
Supporting Personizable Virtual Internet of Things

Jia Zhang1, Zhipeng Li1, Oscar Sandoval1, Norman Xin1, Yuan Ren1, Rodney A. Martin2, Bob Iannucci1, Martin
Griss1, Steven Rosernberg1, Jordan Cao3, Anthony Rowe4

1Carnegie Mellon University – Silicon Valley, USA
2NASA Ames Research Center, USA

3SAP, USA
4Carnegie Mellon University, USA

jia.zhang@sv.cmu.edu, rodney.martin@nasa.gov, bob@sv.cmu.edu, martin.griss@sv.cmu.edu,
steven.rosenberg@sv.cmu.edu, jordan.cao@sap.com, anthony.rowe@cmu.edu

Abstract—This paper reports on the design and
development of an HTML5-powered Virtual Sensor Editor
(VSE) over the Internet of Things cloud. VSE is a scalable
tool that allows users to design virtual sensors with user-
defined dataflow logic, by visually aggregating existing
sensors, either physical sensors or other user-defined virtual
sensors. VSE supports a real-time and historical
visualization of sensor values and analytical studies, and is a
cross-platform and customizable tool equipped with ability
to support verifiable sensor data service composability. A
discussion on design decisions is presented. Our preliminary
work has been applied to NASA Ames’ Sustainability Base
for smart building monitoring. Preliminary performance and
scalability study is also reported.

I. INTRODUCTION

Several government initiatives have focused attention on
sustainability, energy efficiency, and the environment. One
such initiative is NASA’s Renovation by Replacement
(RbR), which aims to replace outdated and inefficient
buildings at NASA centers with new, energy-efficient
buildings. NASA Ames Research Center won an RbR
competition and worked with partners to design and build
Sustainability Base, a 50,000 sq. ft. LEED Platinum
certified high performance office building. In addition to
using commercially available technologies, Sustainability
Base aims to redeploy innovations and technologies
originally developed by NASA for aerospace missions to
monitor and control building systems while reducing energy
and water consumption.

Technologies developed by NASA Ames’ research
partners will also be deployed to support these objectives,
including those developed by Carnegie Mellon University -
Silicon Valley (CMUSV). The ultimate vision of
Sustainability Base is to provide a research testbed where
different sustainable technologies and concepts can be
implemented, tested, and demonstrated. The three primary
research objectives involved in this vision are to reduce
building energy consumption, to reduce building operating
and maintenance costs, and to improve employee comfort
levels. In this collaborative project, we focus on exploring
how networked sensors can be better leveraged to contribute
to these objectives.

The number of active Internet of Things (IoTs)
(networked sensors is rapidly approaching 50 billion. The
sensors are reporting their surrounding environments and
helping people learn about the physical world in detail. For
example, NASA Sustainability Base research initiatives are
supported by over 2000 sensors of various types, deployed
to help maintenance staff understand activities and
conditions in the buildings including temperature, relative
humidity, barometric pressure, and so on. Such data will
help them to operate, monitor, and maintain the buildings,
and additional value-added services may be derived based
upon the deployed sensors.

However, it is not always a trivial task to find proper
sensors and actuators to perform as needed. Even though
current technology has allowed for real-time control actions
to be taken based upon embedded physical sensors, many
semantics-rich commands may not be able to be realized by
individual sensors. For example, a more comprehensive
query, such as to check the average temperature of the north
wing of the second floor of the Sustainability Base, may
involve the measurements of all temperature sensors
deployed in the corresponding area. Furthermore, such an
average temperature may be needed for long-term
monitoring and exploration. Thus, its values should be
stored and maintained to database, instead of always
recalculating from comprising sensor data at runtime.

In a word, there should be a way to make a building
“smarter” to be programmable, to allow users to integrate
existing sensors with programming logic to query
personalizable views of the building and analyze data.
Toward this ultimate goal, this paper reports on our design
and development of a Virtual Sensor Editor, a scalable tool
to visually aggregate physical sensors with user-defined
dataflow logic into virtual sensors. In our definition as
shown in Fig. 1, a virtual sensor is an atomic component
that provides sensor data service to the outer world. Relying
on existing sensors, a virtual sensor will carry
programmable workflow logic (using rules or formula) to
present curated knowledge of environmental observations
over a collection of sensors. Modeling embedded workflows
as computable functions, virtual sensors can be composed to
form comprehensive views of physical world, leveraging
mathematical knowledge on functions as well as
computability theory.

2013 IEEE 10th International Conference on Ubiquitous Intelligence & Computing and 2013 IEEE 10th International Conference

on Autonomic & Trusted Computing

978-1-4799-2481-3/13 $31.00 © 2013 IEEE

DOI 10.1109/UIC-ATC.2013.48

329

Fig. 1 Virtual sensor concept.

In contrast to various simulation tools over sensor net-
networks such as TOSSIM [1] and OPNET [2], our virtual
sensor editor focuses on its ability to allow users to create
customizable sensors using dataflow logic. Note that virtual
sensors are treated on par with physical sensors. First,
virtual sensors can be used to compose value-added sensors.
Second, virtual sensor readings are stored the same way as
those for physical sensors. Third, a virtual sensor can carry
the history of how it has become as it is now, which
provenance will help analyze corresponding readings (i.e.,
computed values at the time).

To enable cross-platform development, we have adopted
the HTML5 [3] technology to develop a web browser-based
integrated development environment. The backend is the
Sensor Data and Service Platform (SDSP) developed at
CMUSV [4], which provides backbone support of sensor
data service registration, discovery, and composition.

Our virtual sensor editor has the following four
highlighted attributes: (1) native drag-and-drop: Instead of
relying on third-party implementation of drag-drop function
like jQuery library, we have utilized the native drag & drop
feature provided by HTML5. (2) just-in-time evaluation:
Users will obtain real-time feedback during the process of
designing virtual sensors. (3) reusability: User can perform
create, read, update and delete (CRUD) operation over their
virtual sensors. Virtual sensors can be both data sources and
data targets, and virtual sensors can be used to compose new
virtual sensors. (4) predefined and customizable sensors:
Users can specify customized rules to define customizable
sensors.

The remainder of the paper is organized as follows. In
Section 2, we discuss related work. In Section 3, we explain
architectural decisions. In Sections 4 and 5, we present
design and development of the virtual sensor development
environment, respectively. In Section 6, we discuss virtual
sensor composability. In Section 7, we present our
performance and scalability study. In Section 8, we
summarize conclusions and describe future work.

II. RELATED WORK

Microsoft SenseWeb [5] provides a Web 2.0 platform for

users to upload and access sensor data streams from shared
sensors across the Internet. SensorBase [6] built a
centralized data storage and management platform that
allows users to publish and share (“slog”) sensor network
data using a blog-like approach. Global Sensor Networks
(GSN) [7] adopts a scalable P2P model in favor of
integrating heterogeneous sensor network technologies. In
contrast, we have developed a cross-platform virtual sensor
editor tool to allow users to dynamically mashup
heterogeneous data sources to provide value-added sensor
data services. In addition, virtual sensors are treated as first-
class citizens.

Many researchers focus on building tools to support
sensor data manipulation. Among them, the Desthino
(Distributed Embedded Things Online) project aims to
provide a practical set of software tools to help users collect
and store sensor data from heterogeneous distributed sensors
[8]. A concept of virtual sensor is introduced in GSN [7] to
abstract sensor data as temporal streams of relational data,
and to represent derived views or a combination of sensor
data from different sources. In contrast to their work, we
have proposed a sensor ecosystem concept, where virtual
sensors become atomic service providers to provide
customizable and programmable sensing data services.
Virtual sensors are contributed back to persistent layers and
are treated as composable data sources.

Sensor Observation Service (SOS) is a standard Web
service specification, aiming to standardize the way of
requesting, filtering, and retrieving sensors and sensor data
to enhance sensor interoperability [9]. Some researchers
explore how the Semantic Web can be integrated with a
Sensor Web, such as SemSOS [10] and Semantic Sensor
Web [11]. Some researchers, such as Liu et al. [12], study
the scalability of sensor networks. SenseBox [13] introduces
an autonomous computing unit encapsulating environment
and REST APIs. In contrast to their work, our virtual
sensors focus on the programmable dataflow embedded, as
well as the data provenance associated with the dataflow.

In our earlier work, we developed an SOA-based Web
2.0 platform that allows users to view and federate
heterogeneous sensor data sources through a Sensor Data
and Service Platform (SDSP) [4]. In contrast, the work
reported in this paper aims to provide a service provisioning
layer for SDSP, to expose sensor data to the outer world in a
(re)configurable and personalizable manner.

III. DESIGN DECISIONS

Carnegie Mellon University (CMU) has developed
SensorAndrew, the largest nation-wide campus sensor
network [14]. Over ten thousand of various types of sensors
have been deployed over the Pittsburgh campus as well as
the Silicon Valley campus. The CMU – Silicon Valley
campus has developed a Sensor Data Service Platform
(SDSP) on top of the SensorAndrew infrastructure and its
middleware, to provide sensor data and data service

330

publication, discovery, and composition [4].
Virtual Sensor Editor (VSE) aims to become an integral

part of the SDSP, as a design tool to assist the design
process of customizable sensors. In more detail, it should
allow users to browse available sensors, pick up physical or
virtual sensors in which they are interested, add rules under
which a new ‘virtual sensor’ will work, and eventually
persist the new virtual sensor if it works as expected.

Extracting conclusions from a user workshop, it is
believed that the design tool should possess the following
five key features: (1) platform neutrality: The tool should
not be restricted to a certain platform. Meanwhile, mobility
should be supported. (2) visualization: The tool should
support real-time visualization of all sensors, physical and
virtual. (3) in-time feedback: The tool should allow users to
establish rules and alert policies, to realize real-time
monitoring and management of smart spaces. (4)
reusability: The tool should support recursive virtual sensor
composition with formal validation facility. (5) scalability:
The tool should be oriented to the community and support
many users in designing, viewing, and managing their
virtual sensors simultaneously. Towards fulfilling such user-
defined goals, we have made the following architectural
decisions.

AD1: Universal Unique Identifier (UUID)
Problem: We need to identify in a unique way every

component in the structure of a virtual sensor.
Solution: An identification table is maintained at the

server to keep a unique identifier for every sensor registered
at SDSP, physical or virtual. At the current stage, version
control of the virtual sensors registered is left for individual
users to handle.

Alternatives: A1) unique identifier within the scope of a
virtual sensor: Although guaranteeing no repetition of the
identifiers within the context of a virtual sensor, managing
identifiers in interdependent virtual sensors is challenging.
A2) disposable identifiers: A new identifier is created every
time a component is shared by multiple virtual sensors. In
spite of reduced identifier management, this approach
increases the complexity to recreate the relationships among
components (which are store as relationships among Id’s).

AD2: Virtual sensor definition stored in a serialized
JSON string

Problem: A persistence mechanism to store created
virtual sensors is needed.

Solution: Centralize the definition of a virtual sensor in a
unique object that later will be serialized in a JSON string.
Such a decision makes it easy to handle at the backend.
However, the entire definition of a virtual sensor is
serialized every time when a change occurs. This may lead
to performance concerns if the number of virtual sensors
becomes significant. Currently, the JSON object is saved in
the browser’s local storage; but it can be sent over the
Internet to a backend service.

Alternatives: A1) backend database: All JSON objects
are persisted to a backend database. In spite of robustness, it
implies additional work to deal with atomic operations (i.e.,
queries) at development. A2) local storage key-pair: Store
editing operations instead of the entire definition.

AD3: Use of separated layers for calculations
Problem: An efficient method is needed to control the

overhead due to pulling the data from the sensors.
Solution: We have decided to separate the presentation,

business logic and data pulling functions in different layers.
The idea is to define a middleware data structure to hold a
buffer of the readings of the sensors. Every time when the
drawing canvas needs to recalculate the value of a sensor, it
does not have to invoke a separate HTTP request to the
server. Such a design decision will significantly reduce the
overhead required to process the streaming sensor data.

Alternatives: A1) individual request: Every visual
component in the canvas will control their individual
requests for data to the server. This option however, may
experience inefficiency because every component will open
a separate HTTP request adding significant overhead. A2)
push approach using web sockets: This option may be ideal
because the server pushes data to a browser only when
changes happen in sensor state. Due to time constraints and
the need to re-configure the backend to support web sockets,
it will be adopted as future work.

AD4: Use of JavaScript
Problem: A programming language is needed to allow

users to define dataflow logic for virtual sensors.
Solution: We evaluated a collection of languages

including JavaScript, Matlab, and Python. The main reason
why we decided to adopt JavaScript is its ability to conduct
real-time processing over data streaming in a web browser.
In addition, JavaScript is compatible with other real-time
frameworks like node.js. One potential concern though is its
fragility to XSS attacks, which makes it important to
sanitize code before being persisted to the server. One
possible solution is to run code in a JS sandbox (i.e., Caja, a
Google security project for “virtual iframes”
http://code.google.com/p/google-caja/).

Alternatives: A1) Matlab or python: Many scientific
users are more familiar with these languages. However, it is
unlikely to achieve the level of performance that JavaScript
can reach for processing real-time data. A2) domain-specific
programming language: This option can provide a more
compact, secure and powerful way to define the logic of
virtual sensors. It is in our future work plan.

AD5: Language to define logic of virtual sensors
Problem: Users need a method to define the logic of a

virtual sensor.
Solution: A high-level descriptive language is needed for

users to precisely define the dataflow logic of a virtual
sensor. Visual programming has been proved to be a

331

Fig. 2 Virtual sensor cycle.

powerful way to ensure productivity [15]. In addition, we
have embedded domain-specific libraries developed
specifically for the Internet of Things.

Alternatives: A1) ad-hoc formula builder: This option
refers to offering a plug-and-play way to define the logic of
a workflow without writing code. How to build a
comprehensive formula design tool with a complete list of
proper functions remains a challenge. A2) ad-hoc predefined
templates (widgets): The option refers to offering a
graphical interface for users to define the logic of a virtual
sensor without writing code. How to provide a meaningful
quantity of widgets remains challenging.

IV. VIRTUAL SENSOR ECOSYSTEM

A. Looped Sensor Ecosystem
Fig. 2 depicts our overall blueprint of a sensor

ecosystem. Sensors from the physical world are registered
into our Sensor Data Service Platform (SDSP) to become
persistent and discoverable to the community. Through our
browser-based design tool, users browse existing sensors
and define their own rules to aggregate the sensors to
provide a personalized view as a virtual sensor. The
definitions of such user-defined virtual sensors are stored
back to the SDSP backend server, so that they can be treated
as reusable sensors to be further composed. Meanwhile,
users can specify certain rules to control the physical world,
e.g., adjust room temperature to prepare a comfortable
meeting space.

As a testbed, we have realized a virtual sensor ecosystem
at the Carnegie Mellon University Silicon Valley campus
(CMUSV). As shown in Fig. 2(a), a number of Firefly [14]
sensor devices designed by CMU are heavily deployed
inside of a building. We have developed visualization

techniques to continuously monitor building conditions,
while the sensors send out readings every 5 seconds. As an
example, Fig. 2(a) shows the real-time heatmap of the 1st

floor of the building.
As shown in Fig. 2(b), all sensor readings are sent to our

backend SDSP [4], which resides on the Amazon cloud, and
stored in the SAP HANA in-memory database [16]. SDSP
provides a collection of web services, which allow users to
query sensor data registered. As shown in Fig. 2(a), our
visualization tool can show either real-time sensor data, or
show historical data based on user queries over a specified
time frame.

As shown in Fig. 2(c), the VSE tool provides a web
browser-based online editing environment to aggregate
physical sensors into virtual sensors, by applying
customized business logic. As also shown in Fig. 2(c), a
panel on the left-hand side of the window displays all
registered sensors organized in various categories such as
temperature, motion, light, noise, etc. The right-hand side
visual programming canvas allows users to drag and drop
available sensors as components. Predefined templates are
available for users to define dataflow rules to federate
sensor data from comprising components. More details of
the editor will be discussed in the next section.

After a virtual sensor is defined, its definition can be
saved. Users may choose either a script view that allows
further editing as shown in Fig. 2(c), or a time series view
that triggers all real-time visualization of all composing
sensors as shown in Fig. 2(d).

The virtual sensors are capable of behaving as physical
sensors, while additionally achieving some goals that
individual physical sensors cannot. Furthermore, users can
define virtual sensors in a way to impact the physical world,
e.g., adjusting room temperature to 72 degrees through a

332

(a) virtual sensor (b) recursive virtual sensor construction

Fig. 3 Composable virtual sensors.

NEST (http://nest.com, programmable thermostat) air condi-
conditioner controller as shown in Fig. 2(e), or triggering an
alarm if some predefined threshold is reached as shown in
Fig. 2(c). In this sense, our tool extends the SDSP platform
to form a “physical-virtual-physical” loop, analogous to the
“sense-plan-act” robotic paradigm [17].

B. Virtual Sensor Editor
One core element of the sensor ecosystem is our closed-

loop virtual sensor editor, which is an HTML5-powered
browser-based sensor logic design tool. As formal
definitions and the virtual sensor composability study will
be discussed in Section VI, this section will introduce the
design of the tool using highly simplified scenarios.

As shown in Fig. 3(a), a virtual sensor design template is
a function box comprised of one to many input ports and
output ports; the number of the ports can be configured and
changed by users. Each input port is assigned an internal
identifier (e.g., port “A”), which can be used in dataflow
logic design. As long as a data link is established between a
virtual sensor and a component sensor, the real-time data
value of the latter sensor becomes an input to the former
sensor and contributes to its display value. A library of
statistical calculations is embedded into the tool and can be
selected by users (e.g., function “mean”) to speed up the
design process. The dataflow logic of a virtual sensor can be
defined in JavaScript. The button “Set” will trigger the
execution of the defined workflow, so that users can
evaluate and adjust the definition as needed. Note that a
sensor box dragged to the canvas represents a running
sensor data service, whose real-time readings are displayed.
Different colors are used to notify the health of
corresponding sensors: a red color indicates that the sensor
did not send in data normally in the last 3 minutes; yellow
indicates abnormal sensor data yielding in the last one
minute.

Virtual sensors can be recursively composed. As shown

in Fig. 3(b), defined virtual sensors can be used as
components to construct other virtual sensors. We use the
blue color to represent physical sensors, and the green color
to represent virtual sensors. A virtual sensor can adopt
multiple data types as input and output sources. As a starting
point, we allow integer, real number, and Boolean data
types. As shown in Fig. 3(b), users can right click a sensor
definition to edit its carried dataflow logic.

Defined virtual sensors can be registered to the SDSP
platform and published as reusable sensor service providers.
Their internal logic definitions are open to other users to
review and update if needed. Thus, version control is one
concern of virtual sensor storage. At this stage, every
registered virtual sensor is associated with its contributing
user identification as well as a timestamp.

V. SYSTEM DESIGN

We decided to realize the tool as an HTML5-based web
service, aiming to realize the platform neutrality feature
described in Section III. HTML5 [3] is the fifth version of
the HTML standard, which structures and presents the
content for the World Wide Web. HTML5 defines a single
markup language that encourages interoperable activities by
providing new markups and APIs for complex web
applications. All existing main-stream browsers have started
to support HTML5 to some extent, and most of the mobile
devices like smart phones or tablets, support HTML5 quite
well. This makes HTML5 very competitive from a cross-
platform perspective. Another important reason that this tool
chose HTML5 and JavaScript is that, compared with native
applications programmed in Java or C++, or plugin-based
web applications like Adobe Flash, the HTML5+Javascript
approach provides universal access to all modern computing
devices with Internet access, without worrying about issues
during the installation phase.

The virtual sensor design tool is formed as a modularized
layered application. Fig. 4 illustrates its internal

333

Fig. 4 Internal architectural design.

architectural design. Horizontal layers include UI layer,
presentation layer, business logic layer, web service layer,
and data presentation layer. A typical Model-Viewer-
Controller (MVC) pattern is adopted. Vertical layers include
a sensor management layer and a communication layer.

The UI layer is in charge of rendering a user interface in
a web browser as an HTML5 webpage. We notice that some
tags like <drag> or <audio> only work in an HTML5-
compatible browser.

The presentation layer controls the content shown on the
webpage. Two core functionalities are sensor value updating
and sensor status updating, in a frequency of every three
seconds. The presentation layer is a “reflection” of the logic
relationship among sensors in a tree-like structure. The
actual sensor data is to be retrieved on the fly from the
business logic layer, which in turn handles application status
such as network connections. Such a separation of concerns
is critical to ensure the display performance of the tool,
because a virtual sensor may not have to trigger to retrieve
data from all sensors unless a detailed view is required.

The business logic layer sits behind the presentation
layer to fetch sensor data and monitor sensor status. To
provide such a façade for the presentation layer, the business
logic layer conducts the following four core functions. First,
it retains a live record of the relationships among sensors.
Any editing change (for example, a user
connects/disconnects two sensors) will be caught and stored.
Second, it manages sensor composition. When a virtual
sensor is dragged and dropped onto the canvas, the hidden
sensors under the virtual sensor are managed by the business
logic layer. Third, it is in charge of exception handling.
Since the virtual sensor design tool allows customized
functionality over input sources, the business logic layer
will validate user input before the design is persisted and
provide an error message if needed. Fourth, the business
logic layer carries extensible embedded statics library (i.e.,

jsPlumb) to facilitate virtual sensor design. jsPlumb is a
JavaScript library that helps draw “dataflow” on the canvas.
Only sensors that are displayed on the canvas have
corresponding jsPlumb objects.

The web service layer interacts with the backend Sensor
Data Service Platform (SDSP) [4] through REST calls. It
decouples the direct connection between sensors on the
canvas and the backend web services. When dragging and
dropping a sensor onto the canvas, the presentation layer
will not launch an Ajax call to fetch data. Instead, the
presentation layer in turn queries data from the business
logic layer, which identifies such data from data structures
maintained at the web service layer. Such a decoupling
eliminates Ajax calls and increases response performance.

The data persistence layer is responsible for storing the
definitions of virtual sensors into browser’s local storage in
two steps. First, it iterates through the “sensor tree” from the
root node to obtain all attributes of the tree nodes. Second, it
saves the tree structure as a string in JSON format. The local
storage data will be interpreted by the webpage when
refreshed; and virtual sensors can be reconstructed by
interpreting such JSON strings.

VI. COMPOSABILITY STUDY

To realize the reusability feature described in Section III,
virtual sensors should be reused in the same manner as
physical sensors to construct new virtual sensors. In this
section, we examine the composability of our virtual sensor
concept toward formal reasoning. Composability refers to
the capability to select and assemble physical or virtual
sensors as components in various combinations into a valid
observation to satisfy specific user requirements. A virtual
sensor can be viewed as a container that represents an
atomic abstract building block of the sensor service
network. It is defined as a 4-tuple:

�� �� �� �	�
����	����	�
, where:

� refers to a workflow; �	 refers to a vector of input ports;

��	 refers to a vector of output ports; and ����	 refers to a vector
of internal states.

Definition 1: An embedded workflow is a computable
partial function:
� � � � �, where:
� � � � �� � � � � �
� is a non-empty set of states; � is a set of inputs, and �

is a set of outputs.
Rationale: The definition of an embedded workflow as

a computable function allows the use of the existing body of
mathematical knowledge on functions, as well as
computability theory [18]. Note that a physical sensor can
be wrapped up as a virtual sensor.

The carried workflow �� is iteratively executed by the
virtual sensor triggered by incoming (streaming) events. At
a given time point n, the virtual sensor accepts inputs from

334

Fig. 5 Performance study.

its input ports (denoted as �����) and the internal state from the
previous time point (denoted as ���������������), and produces
outputs ��������	 to be maintained for the subsequent time point
as well as to its output port (denoted as
�����). Note that the
input �	, internal state ����	, and output
��	 all represent vectors
of data. The execution of the workflow (mashup) carried
internal of the virtual sensor at time point n can be specified
as follows:

(��������	,
�����) = �����������������	� �����	�, � � �

Since each virtual sensor carries a workflow,
composition of virtual sensors thus becomes composition of
their aggregate workflows. Computability theory [18]
declares that the set of computable functions is closed under
composition; therefore, any number of virtual sensors can be
composed if the composition of their workflows exists.

Definition 2: Given two workflows �� � � and !� " �
, their composition $ � � % !� exists iff ���� � " and
$�&� � � % !�&� � ��!�&��.

Here we focus on function composition of the
workflows. Our concept of virtual sensor allows for
recursive composability, or hierarchical composability,
referring to the ability for a virtual sensor to be composed of
other virtual sensors. It is a feature for creating and
expanding a virtual sensor. The recursive composability is
obtained by allowing us to link the output port of a virtual
sensor to an input port of another virtual sensor.

Our composability study is reflected in the design of our
tooling environment. A verification component is associated
with each virtual sensor construct. When a (virtual) sensor is
connected to another, the verification component is
triggered to validate whether the composability
requirements are satisfied or not.

VII. SCALABILITY AND EXPERIMENTAL STUDY

In Section III, we have explained the five key
implementation features of our virtual sensor editor. The
previous sections have covered how our design has fulfilled
the requirements of platform neutrality, visualization, in-
time feedback, and reusability. In this section, we discuss
how we enhance scalability.

Since our tool is a community-oriented web tool, we
have to take into consideration when the number of
simultaneous users increases significantly. We have adopted
three strategies. The first is to reduce the number of Ajax
calls from the browser to the backend persistent layer to
prevent network congestion. There are two options for
multi-window visualization. One is to keep all Ajax
windows independent of each other, in the sense that they
all connect to the backend system individually. The other
option is to establish a controller for a virtual sensor editor
instance, which queries all backend sensors at the same
time. By adopting the latter option, the enhancement largely

reduces network traffic to the level of 1/N.
The second strategy of enhancing the scalability is a lazy

evaluation strategy, meaning that we defer raw data
processing from the reading stage to the callback method
when it is needed. In more detail, the value of a virtual
sensor is calculated at runtime upon a query. Unlike our
storing all time series data for physical sensors after they are
registered into our system, the values of a virtual sensor are
stored every time they are queried. If a user requests the
values of a virtual sensor during a past time period,
calculations will be conducted and the values will be stored.
The rationale is that it is possible that a virtual sensor is
constructed but never used, so there is no need to store its
values unless requested.

The third strategy is to adopt an in-memory database to
speed up data retrieval and data analytics at runtime. We use
SAP HANA [16] as a scalable solution to the volumes of
time series data. Unlike other relational databases, SAP
HANA provides column-based storage which supports real-
time big data analytics. Note that although our current
environment is built on HANA, the techniques developed
are generic enough to be applied to other environments.

We have designed and conducted a series of experiments
to evaluate the performance enhancement by adopting the
first two strategies. Fig. 5 illustrates the performance
changes before and after the enhancements. As shown in
Fig. 5, the enhanced method remains stable when the
number of concurrent users increases, all the way to 80
concurrent users.

We also ran simulations to evaluate the effectiveness of
adopting strategy three, by comparing the performance of
our system on top of SAP HANA and NoSQL DynamoDB.
As shown in Fig. 6, we simulated different scales of sensor
networks, which comprise from 1, 100, 1,000, 10,000, to
30,000 physical sensors. On each simulated sensor network,
we simulated different numbers of concurrent virtual sensor
editor users: from 1 to 50 users. Our simulation shows that,
when the scale of the sensor network is moderate
(comprising less than 1,000 physical sensors), our system
scales well even when the number of concurrent users go up
to 50. When the scale of a sensor network increases to
10,000, the average system response time goes up when

335

Fig. 6 Scalability study.

serving more than 10 concurrent users. When the scale of a
sensor network increases to 30,000, the scalability of the
system becomes questionable. To better illustrate the
experimental results, we keep only significant data in Fig. 6.

As shown in Fig. 6, the scalability of the system relying
on HANA significantly surpasses that on DynamoDB. This
symptom results from the specific pattern of frequent
queries over certain types of sensors, e.g., a user is working
on a virtual sensor involving multiple temperature sensors.
Thus, the specific column-based query used by HANA
yields better results.

VIII.CONCLUSIONS

In this paper, we have presented the design and
development of an HTML5-based virtual sensor editor tool,
on top of our sensor data service platform. It supports real-
time and historical display of sensor values for both
physical and virtual sensors. It is cross-platform and
customizable, and provides verifiable sensor data service
composability.

In our future work, we plan to explore the web socket
technique. Currently, our tool adopts polling to query the
sensor database. A possible more efficient and scalable
alternative might be to utilize the HTML5 web socket
technique to fetch data. Clients will be called if and only if
there are data updates on the server side. Such a strategy
will further reduce the number of Ajax calls. In addition, we
plan to enrich the notification widget collection. Currently,
our tool has a single “monitor” tool to handle sound and
visual effect. More widgets will be developed and added to
the toolkit to simulate more physical objects. For example,
an alarm clock, an LED screen or a message sender will be
developed.

IX. ACKNOWLEDGEMENT

This project is partially sponsored by research gift
provided by SAP to Carnegie Mellon University; as well as
NASA grant NASA NNX12AQ95G and NNX13AD49A.

X. REFERENCES
[1]. P. Levis, N. Lee, M. Welsh, and D. Culler, "TOSSIM: Accurate and
Scalable Simulation of Entire TinyOS Applications", in Proceedings of the
1st ACM Conference on Embedded Networked Sensor Systems (SenSys),
Nov. 5-7, 2003, Los Angeles, CA, USA, pp. 126-137
[2]. Riverbed, "Riverbed OPNET nCompass - Real-Time Network
Visualization and Monitoring", accessed on: 11/7/2013, Available from:
http://media-
cms.riverbed.com/documents/Riverbed_OPNET_nCompass.pdf.
[3]. B. Frain, Responsive Web Design with HTML5 and CSS3. 2012: Packt
Publishing.
[4]. J. Zhang, B. Iannucci, M. Hennessy, K. Gopal, S. Xiao, S. Kumar, D.
Pfeffer, B. Aljedia, Y. Ren, M. Griss, S. Rosenberg, and A. Rowe, "Sensor
Data as a Service - A Federated Platform for Mobile Data-Centric Service
Development and Sharing", in Proceedings of IEEE International
Conference on Services Computing (SCC), Jun. 26-Jul. 2, 2013, Santa
Clara, CA, USA, pp. 446-453.
[5]. W.I. Grosky, A. Kansal, S. Nath, J. Liu, and F. Zhao, "SenseWeb: An
Infrastructure for Shared Sensing", IEEE MultiMedia, Oct.-Dec., 2007,
14(4): pp. 8-13.
[6]. K. Chang, N. Yau, M. Hansen, and D. Estrin, "SensorBase.org-A
Centralized Repository to Slog Sensor Network Data", in Proceedings of
International Conference on Distributed Computing in Sensor Network
(DCOSS)/Euro-American Workshop on Middleware for Sensor Networks
(EAWMS), 2006, San Francisco, CA, USA, pp.
[7]. K. Aberer, M. Hauswirth, and A. Salehi, "Infrastructure for Data
Processing in Large-Scale Interconnected Sensor Networks", in
Proceedings of International Conference on Mobile Data Management,
May 7-11, 2007, Mannheim, Germany, pp. 198-205.
[8]. S. Santini and D. Rauch, "Minos: A Generic Tool for Sensor Data
Acquisition and Storage", in Proceedings of 19th IEEE International
Conference on Scientific and Statistical Database Management, 2008, pp.
[9]. OGC, "Sensor Observation Service (SOS)", Open Geospatial
Consortium, accessed on: 12/30/2012, Available from:
http://www.opengeospatial.org/standards/sos.
[10]. C.A. Henson, J.K. Pschorr, A.P. Sheth, and K. Thirunarayan,
"SemSOS: Semantic Sensor Observation Service", in Proceedings of 2009
International Symposium on Collaborative Technologies and Systems
(CTS), May 18-22, 2009, Baltimore, MD, USA, pp. 44-53.
[11]. A. Sheth, C. Henson, and S. Sahoo, "Semantic Sensor Web", IEEE
Internet Computing, Jul./Aug., 2008: pp. 78-83.
[12]. Y. Liu, Y. He, M. Li, J. Wang, K. Liu, L. Mo, W. Dong, Z. Yang, M.
Xi, J. Zhao, and X.-Y. Li, "Does Wireless Sensor Network Scale? A
Measurement Study on GreenOrbs", in Proceedings of IEEE International
Conference on Computer Communications (INFOCOM), Apr. 10-15, 2011,
pp. 873-881.
[13]. A. Bröring, A. Remke, and D. Lasnia, "SenseBox-A Generic Sensor
Platform for the Web of Things", Mobile and Ubiquitous Systems:
Computing, Networking, and Services, 2012, 104: pp. 186-196.
[14]. A. Rowe, M. Berges, G. Bhatia, E. Goldman, R. Rajkumar, J.H.
Garrett, J.M.F.M. Jr., and L. Soibelman, "Sensor Andrew: Large-Scale
Campus-Wide Sensing and Actuation", IBM Journal of Research and
Development, Jan.-Mar., 2011, 55(1): pp. 1-14.
[15]. "LabView", accessed on: Aug. 21, 2013, Available from:
http://www.ni.com/labview/.
[16]. SAP, "SAP HANA", 2013, accessed on: Aug. 12, 2013, Available
from: www.sap.com/HANA.
[17]. R.C. Arkin, Behavior-Based Robotics. 1998: MIT Press.
[18]. S.B. Cooper, Computability Theory. 2003: Chapman and Hall/CRC;
1st edition.

336

