-computing resources.

Apart from access to data and computing, as shown in

Fig. 1, NEX accumulates a set of user-contributed Earth

science models, analysis tools and software utilities in order

to promote software re-use and accelerate scientific

research. Workflow management tools, such as VisTrails

[2], have been used to help researchers to create workflows

[3, 4] that define the steps in the scientific process and

provide a foundation for repeatability, transparency and

software re-use. While NEX components are accessible

through different ways to support better compatibility with

legacy software as depicted in Fig. 1, the workflow

components are most significant, because they are key in

accelerating research through science re-use with easy

extensibility.

Because of the large volumes of data and complexity of

the models involved in research and analysis on NEX, high

computing power is typically required to conduct the

experiments in a reasonable amount of time [5]. In order to

leverage NASA’s computing capabilities, NEX has been

part of the NASA High-End Computing Capability (HECC)

project. HECC has constructed a world-class

supercomputing and mass storage environment for

conducting large-scale modeling, simulating, and analysis to

answer NASA's complex science and engineering questions

[6]. As of December 2012, over 11,776 nodes are running at

the NASA Ames HEC center on the Pleiades

2013 IEEE Ninth World Congress on Services

978-0-7695-5024-4/13 $26.00 © 2013 IEEE

DOI 10.1109/SERVICES.2013.64

29

Fig. 2 HEC infrastructure. [5]

Table I. Architectures of computing nodes on Pleiades.

Node Type # of

Nodes

Processors

per node

Processor

speed

Memory

per core

Sandy Bridge 1,728 2 eight-core

processors

2.6 GHz 2 GB

Westmere 4,608 2 six-core

processors

2.93 GHz or

3.06 GHz

2 GB

Nehalem 1,280 2 quad-core

processors

2.93 GHz 3 GB

Harpertown 4,096 2 quad-core

processors

3 GHz 1 GB

supercomputer, interconnected with an InfiniBand (IB)

network in a hypercube topology [7].

As Critchlow and Chin [8] indicated, however, there

usually exists a gap between workflow design environment

and workflow execution on supercomputers. Geoscientists

access the HEC environment through a two-factor

(SSH+RSA) authentication mechanism. They log into front-

end nodes and issue jobs through a scheduler to compute

nodes [6]. On the other hand, scientific workflow tools like

VisTrails require that all procedures run either locally or as

remote services. Although it is possible to run VisTrails

locally on the Pleiades system, it requires a number of

additional steps. Additionally, Pleiades is part of a secure

environment that does not allow access using web services.

More critical, it is not well suited for interactive workflow

design and execution.

To bridge the gap between scientific workflow tools

(e.g., VisTrails) and high-end computing, the motivation for

our project is to allow scientists to access the HEC

supercomputing environment with minimal knowledge of its

operational aspects and minimal modification to their

workflows. The direct impacts of this effort are multi-fold:

(1) facilitating scientists in leveraging NASA

supercomputing capabilities from the graphical interface of

scientific workflow tools; (2) automating the process of

migrating code and computation from development

environment to supercomputing environment; (3) allowing

scientists to focus on science; and (4) releasing NEX

technical staff from a number of user support activities.

In this paper, we present the architecture that enables

bridging between local and remote workflow management

systems and the implementation of a working prototype to

demonstrate the feasibility of our solution. The remainder of

the paper is organized as follows. In Section 2, we describe

the current HEC infrastructure and VisTrails to explain the

technical challenges. In Section 3, we present our

architectural design. In Section 4, we present an intelligent

scheduling algorithm. In Section 5, we present prototyping

system implementation. In Section 6, we discuss related

work. In Section 7, we draw conclusions.

II. PROJECT CONTEXT

In this section, we briefly describe the overview of the

HEC infrastructure and the VisTrails.

A. HEC Overview

As illustrated in Fig. 2, HEC comprises four categories

of nodes: Secure Front-End (SFE) nodes, Pleiades Front-

End (PFE) and Bridge Nodes, Portable Batch System (PBS)

nodes, and four types of compute nodes.

The front-end layer of the HEC infrastructure contains 14

Pleiades Font-End (PFE) nodes and 4 Bridge Nodes. These

nodes provide environments for users to perform file

transfers, file manipulations, and job submissions. Users are

required to first log onto Secure Front-End (SFE) nodes

using SSH+RSA two-factor authentication in order to be

able to log on to one of the Pleiades Font-End (PFE) nodes

and Bridge Nodes.

Pleiades deploys the Portable Batch System (PBS),

developed by Altair Grid Technologies, LLC., for all

compute job submissions, monitoring, and management.

PBS adopts job queues to manage pending work and acts as

a scheduler. It dispatches jobs to be run on one or more

compute nodes, based on a combination of factors such as

mission shares (a certain percentage of CPU’s on Pleiades

are allocated to each NASA mission directorate), job

priority, queue priority, and job size. After users log onto

the front-end nodes, they are able to issue commands to

interact with PBS to submit and manage their jobs.

There are four architectures of computing nodes that are

currently available on Pleiades as shown in Table I and

users can specify the architecture type and the number of

nodes when requesting compute time through a PBS script.

B. Vistrails Extension

VisTrails [2] is a scientific workflow and provenance

management software package used in a number of different

fields including computer graphics and Earth science

research. As shown in Fig 3, VisTrails provides a collection

of workflow widgets to allow users to visually design a

multi-step executable experiment. In our project, value is

gained by creating a solution to allow VisTrails to directly

submit workflows as jobs to the Pleiades system from user’s

30

Fig. 3 Extension to VisTrails.

Fig. 4 Workflow-HEC connection workflow.

Table II. Quality attributes.

local computer. Processing results are stored on the disk at

Pleiades and users are notified when the job completes.

Such asynchronous mode facilitates long-lasting VisTrails

workflow processing.

C. Technical Issues and Strategies

In order to connect VisTrails to HEC, several challenges

were identified. First, NASA Ames HEC facility only allows

SSH access. Second, HEC compute nodes designated for

large-scale analysis can only be accessed through a PBS

scheduler. Third, HEC intends to support a large group of

users and work items simultaneously, therefore

asynchronous connections HEC are the only option. Fourth,

there are four types of node architectures deployed on

Pleiades, differing in CPU types, number of nodes, memory

size/nodes, and speed.

To address the aforementioned challenges, our strategy is

to first identify relevant quality attributes, and then design

an architecture around the identified attributes validated by

the formal Architecture Tradeoff Analysis Method (ATAM)

methodology [9]. The scope of our project is to establish a

thin layer bridging between scientists using remote VisTrails

installation and the high-performance computing Pleiades

system.

III. ARCHITECTURAL DESIGN

Our solution is to extend VisTrails with a VisTrails-HEC

plugin, in order to provide scientists with a built-in facility

to submit workflow processing requests to be run on

NASA’s Pleiades systems, and to receive updates on the

status of their processes. We gather these processes in a

middle-tier server, as shown in Fig. 4. More details will be

discussed in a later section.

A. Design Principles

We adopted the Architecture Tradeoff Analysis Method

(ATAM) methodology [9], a systematic architectural

analysis method, to justify and evaluate the architecture

designed for the project. Working with the NASA NEX

group, we have identified the important driving quality

attributes for the architecture as listed in the Table II:

security, reliability, availability, usability, performance,

scalability, extensibility, interoperability, and asynchrony.

Three key principles in our architectural design are the

blackboard, client/server, and publisher/subscriber models.

The blackboard architecture model [10] is used to collect

different scientists’ processing jobs to a central server, while

decoupling the scientists from the HPC servers and handling

workflow scheduling in a remote scheduling server. Such a

remote server will contain a ‘blackboard’ of requests to be

processed and a scheduler that employs an algorithm to

launch scripts from a Pleiades Front-End (PFE) node. A thin

client and fat server model is used to increase

responsiveness on the client side. The scheduling will be

moved to the aforementioned designated scheduler server.

The publisher/subscriber model is also used to further

increase responsiveness of the system. Scientists will

subscribe to the scheduler server and receive notifications

on the status and progress of their workflow processing

requests.

31

Fig. 6 Deployment view.

Fig. 5 Architectural design of VisTrails-HEC plugin.

B. Workflow

We studied the current interactions of a NEX user

between VisTrails workflow design environment and

workflow execution in the HEC system, and the process is

summarized in Fig. 4. After designing a workflow using

VisTrails, a scientist will need to switch to Unix prompt to

log onto HEC using the two-phase procedure. After

checking compute nodes availability using HEC commands,

she can request a combination of four architecture types of

nodes on Pleiades. The scientist can then submit the

workflow (a job on Pleiades) to a corresponding job queue

and later check the job status using PBS commands. After

the job is finished, the scientist can review the job results,

and go back to VisTrails to modify the workflow if needed

and then repeat the process until she is satisfied with the

results.

Our design thus aims to bridge the gap between

workflow design tools and the HEC environment, to provide

system-level support to allow VisTrails users to conduct the

aforementioned HEC-side activities without ever leaving

their local VisTrails platform.

C. Architectural Design

Fig. 5 illustrates the architectural design of our VisTrails-

HEC plugin. The infrastructure consists of three tiers: front-

end, middle-tier, and backend tier. The backend tier is the

actual HEC system hidden from NEX users. Three

interfaces are leveraged by our system: front-end service is

in charge of user log in access control, PBS service is in

charge of job scheduling, and computing service is in charge

of job execution. The front-end tier is embedded in an HEC

plugin, which is implemented as a VisTrails extension

module to seamlessly adapt a VisTrails workflow to the

HEC computing environment.

The middle tier receives compute requests from the

front-end tier, distributes the requests to the Scheduler

module, and schedules the requests to run in the backend

tier. The Scheduler coordinates the usage of HEC

computing resources, by connecting to HEC’s front-end and

bridges servers via the SSH protocol and communicating

with the Scheduler Agent to dispatch compute jobs

requested by scientists. The Scheduler module gathers the

backend tier’s status through the Job Status Monitor and the

Compute Node Monitor, and schedules the requests

according to the loading of the backend system. The Job

Status Monitor is responsible for reporting the status of the

requests to the HEC plugin. The Job Queue Monitor

contributes to the Scheduler the availability of

corresponding HEC job queues.

Note that this infrastructure is not limited to VisTrails

and NASA HEC. As shown in Fig. 5, the major component

of the workflow-HPC connection is designed as an

independent middle tier exposed as Web services. At the

front end, it can interact with any workflow tool with a

corresponding plugin. At the backend, it can interact with

any HPC environment.

As shown in the deployment view in Fig. 6, the middle

tier interacts with the backend high performance computing

HPC facility and data stores, to monitor job status and job

queue information. The middle-tier will reside on a web

server (e.g., Amazon EC2 server). VisTrails-HEC plugin

interacts with the middle-tier server through two-phase

authentication process. When a job is finished, notifications

will be delivered to users in email. If the middle tier is

independent outside of NASA HPC systems, for example on

Amazon or Heroku (see Section V for details), users may

then view the execution results through web interface online.

IV. COMPUTING RESOURCE PLANNING

As mentioned earlier, Pleiades system comprises four

types of compute nodes, each with different architecture and

in turn, with different cost of usage. As shown in Fig. 4,

HEC interface allows a user to check the availability of the

four types of compute nodes and select a combination of

different types of nodes for a specific job. Up to now, users

usually select one type of architecture to submit a single job.

However, a job comprising components that can run in

32

parallel may assign them to different compute nodes based

on corresponding usage costs.

From the perspective of HEC, it is important to increase

the overall node utilization through load balancing over all

of its comprising computing resources. However, from a

user’s perspective, both cost and performance (response

time) may have to be taken into consideration to decide how

to request compute nodes. The definitions of the key

performance indicators (KPIs) are listed as below.

Estimated response time (T) of a job refers to the time

interval between when a job is submitted to a job queue and

when the job is finished (i.e., a notification is sent to user).

It includes the waiting time of a job in corresponding job

queue and the execution time of the job. Since a job may be

distributed to a combination of multiple types of compute

nodes, its response time will take the maximum time period

elapsed on different node types.

Ω = {Sandy	Bridge,Westmere, Nehalem, Harpertown}
� = max�∈Ω { !� + #�}	

where tw denotes job waiting time, and te denotes job

execution time.

The waiting time of a job on a compute node type mainly

depends on its load. The lighter load a compute node type

has, the more likely the job will obtain a shorter response

time. Note that all data, including raw data and execution

results, are hosted at NEX, and a push-code-to-data strategy

is adopted. Therefore, without losing generality, code

transmission time will not be considered. In addition, job

sections (workflow sections) distributed to different node

types may need to communicate based on their relationships

defined in the workflow. Transferring results among them

may incur some overhead. In this paper, we do not consider

such an overhead.

Estimated cost (C) of a job refers to the sum of the cost

over each type of the compute nodes, based on

corresponding rate and estimated usage time.

$ = %&� ∗ (� ∗ #�
�∈Ω

where r denotes the price rate of the type of compute

node, n denotes the number of the type of node used, and te

denotes the execution time of the job on the type of nodes.

Since users intend to minimize their response time and

minimize the cost they have to pay, we define a utility

function as a weighted sum of these two KPIs:

) = !* ∗ � − ,-.*
/ 0*

+ !1 ∗ $ − ,-.1
/ 01

where !*, !1 represent the weights of the response time

and cost, respectively; ,-.* and ,-.1 represent the average

response time and cost for the same scale of jobs,

respectively; / 0* and / 01 represent the standard deviation

of response time and cost for the same scale of jobs,

respectively.

Note that this utility function can be extended to include

other attributes. Also note that our resource scheduling

investigation here is from the perspective of HEC users; it

does not conflict with the job scheduling facility embedded

in the supercomputing center. For example, a user may

choose to send parts of a job to Sandy Bridge nodes and the

other parts to Harpertown nodes because the two types of

compute nodes charge differently.

The compute node selection problem can be thus

modeled as a Linear Multiple-Choice Knapsack Problem

(LMCK) [11]. Given a set of items in several classes and a

knapsack, where each item has a weight and profit, and the

knapsack has a capacity, LMCK aims to select a certain

number of items in each class to be placed in the knapsack

within the capacity yet has the highest total profit.

The compute node selection problem can be formalized

as a LMCK problem in the following way:

• The compute nodes in HEC represent the items in

LMCK;

• The different types of Intel Xeon processors represent

the classes in LMCK (each class comprises multiple

items);

• LMCK aims to select zero to many compute nodes in

each class;

• The objective is to minimize the response time as well

as minimize the cost, under the constraint that the total

response time is less than Tm and the total cost is less

than Cm.

The problem is thus formulated as:

23(% % !* ∗ � − ,-.*
/ 0*

+ !1 ∗ $ − ,-.1
/ 0145|78|�∈Ω

The LMCK problem is NP-hard. For large systems, it

may be highly difficult to find the optimal solution. As the

first step, we adopted Pisinger [12]’s solution to LMCK

problem centered on a partitioning algorithm. The optimal

solution 9∗ to LMCK is composed by the LP-optimal

choices :� in each class, where 9�:�=1.

V. PROTOTYPE IMPLEMENTATIONS

A prototype of the proposed system has been

implemented as a proof of concept. In spite of the fact that it

is still a prototype, it implements the full set of usable

features on the client side as a VisTrails plugin. These

features include user login, job status monitoring, and job

scheduling. A Scheduler Server has also been implemented

to receive compute job requests and generate the PBS script.

Along with the Scheduler Server, we also simulated the

two-level logging process and the job execution to mimic

the real situation since we now only have limited access to

the NASA HEC environment. The middle tier was

implemented as a web application deployed on the open

Heroku platform using Ruby on Rails

(http://rubyonrails.org/), providing RESTful web services.

33

Fig. 7 Prototyping system screen shots.

Ruby on Rails is a popular technology known for helping

develop web applications and services.

As described in the previous sections, VisTrails is the

tool currently used by NEX scientists that provides a

graphical interface for designing and managing workflows.

VisTrails provides a plugin infrastructure to support

extensibility for new features. VisTrails plugins are

implemented in Python. The GUI framework is built using

Qt [13], a cross-platform application and UI framework

providing tools to help streamline the creation of

applications and user interfaces for desktop, embedded and

mobile platforms.

The prototype of the middle-tier is currently deployed on

an Amazon EC2 Ubuntu instance. It monitors new

workflow jobs sent from VisTrails users and generates PBS

scripts according to user configurations.

A. VisTrails-HEC Plugin

One challenge of building the VisTrails-HEC plugin is

the accessibility of PBS through the PFE nodes. Accounts

must be granted to access these nodes. One prerequisite is to

gain developer access to NASA’s computing resources.

When prototyping the solution, we chose to simulate the

different nodes in the Pleiades system and the servers

involved in the plugin. However, access of NASA’s nodes

is required to test the integration of the solution more

comprehensively.

The implemented VisTrails plugin adds a set of

functionalities to VisTrails users, as shown in Fig. 7(a).

After a workflow is designed in VisTrails, a user can sign

onto HEC with the “Log on HECC” menu item. A dedicated

“remoteLogin” plugin has been implemented. The included

pexpect python package further facilitates the program to

detect and react with RSA authentication process.

Following HEC security settings, we have simulated a

two-factor (SSH+RSA) logging mechanism to register a

VisTrails session to HEC [6]. As shown in Fig. 7(b), when a

user intends to “Send to HECC” a workflow, a phase-one

window will pop up to allow a user enters user name and

password. Afterwards, a phase-two window will pop up and

prompt the user to enter the code that appears on her RSA

token to connect to HEC. User name will be remembered by

the VisTrails-HEC plugin through configuration. Such a

design will allow scientists to leverage HEC resources

without ever leaving the VisTrails environment. The second

reason is the exploratory feature of scientific workflow

development. When a scientist modifies a workflow and

runs it many times, such an embedded feature will

significantly simplify HEC connection efforts.

NEX users can use “View CPU Usage,” “View PBS

Status” and “View File System Status” to fetch the current

status of HEC. Currently, we crawl the real-time Pleiades

status pages (under

http://www.nas.nasa.gov/monitoring/hud/realtime/) and

render the corresponding information through the

QWebView class in QT. Once again, we provide a single

access point for NEX users.

The item of “Send to HECC” will provide both

automatic and manual ways to select computing nodes, as

shown in Fig. 7(c). Currently, the decision vector comprises

only performance and cost. Two automatic options are

34

provided based on user preference of which factor is more

important. As an example shown in Fig. 7(c), performance

is selected to be more important, and a recommendation of

selecting a combination of computing node types and nodes

is presented (Sandy Bridge: 4; Westmere: 2; Nehalem: 1;

Harpertown: 1). If user agrees and clicks on the “Send to

HECC” button, a job carrying the workflow will be sent to

HEC system. The plugin makes this possible by uploading

the current VisTrails project file and a generated

configuration file to the server. A user may send multiple

jobs to the Scheduler Server and afterwards, use the “View

Job Status” option to retrieve job statuses.

B. VisTrails-Amazon Plugin

Due to the fact that not all research groups could obtain

NASA HEC access, we have decided to build another

plugin to connect VisTrails to an open accessible HPC

environment.

Rapidly advanced cloud computing technology has

enabled Infrastructure as a Service (IaaS), which provides

end users flexible and reliable access to resources that will

meet dynamic computational needs. Particularly, Amazon

EC2 offers Cluster Compute instance type optimized for

high performance computing applications [14].

As a proof-of-concept example, we selected Amazon

EC2 because it supports (limited access) free accounts. As

another side effect, such a VisTrails-Amazon plugin opens

up new vistas for VisTrails users without NASA HEC

access to exploit high performance computing capability.

As shown in Fig. 7(a), a VisTrails-Amazon plugin

provides the same collection of facilities as those of the

VisTrails-HEC plugin. Unlike NASA HEC using a two-

phase login process, Amazon EC2 requires a one-phase SSH

login. A VisTrails running instance is installed on Amazon

EC2 and workflow jobs can be thus sent to Amazon EC2 to

be executed. After a compute job is done, the server

automatically sends a notification email with the web link of

results for users to view online. Fig. 7(d) shows when a user

selects ‘View Job Status’ after a job has been submitted to

Amazon EC2. The example shows one job is still running,

while some jobs have been successfully executed and the

links to their results viewable online are provided as well.

C. Further Discussions

The scalability of the middle-tier server holding all

requests is a major concern, because it could be a potential

architectural bottleneck. Because scientists submit processes

and receive updates to and from the remote server through

VisTrails, increased traffic to this remote server could

impede or disrupt scientists from being able to submit their

processes and receive updates. A potential solution could be

to increase the number of remote servers and allow

VisTrails to choose the remote server to use based on the

number of current requests of each server.

The availability of a parallel solution is another concern,

because there are currently no openly-available ways to

automatically parallelize a VisTrails program. Without such

a capability, the program can only be run as a batch job and

not in parallel. A solution to this concern could be to write

an independent automatic parallelization component but it

would be highly resource-intensive and still mostly

applicable to a subset of possible programs.

VI. RELATED WORK

Scientific workflows are typically oriented to big data

analysis thus require large computing power and mass

storage capabilities [5]. However, Critchlow and Chin [8]

have indicated that a gap exists between workflow design on

workflow engines (tools) and workflow execution on

supercomputers.

Several scientific workflow management systems have

been widely used nowadays. Script [15] provides a scripting

language to allow scientists to define, execute, and manage

large-scale scientific workflows. An execution engine is

associated to dispatch parallel computations to Grid

environment, based on user specifications and data flows

defined in scripts. In Kepler [16], a workflow is comprised

of interconnected actors (components). Such a setting

allows actors to be executed concurrently and

communicated with each other through interconnected ports.

Wang et al. [17] introduce a MapReduce actor into Kepler

supported by a Hadoop infrastructure. Kepler users can

compose and execute MapReduce applications; and

computations are moved to partitioned datasets and run in

parallel. Pegasus [18] provides a pegasus-mpi-cluster tool to

run High Throughput Computing (HTC) scientific

workflows on systems designed for HPC. Microsoft Trident

[19] also can run scientific workflows on Windows HPC

clusters. Complementary to these efforts that focus on

embedding functions in scientific workflow tools to support

HPC capability, our project focuses on building a light-

weight plugin into scientific workflow tools to connect them

to HPC backend.

Juve et al. [20] studied data sharing options for

enhancing scientific workflow performance and cost on

Amazon EC2. Mehrotra et al. [21] explored running NASA

HPC applications on the Cluster Compute instance of

Amazon EC2 Services, and compared its performance with

running NASA HPC applications on NASA Pleiades

supercomputer (i.e., HEC). They concluded that due to

communication overhead, the traditional supercomputer

environments (e.g., NASA HEC) exceeds the cloud

computing environment in running large-scale HPC

applications requiring large core counts. However, their

study confirms our motivation of allowing VisTrails users

without NASA HEC access to exploit high performance

computing capability of Amazon EC2, especially when

single core is sufficient for running a workflow.

35

VII. CONCLUSIONS AND FUTURE WORK

In order to leverage the supercomputing capabilities,

domain scientists need to be able to quickly move code and

computation between their development environments

(sandbox) and the supercomputing environment at NASA

HEC facilities. This paper describes our extension to the

VisTrails scientific workflow tool that automates such a

process. Regardless of the current HEC constraints, we have

presented an “ideal” architecture that supports seamless

migration of scientific workflows between a development

environment and a supercomputing environment (NASA

HEC and Amazon EC2). By providing a single access point,

a NEX user can design workflows, send to execute on high-

end computing environment, and view execution results

online. We believe that our work will help increase the

number of scientists to adopt the NASA computing

ecosystem.

In future research we plan to construct a middle tier

inside of NEX to host a VisTrails running environment,

empowered by our VisTrails-HEC plugin. This layer will

intend to provide a system-level support to handle all

VisTrails-supported HEC access and data management. We

also plan to accumulate practice data to create benchmarks

for the presented workflow scheduling approach in this

paper.

VIII. ACKNOWLEDGEMENT

This work is partially supported by National Aeronautics

and Space Administration, under grant NASA

NNX13AB38G. The authors sincerely appreciate Dr.

Thomas Hinke for his constructive discussions and

comments.

VIV. REFERENCES

[1] NASA, "NASA Earth Exchange (NEX)", 2012, Accessed on,

Available from: https://c3.nasa.gov/nex/.

[2] S.P. Callahan, J. Freire, E. Santos, C.E. Scheidegger, C.T. Silva,

and H.T. Vo, "Managing the Evolution of Dataflows with

VisTrails", in Proceedings of the 22nd International Conference on

Data Engineering Workshops, 2006, pp. 71.

[3] E. Deelman and Y. Gil, "NSF Workshop on the Challenges of

Scientific Workflows", (ed.), May 1-2, 2006.

[4] S.B. Davidson and J. Freire, "Provenance and Scientific

Workflows: Challenges and Opportunities", in Proceedings of

ACM SIGMOD, 2008, pp. 1345-1350.

[5] M. M. Sonntag, D. Karastoyanova, and E. Deelman, "Bridging

the Gap between Business and Scientific Workflows: Humans in

the Loop of Scientific Workflows ", in Proceedings of IEEE 6th

International Conference on e-Science (e-Science), 2010,

Queensland, Australia, Dec. 7-10, pp. 206-213.

[6] NASA, "High-End Computing Capability (HECC)", 2012,

Accessed on 12/25/2012, Available from:

http://www.nas.nasa.gov/hecc/.

[7] NASA, "Pleiades", 2012, Accessed on 12/26/2012, Available

from: http://www.nas.nasa.gov/hecc/resources/pleiades.html.

[8] T. Critchlow and G.J. Chin, "Supercomputing and Scientific

Workflows Gaps and Requirements", in Proceedings of 2011 IEEE

World Congress on Services (SERVICES), 2011, Washington DC,

USA, Jul. 4-9, pp. 208-211.

[9] P. Clements, R. Kazman, and M. Klein, Evaluating Software

Architectures: Methods and Case Studies, 2001, Addison-Wesley

Professional.

[10] P. Korpipää, Blackboard-Based Software Framework and

Tool for Mobile Device Context Awareness, Vol. 579, 2005, VTT

Publications.

[11] E. Zemel, "The Linear Multiple Choice Knapsack Problem",

Operations Research, Nov.-Dec., 1980, 28(6): pp. 1412-1423.

[12] D. Pisinger, "A Minimal Algorithm for the Multiple-Choice

Knapsack Problem", European Journal of Operational Research,

1995, 83: pp. 394-410.

[13] Digia, "QT", 2012, Accessed on, Available from:

http://qt.digia.com/product/.

[14] Amazon, "High Performance Computing (HPC) on AWS",

2012, Accessed on, Available from: http://aws.amazon.com/hpc-

applications/.

[15] M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, A.

Espinosa, M. Hategan, B. Clifford, and I. Raicu, "Parallel Scripting

for Applications at the Petascale and Beyond", IEEE Computer,

2009, 42(11): pp. 50-60.

[16] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,

M. Jones, E.A. Lee, J. Tao, and Y. Zhao, "Scientific Workflow

Management and the Kepler System", Concurrency and

Computation: Practice & Experience, 2006, 18(10): pp. 1039-1065.

[17] J. Wang, D. Crawl, and I. Altintas, "Kepler + Hadoop: A

General Architecture Facilitating Data-Intensive Applications in

Scientific Workflow Systems", in Proceedings of the 4th Workshop

on Workflows in Support of Large-Scale Science, 2009, Portland,

Oregon, USA, Nov. 15, pp.

[18] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman,

G. Mehta, K. Vahi, G. Berriman, J. Good, A. Laity, J. Jacob, and D.

Katz, "Pegasus: A Framework for Mapping Complex Scientific

Workflows onto Distributed Systems", Scientific Programming

Journal, 2005, 13: pp. 219 - 237.

[19] R. Barga, J. Jackson, N. Araujo, D. Guo, N. Gautam, and Y.

Simmhan, "The Trident Scientific Workflow Workbench", in

Proceedings of 4th IEEE International Conference on eScience,

2008, Dec. 7-12, pp. 317-318.

[20] G. Juve, E. Deelman, K. Vahi, G. Mehta, B.P. Berman, B.

Berriman, and P. Maechling, "Data Sharing Options for Scientific

Workflows on Amazon EC2", in Proceedings of ACM/IEEE

International Conference for High Performance Computing,

Networking, Storage and Analysis, 2010, New Orleans, LA, USA,

Nov. 13-19, pp. 1-9.

[21] P. Mehrotra, J. Djomehri, S. Heistand, R. Hood, H. Jin, A.

Lazanoff, S. Saini, and R. Biswas, "Performance evaluation of

Amazon EC2 for NASA HPC Applications", in Proceedings of

The 3rd workshop on Scientific Cloud Computing (ScienceCloud),

2012, Delft, Netherlands, Jun. 18-22, pp. 41-50.

36

