
Time-Aware Service Recommendation for Mashup Creation
in an Evolving Service Ecosystem

Yang Zhong
Tsinghua National

Laboratory for
Information Science

and Technology
Department of

Automation
Tsinghua University
Beijing 10084, China

zhongy12@mails.tsinghua.edu.cn

Yushun Fan*

Tsinghua National
Laboratory for

Information Science
and Technology
Department of

Automation
Tsinghua University
Beijing 10084, China
fanyus@mail.tsinghua.edu.cn

Keman Huang
Tsinghua National

Laboratory for
Information Science

and Technology
Department of

Automation
Tsinghua University
Beijing 10084, China

hkm09@mails.tsinghua.edu.cn

Wei Tan
IBM Thomas J. Watson

Research Center
Yorktown Heights, NY

10598, USA
wtan@us.ibm.com

Jia Zhang
Carnegie Mellon

University
Silicon Valley

jia.zhang@sv.cmu.edu

Abstract—Web service recommendation has become
increasingly important as services become increasingly
prevalent on the Internet. Existing methods either focus on
content matching techniques such as keyword search and
semantic matching, or rely on Quality of Service (QoS)
prediction. However, the fact that services and their mashups
typically evolve over time has not been given sufficient
attention. We argue that a practical service recommendation
approach should take into account the evolution of services in
the context of a service ecosystem. In this paper, we present a
method to extract service evolution patterns by exploiting
Latent Dirichlet Allocation (LDA) and time series prediction.
Based on it, we have developed a time-aware service
recommendation framework guiding mashup creation
seamlessly integrating service evolution, collaborative filtering
and content matching. Experiments on real-world
ProgrammableWeb data set show that our approach leads to a
higher precision than traditional collaborative filtering and
content matching methods.

Keywords-service recommendation; LDA; service ecosystem;
time-aware; mashup creation

I. INTRODUCTION

With the wide adoption of Service-Oriented Architecture
and Cloud Computing, the number of web services
(nowadays usually in the form of web APIs) published on
the Internet has been rapidly growing [1]. Mashup, a web
application created through service composition, has become
a popular technique to reuse existing services and shorten
development cycles [2]. As a consequence, several web
service ecosystems (such as Bell lab’s ProgrammableWeb1
and myExperiment 2 by the universities of Southampton,
Manchester and Oxford) have emerged in the recent years,
continuously accumulating web services and their mashups
in a centralized location [3, 4]. In spite of such encouraging
facts, however, creating a mashup may take an inexperienced
developer a great amount of time to search in the sea of
available services in the repositories for suitable service
components. Therefore, service recommendation and

*Communication Author
1 http://www.programmableweb.com
2 http://www.myexperiment.org

discovery approach is essential to facilitate developers in
locating desired services.

Most existing service recommendation approaches are
content matching methods, mainly focusing on keyword
search [6, 7] and semantic-based search [8]. However,
keyword search is usually inefficient while semantic-based
approach is expensive to construct in practice. A
probabilistic approach for service discovery based on Latent
Dirichlet Allocation (LDA) is proposed in [9] to address the
challenge. It extracts features from WSDL documents and
employs the LDA model to characterize the latent topics
between services and user queries. In contrast to these
service recommendation methods considering functional
requirements, other methods focus on helping developers
find services meeting expected Quality of Service (QoS).
Non-functional properties of services under consideration
include reliability, availability, and response time. In
addition to formal QoS measurement, user-centric
collaborative filtering [10, 11] mechanism has also been used
to support service recommendation. For example, a hybrid
approach that combines collaborative filtering and content
matching is proposed in [12] to improve the performance of
service recommendation. Recently, some researchers also
apply social network analysis to service recommendation
[13, 14, 23] and combine service ranking with service
clustering [15].

One phenomenon that has usually been ignored in service
discovery is that, services and their mashups evolve over
time. Few existing methods consider or exploit temporal
information for service recommendation. Our previous work
[5, 16] proposed a method based on link prediction in a time-
varying service network. Nevertheless, it is purely based on
past service usage and does not take into account the
functional requirements of individual mashups. Thus, its
recommendation precision was not satisfactory.

In this paper, we address such limitations by conducting
joint analysis on temporal information, topology and content
in an evolving service ecosystem environment. Two
assumptions are put forth. First, services with similar
functions form a particular service domain that can be
interpreted as a specific topic. Second, developers tend to
adopt popular services in popular domains at the moment of
request. Under these two assumptions, service usage over

2014 IEEE International Conference on Web Services

978-1-4799-5054-6/14 $31.00 © 2014 IEEE

DOI 10.1109/ICWS.2014.17

25

time is modeled as a probabilistic generative model. Our key
idea is to represent each sliced time interval as a "bag of
services" and introduce the concept of topic modeling to
describe the relations between timestamps, topics and
services. Through our parameter estimation technique, our
model is able to predict service usage at subsequent intervals.
In addition, combining with past usage and text description
of services and mashups, our model offers a comprehensive
service recommendation technique taking into consideration
of functional user requirements as well as peer experience.
The main contributions of this paper are summarized as
follows:

First, we propose a novel service activity prediction
method based on Latent Dirichlet Allocation (LDA), which
is capable of extracting a time sequence of topic activity and
service-topic correlation matrix from service usage history.
Applying our time series prediction method, we can forecast
topic evolution and predict service activity in the near future.

Second, combining service activity prediction with
mashup-description-based collaborative filtering and service-
description-based content matching, we propose a time-
aware service recommendation framework for mashup
creation in an evolving service ecosystem environment.

Third, comprehensive experiments on a real-world data
set from ProgrammableWeb.com show that our approach
yields better precision by taking temporal information into
account.

The rest of this paper is organized as follows. Section II
introduces a model to describe an evolving service
ecosystem and formulates the service recommendation
problem. Section III describes model training methods.
Section IV presents our time-aware service recommendation
framework. Section V reports the experimental results.
Section VI summarizes the related work and Section VII
concludes the paper.

II. PROBLEM DEFINITION

We propose to model an evolving service ecosystem
along three dimensions: topology, content and temporal
information.

Definition 1: Topology. The topology of a service
ecosystem is modeled with an undirected graph

 ,G M S E  in which:  1 2, ,..., nM m m m is the set of

mashups and  1 2, ,..., kS s s s is the set of services;

E M S  is the historical composition relation between
mashups and services, i.e., if a mashup invokes a service,
there exists a relation between them.

Definition 2: Content. Every mashup m M comprises

a collection of words    1 2, ,...,
mnMW m w w w to describe

its functional abilities. Similarly, each service s S is
associated with a collection of words

   1 2, ,...,
snSW s w w w to describe its functions.

Definition 3: Temporal information. Given a sequence
of timestamps with a particular time granularity (e.g., day,

week, month)  1,2,...,TG t , the service usage history in

an evolving service ecosystem is described in a set of
ordered pairs by   , , , ,H s m t s S m M t TG    where

 , ,s m t indicates that service s is invoked by mashup m at

timestamp t .
A service ecosystem is dynamic in nature, i.e., with

interactions between mashups and services evolving over
time. Compared with the static topological view of G , H
takes such evolution into account. Based on the 3-
dimensional service ecosystem definition, we formulate the
problem of service recommendation for mashup creation as
follows:

Definition 4: Time-aware Service Recommendation
for Mashup Creation. Given G and H regarding passed

time points  1,2,..., t , for a new mashup m required at time

 1t  with user requirements in a collection of words

 1 2, ,..., pQ q q q , a ranked list of services denoted by

 R m will be recommended. A service with higher rank in

 R m has a higher probability to be adopted by m .

The mashup creation problem is thus turned into finding
the ranked recommendation list  R m . We propose a time-

aware service recommendation approach that systematically
considers temporal information, topology and content of
services in an evolving service ecosystem.

Figure 1. Time-aware service recommendation framework.

As shown in Fig. 1, our method consists of three
components: temporal information (TI) extraction, mashup-
description-based collaborative filtering (MDCF) and
service-description-based content matching (SDCM). The
three components derive service recommendation from
different perspectives. TI exploits service usage history to
predict service activity in the near future. It offers popularity
scores of services in recent time frame regardless of
functional requirements of individual mashups.

26

Complementary to TI, MDCF and SDCM score the
relevance of services against the functional requirements of a
user required mashup. MDCF recommends services based on
historical mashups with similar functional requirements;
SDCM calculates semantic similarity between the functional
requirements of the mashup and the content description of
services. All scores will be integrated to generate the
recommended list of services for the required mashup. We
will discuss in detail the three components in the next section
and the recommendation framework in section IV.

III. MODEL TRAINING

In this section, we will introduce the construction of the
three components in our approach: TI, MDCF and SDCM.

A. Temporal Information Extraction

One fundamental assumption is that users tend to
consume popular services in prevalent service domains at a
given time. We apply a similar idea to topic modeling and
analyze the service usage history in a probabilistic manner.
Specifically, service domains are viewed as latent topics thus
the concepts of LDA [17] can be employed to model the
generative process of service usage over time. As a
preliminary step, we retrieve a collection of services that
were consumed at timestamp t from H for every t TG

and denote it by    1 2, ,...,
tnST t s s s . The generation

process of  ST t can be modeled as follows:

1) For each topic 1,2,...,k T :

Draw  k Dirichlet �

2) For each timestamp t TG :
a) Draw  t Dirichlet �

b) For each  s ST t

i. Draw a topic  tz Multinomial �

ii. Draw a service  zs Mutinomial �

where T is the number of topics and k is the multinomial

distribution over services specific to topic k ; t is the
multinomial distribution over topics specific to timestamp t ;
 and  are the prior parameters of Dirichlet distribution

for t and k , respectively.
We then apply the Gibbs sampling [18] to infer the

desired parameters t and k . t is a 1 T vector

 1 2, ,..., T
t t t   for every t TG which can be interpreted as

topics activity at time t . For every topic k ,  k
t t TG 

constitute a time series. The activity of topic k at time 1t 
can be forecasted by applying a time series prediction
method to  k

t t TG  . Several methods exist to solve the

time series prediction problem, such as linear weighted
moving average [19] and auto regression [20]. In this paper,
we choose to adopt the linear weighted moving average
because of its efficiency and simplicity.

Given a time window length l , for every topic

 1,2,...,k T we can predict the activity of topic k at time

1t  through the following equation:

 1 1
1

l
k k
t i t i

i

   


  (1)

where  1,2,...,i i l  are positive real numbers subject to

the constraint
1

1
l

i
i




 . By tuning i , we can adjust the

impact of topic activities in different past time intervals on
that of future. A reasonable policy is to place more weight on
more recent time intervals.

Similarly, we have k as a 1 S vector  1 2, ,..., S
k k k  

for every  1,2,...,k T . S is the cardinality of the set of

services S . k represents correlation strength of services

with topic k .  1,2,...k k T  constitute a T S service-

topic correlation matrix. With latent topics as a bridge
between timestamps and services, the activity of service
s S indexed by n in the matrix at time 1t  can be
calculated as follows:

   1
1

1
T

k n
TI t k

k

p s t  


  (2)

 1TIp s t  carries service usage evolution and will be

incorporated into our time-aware service recommendation
framework.

B. Mashup-description-based Collaborative Filtering

Collaborative filtering is one of the state-of-the-art
methods in the recommendation community [10]. Its basic
idea is that similar users are likely to consume similar items.
Previous works [10, 12] focus on application of collaborative
filtering to QoS-aware service recommendation. However, it
is often hard to obtain QoS data in reality. In contrast to
existing work, we collect objective description data about
mashups and services. To apply the idea of collaborative
filtering to our setting, we propose to recommend services
for a new mashup based on historical service compositions
of similar mashups. For example, if a new mashup m is
similar with a historical mashup 'm and 'm constitutes
services 1s and 2s , then we believe m is also likely to

consume 1s and 2s . Since we leverage mashup description to
calculate the similarities between mashups, this component is
named as mashup-description-based collaborative filtering
(MDCF).

We apply the LDA model to calculate the similarity
among mashups using mashup descriptions. Specifically, we
input the set of mashups M and their associated sets of
words  MW m for all m M into the LDA model.

Afterwards we run Gibbs Sampling to get posterior

distribution of mashup over topics  p k m and topic over

words  p w k . When a new mashup m comes up with user

27

queries  1 2, ,..., pQ q q q , its similarity with a past mashup

jm M can be calculated using the following equation:

     
1

,
T

j j
q Q k

sim m m p q k p k m
 

  (3)

After obtaining similarities between mashups, the
probability of a service s S to be used by m at time 1t 

can be evaluated as follows:

   
(,)

, (,)
j

CF j j
m U K m

p s m sim m m y m s


  (4)

where  ,U K m contains the Top K similar mashups with

m ;  , 1jy m s  if  ,jm s E and  , 0jy m s  if

 ,jm s E .  CFp s m will become an important factor in

the subsequent recommendation framework.

C. Service-description-based Content Matching

Content matching recommends services for a new
mashup through semantic matching between user queries of
the new mashup and content descriptions of services. Since
we employ service description to calculate the semantic
similarities between mashups and services, this component is
named as service-description-based content matching
(SDCM).

Similar with [9], we apply the LDA model to calculate
the similarities. The input of the component is the set of
services S and associated collections of words  SW s for

all s S . We then run Gibbs Sampling to get probability

distribution of service over topics  p k s and topic over

words  p w k . When a new mashup m comes up with user

queries as a collection of words  1 2, ,..., pQ q q q , SDCM

calculates the semantic similarity between m and a service
s as follows:

      
1

T

CM
q Q k

p s m p q k p k s
 

  (5)

Note that our SDCM is slightly different from [9], in that
summation over queries is replaced by multiplication. Our
hypothesis is that over a large candidate service pool,
extracting feature union shall yield higher performance
comparing to feature intersection. Experimental results on
our data set show that the two methods are comparable in
performance. So we can view SDCM as a baseline method
from existing content matching approaches in performance

comparison of our experiment.  CMp s m

will be integrated

into our service recommendation framework in the following
section.

IV. TIME-AWARE SERVICE RECOMMENDATION

FRAMEWORK

Based on previously introduced TI, MDCF and SDCM,
in this section, we show how to integrate them to support
time-aware service recommendation.

When a new mashup m is requested at time 1t  with

user queries as a collection of words  1 2, ,..., pQ q q q , we

first use MDCF to calculate  CFp s m through equation (4).

Then we use SDCM to obtain semantic similarity  CMp s m

through equation (5). Together with service activity

 1TIp s t  , we can obtain the probability of a service s to

be consumed by m as follows:

        1CF CM TIp s m p s m p s m p s t  (6)

Finally, we offer a ranked list of services  R m for m in a

descending order w.r.t.  p s m .

The detailed recommendation algorithm is as follows:

Algorithm 1: time-aware service recommendation

Input:
1)  ,G M S E  : The topology model

2)  iMW m : The functional requirements of im M

3) ()jSW s : The content description of js S

4) H : The service usage history
5)  ST t : services consumed at timestamp t

6) TG : The sequence of timestamps
7) T : The number of latent topics in LDA model
8)  and  : The prior parameters in LDA model

9) l : The window length
10)  1,2,...,i i l  : Weights on different time intervals

11) K : Top-K similar mashups in MDCF

12)  1 2, ,..., pQ q q q : User queries for new mashup m

Output:
1)  R m : recommended list of services for m

Procedure:

01.      , ,t k GibbsSampling TG ST t  

02. Predict topic activity at time 1t  by equation (1)
03. Calculate service activity at time 1t  by equation (2)

04.         , ,p k m p w k GibbsSampling M MW m

05.         , ,p k s p w k GibbsSampling S SW s

06. Calculate similarities among mashups by equation (3)

07. Get  CFp s m by equation (4)

08. Get  CMp s m by equation (5)

09. Calculate integrated result  p s m by equation (6)

10. Return  R m in descending order of  p s m

Lines 01~03 are the implementation of TI that predicts

service activity in the near future; Lines 04, 06 and 07
describe the construction of MDCF; Lines 05 and 08

28

complete the calculation of SDCM; Lines 09~10 integrate
the three components and generate a recommended list of
services for the new mashup.

We now discuss the computational complexity of
Algorithm 1. We can divide it into two stages: offline stage
(lines 01~05) and online stage (lines 06~10). The offline part
only needs to be conducted once at the start of each time
interval while the online part performs when receiving a
query. We assume that the online query has a number of P
word tokens and N is the number of iterations in Gibbs
sampling.

The complexity of Gibbs sampling to estimate the
parameters in TI (Line 01) is bounded by  O N H T  . From

equation (1), we know the complexity of topic activity
prediction (Line 02) is  O l T . Similarly, the complexity of

service activity prediction (Line 03) is  O S T . So the

overall computational complexity of TI is

 N H S l TO  
 
 

    .

MDCF involves offline (Line 04) and online (Line 06~07)
computation. The complexity of LDA in Line 04 is

 O N V T  where V is the total number of word tokens

appeared in the functional requirements of all existing
mashups. For the online part, the time complexity of
similarities computation among mashups is  O P M T 

according to equation (3). Line 07 involves sorting of
mashups with a complexity of  logO M M K S .

Similarly, for the offline part of SDCM (Line 05), the
computational complexity is  O N W T  where W is the

total number of word tokens appeared in the content
description of all services. By equation (5), we know the
computational complexity of Line 08 is  O P S T  .

The complexity of the integration (Line 09) is  O S and

the ranking of services (Line 10) is  logO S S . In practice,

usually N W S l � � , logK S� and logPT M� ,

and therefore the overall complexity of offline computing is

  O N T H V W   and the online part is

  O P T M S K S    .

V. EXPERIMENTS

In this section, we explain how we have applied our time-
aware service recommendation approach for mashup
creation to a real data set, crawled from
ProgrammableWeb.com, to evaluate its performance. A
collection of experiments were designed to compare our
approach with state-of-the-art methods.

A. Data Set Preparation

To the best of our knowledge, ProgrammableWeb is by
far the largest online repository of web services and their
mashups. Through RESTful APIs, we crawled the metadata

of services and mashups from the web with timestamps
ranging from September 2005 to August 2012. Each service
contains metadata such as name, summary and description.
Every mashup contains the information such as name,
creation date, description and the list of services used. Table
I summarizes the basic properties of our data set.

TABLE I. PROPERTIES OF PROGRAMMABLEWEB DATA SET

Number of services 7,077
Number of mashups 6,594
Size of vocabulary 13,648

B. Preprocessing

For each service in our data set, there is a description
consisting of a bag of words that describe the functionality of
the service. Before we can view the description as the
underlying service’s associated collection of words in our
model, however, several nature language preprocessing tasks
have to be done. In this work, we applied the four-step data
preprocessing method similar in [21] to extract meaningful
words from the original description:

1) Original Words Generating. First of all, we extract all

original words contained in the descriptions.
2) Pruning. Secondly, we filter words that are not

meaningful for recognizing the service. Some examples
include: some articles such as a, an, the; some
prepositions such as in, on, with, by, for, at, about, from,
etc; some adverbs such as where, when, quite, etc; and
general words such as api, service, mashup, etc.

3) Suffix Striping. In the third step, we perform suffix
stripping to obtain stem words. For example, map,
mapping, maps, and mappings will be replaced with the
same stem map.

4) Spell Correcting. In the last step, we use spell correct
tool to adjust misspelled word. For example, websit will
be corrected as website.

The topology model  ,G M S E  can be directly

derived from the list of services of a mashup from our data
set. Given a time granularity, we can obtain a sequence of
timestamps TG and service usage history H according to
the creation dates and the list of services of a mashup.
Moreover, we use the processed description data of a service
as its associated collection of words in our model. Similar
actions are performed on mashups.

In our experiment, we adopted a time granularity of one
month. To examine the performance of our approach, we
divided the data set into training and testing sets, with a
moving cutoff timestamp. Given a cutoff timestamp, we use
the data before it as the training set and data with exactly that
timestamp as testing set. We move the cutoff timestamp
from September 2011 to August 2012, obtaining twelve
corresponding training data and testing data sets. In other
words, we tested our method in one year period month by
month. For each mashup appeared in the testing month, we
use its description as a user query and its services as the
ground truth.

29

C. Evaluation Metric

The evaluation metric that we used in this experiment is
Mean Average Precision (MAP) [22], which is a widely used
measure in information retrieval and recommendation
system:

 
 

1 1

c mm M s Sc m

n s
MAP

M S r s 

   (7)

where cM denotes the set of mashups in the testing month

and mS represents the set of services consumed by m for

every cm M ; for each ms S ,  r s denotes the ranking

position of s in  R m and  n s refers to the number of

services in mS that rank higher than or equal to s in  R m .

MAP is a real number between 0 and 1. The higher MAP
indicates a better accuracy of the recommendation method.
By moving the cutoff timestamp, we can calculate the MAP
for each testing month and use the average value of MAP for
all testing months as the evaluation metric to compare
different methods.

D. Comparison Methods

To study the performance of our time-aware service
recommendation approach, we compare our method with
others generated from a combination of three components.
MDCF alone can return a ranked list of services in a

descending order of  CFp s m and is exactly the well-

known collaborative filtering adapted to our setting. SDCM

alone generates the list of services based on  CMp s m and

can be viewed as the representative of content matching
approaches. MDCF*TI recommends services in a

descending order of    1CF TIp s m p s t  . Similarly, we

can define SDCM*TI, MDCF*SDCM and
MDCF*SDCM*TI. Note that our time-aware service
recommendation approach can be viewed as
MDCF*SDCM*TI.

To make our comparison more complete, we have
introduced an alternative method to calculate popularity
scores of services (named as FR). FR simply gives the
popularity scores of services by normalizing service usage
frequency. We can also combine FR with MDCF, SDCM
and MDCF*SDCM, respectively. Taking MDCF as an
example, the newly formed method MDCF*FR calculates
the probability of a service s S to be used by a new

mashup m at time 1t  with user queries  1 2, ,..., nQ q q q

as follows:

     *CF FR CFp s m p s m f s (8)

where  f s is equal to the service usage times for

service s S divided by the sum of service usage times for
all services. Finally, MDCF*FR returns a ranked list of

services for m in a descending order of  *CF FRp s m .

Similarly, we can define SDCM*FR and MDCF*SDCM*FR
by analogy with MDCF*FR and their descriptions are

omitted due to space limitation. In summary, we consider
nine methods: MDCF, MDCF*TI, MDCF*FR, SDCM,
SDCM*TI, SDCM*FR, MDCF*SDCM, MDCF*SDCM*TI
and MDCF*SDCM*FR.

E. Experimental Results

Next, we set up the parameters used in this experiment.
As to parameters in the LDA model, we set 40T  ,

1.25  and 0.01  for all components. For MDCF, we

set 150K  ; with respect to TI extraction, we set 2l  ,

1 0.9  and 2 0.1  .
Fig. 2 reports the MAP of MDCF, MDCF*TI and

MDCF*FR in the twelve testing months. MDCF employs
functional requirements of mashups and mashup-service past
usage to predict the relevance scores of services and its
performance is moderate. With the help of popularity scores
offered by TI, MDCF*TI gets the highest MAP among the
three methods in nine of the twelve testing months. On the
other hand, MDCF*FR is poorer in overall performance than
MDCF.

Fig. 3 depicts the MAP of SDCM, SDCM*TI and
SDCM*FR in the twelve testing months. SDCM only
employs content description of services and its performance
is unsatisfactory. SDCM*TI gets a significant improvement
than SDCM with TI included and ranks the highest in all
testing months except one. SDCM*FR wins in only one
month.

Figure 2. The MAP for MDCF*TI, MDCF*FR and MDCF in 12 testing

months. TI helps boost the performance of MDCF.

Figure 3. The MAP for SDCM*TI, SDCM*FR and SDCM in 12 testing

months. TI helps boost the performance of SDCM.

30

Figure 4. The MAP for MDCF*SDCM*TI, MDCF*SDCM*FR and

MDCF*SDCM in 12 testing months. TI helps boost the performance of
MDCF*SDCM.

Fig. 4 demonstrates the MAP of MDCF*SDCM,
MDCF*SDCM*TI and MDCF*SDCM*FR in the
experiment. MDCF*SDCM*TI surpasses others in MAP in
eleven of the twelve testing months. MDCF*SDCM*FR gets
the highest MAP in one month and there is no much
difference between the overall performance of
MDCF*SDCM and that of MDCF*SDCM*FR.

Table II summarizes the average MAP in twelve testing
months for all nine methods considered in this paper as
follows:

TABLE II. THE AVERAGE MAP FOR DIFFERENT METHODS.

 Alone TI FR

MDCF 38.4% 42.2% 35.8%

SDCM 4.2% 38.8% 29.4%

MDCF*SDC
M

36.6% 43.4% 36.9%

The experimental results of Table II show that: (1) Our

time-aware approach, i.e., MDCF*SDCM*TI, achieves the
best performance among all nine methods since it exploits
content, topology and temporal information of an evolving
service ecosystem. (2) As to relevance scores calculation,
MDCF gets much better MAP (Mean Average Precision)
than SDCM and their combination also presents good
performance. (3) With respect to popularity scores, our
proposed component TI is much more effective than FR to
help improve the prediction accuracy of MDCF, SDCM and
MDCF*SDCM.

Based on our experiments shown above, we can
conclude that taking service evolution into consideration can
lead to a higher precision in service recommendation for
mashup creation. In addition, combining topology, content
and evolution together can further improve the
recommendation performance in the evolving service
ecosystem.

VI. RELATED WORK

Service discovery and recommendation has been
acknowledged as a key problem since the dawn of Web
service technologies. Early works employed techniques from
information retrieval such as TF/IDF and VSM on WSDL
documents of services [6, 7]. These keyword search-based
methods suffer from poor performance in practice. A recent
work [8] focused on services described in semantic
languages to automate the process of service discovery. But
it is always difficult to acquire semantic information and
construction of ontology is trapped in expensive running
time and high complexity. Different from above content-
based methods, [9] proposed a probabilistic approach for
service discovery based on LDA. It extracts features from
WSDL documents and exploit LDA model to characterize
the latent topics between services and user queries. Finally it
recommends related services based on topic relevance.
However, restful services have been widely used which
make it hard to get WSDL documents of services. So in this
work we view the description of a service as its source of
content information.

Furthermore, a number of research work center on QoS
based web service selection and recommendation. For
example, collaborative filtering, which originates from the
idea that similar users are likely to consume similar items,
has also been introduced into service recommendation
recently [10, 11]. A hybrid approach was proposed in [12]
which combines content-based matching and collaborative
filtering. However, QoS information is not always available.
So instead of using QoS attributes, we employ description of
a mashup to calculate similarities in our paper.

Another group of researchers try to introduce social
network analysis into service recommendation. In [13], a
service recommendation algorithm which takes users’
interest and social relationship between mashups into
consideration is proposed. [14] proposed a matrix model
where multi-dimensional social relationships among users,
topics, mashups, and services are described. A recent work
[15] tries to perform services ranking and clustering mutually
in a heterogeneous service network to improve the
performance of service ranking.

However, we observed that services and their mashups
evolve over time such as publishing, perishing and changing
of interfaces [4]. Few existing methods aforementioned take
evolution of service usage over time into account. Our
previous work [5, 16] proposed a service recommendation
method in an evolving ecosystem based on link prediction in
a dynamic service network. It is purely based on past service
usage and does not take the functional requirements of
individual mashup into account. To move a step further, we
have proposed a time-aware service recommendation
approach for mashup creation based on LDA in this paper
that combines together topology, content, and temporal
information in an evolving service ecosystem.

31

VII. CONCLUSIONS

In this paper, we have presented a model that combines
network structure, content description and service usage
history to describe an evolving service ecosystem. Based on
our model, we have developed a time-aware service
recommendation approach for mashup creation based on
LDA, consisting of three components: temporal information,
mashup-description-based collaborative filtering and service-
description-based content matching. The three components
catch temporal information, topology and content of a given
service, respectively. Experimental results on a real-world
data set from ProgrammableWeb.com show that our
approach is 5% better than collaborative filtering and nearly
40% better than content matching in terms of mean average
precision in service recommendation.

In the following work, we plan to refine the algorithm of
forecasting topic activity to further improve the short-term
prediction of service activity. Moreover, we plan to
incorporate user behavior into our model to make our time-
aware service recommendation framework more
personalized and study the evolution of interactions among
users, mashups and services.

ACKNOWLEDGMENT

This work is partially supported by the National Natural
Science Foundation of China (No.61033005 and No.
61174169), the National Science and Technology Support
Program of China (2012BAF15G01) and the Independent
Research Program of Tsinghua University (20111080998).

REFERENCES
[1] V. Andrikopoulos, S. Benbernou and M. P. Papazoglou, "On

the evolution of services," IEEE Transactions on Software
Engineering, Vol. 38, pp. 609-628, 2012.

[2] X. Liu, Y. Hui, W. Sun, and H. Liang, "Towards service
composition based on mashup," in Proceedings of IEEE
Congress on Services, 2007, pp. 332-339.

[3] A. P. Barros and M. Dumas, "The rise of web service
ecosystems," IT professional, Vol. 8, pp. 31-37, 2006.

[4] E. Al-Masri and Q. H. Mahmoud, "Investigating web services
on the world wide web," in Proceedings of the 17th
International Conference on World Wide Web, 2008, pp. 795-
804.

[5] K. Huang, Y. Fan, and W. Tan, "Recommendation in an
evolving service ecosystem based on network prediction,"
IEEE Transactions on Automation Science and Engineering,
accepted in 2013.

[6] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang,
"Similarity search for web services," in Proceedings of the
13th International Conference on Very Large Data Bases, Vol.
30, 2004, pp. 372-383.

[7] C. Platzer and S. Dustdar, "A vector space search engine for
web services," in Proceedings of the 3rd IEEE European
Conference on Services Computing, 2005, pp. 62-71.

[8] G. C. Hobold and F. Siqueira, "Discovery of semantic web
services compositions based on SAWSDL annotations," in

IEEE 19th International Conference on Web Services, 2012,
pp. 280-287.

[9] C. Li, R. Zhang, J. Huai, X. Guo, and H. Sun, "A probabilistic
approach for web service discovery," in Proceedings of the
IEEE International Conference on Services Computing, 2013,
pp. 49-56.

[10] Z. Zheng, H. Ma, M. R. Lyu, and I. King, "Wsrec: A
collaborative filtering based web service recommender
system," in Proceedings of IEEE International Conference on
Web Services, 2009, pp. 437-444.

[11] X. Chen, X. Liu, Z. Huang, and H. Sun, "Regionknn: A
scalable hybrid collaborative filtering algorithm for
personalized web service recommendation," in Proceedings of
IEEE International Conference on Web Services, 2010, pp. 9-
16.

[12] L. Yao, Q. Z. Sheng, A. Segev, and J. Yu, "Recommending
Web Services via Combining Collaborative Filtering with
Content-Based Features," in Proceedings of IEEE 20th
International Conference on Web Services, 2013, pp. 42-49.

[13] J. Cao, W. Xu, L. Hu, J. Wang, and M. Li, "A social-aware
service recommendation approach for mashup creation,"
International Journal of Web Services Research (IJWSR),
Vol. 10, pp. 53-72, 2013.

[14] B. Cao, J. Liu, M. Tang, Z. Zheng, and G. Wang, "Mashup
service recommendation based on user interest and social
network," in Proceedings of IEEE 20th International
Conference on Web Services, 2013, pp. 99-106.

[15] Y. Zhou, L. Liu, C. Perng, A. Sailer, I. Silva-Lepe, and Z. Su,
"Ranking services by service network structure and service
attributes," in Proceedings of IEEE 20th International
Conference on Web Services, 2013, pp. 26-33.

[16] K. Huang, Y. Fan, W. Tan, and X. Li, "Service
recommendation in an evolving ecosystem: a link prediction
approach," in Proceedings of IEEE 20th International
Conference on Web Services, 2013, pp. 507-514.

[17] D. M. Blei, A. Y. Ng and M. I. Jordan, "Latent dirichlet
allocation," Journal of Machine Learning Research, Vol. 3,
pp. 993-1022, 2003.

[18] I. Porteous, D. Newman, A. Ihler, A. Asuncion, P. Smyth, and
M. Welling, "Fast collapsed gibbs sampling for latent
dirichlet allocation," in Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2008, pp. 569-577.

[19] R. Winter, J. H. Schiller, N. Nikaein, and C. Bonnet,
"CrossTalk: cross-layer decision support based on global
knowledge," IEEE Communications Magazine, Vol. 44, pp.
93-99, 2006.

[20] Y. Matsubara, Y. Sakurai, C. Faloutsos, T. Iwata, and M.
Yoshikawa, "Fast mining and forecasting of complex time-
stamped events," in Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, 2012, pp. 271-279.

[21] K. Huang, J. Yao, Y. Fan, W. Tan, S. Nepal, Y. Ni, and S.
Chen, "Mirror, Mirror, on the web, which is the most
reputable service of them all?" in Service-Oriented
Computing: Springer, 2013, pp. 343-357.

[22] Y. Yue, T. Finley, F. Radlinski, and T. Joachims, "A support
vector method for optimizing average precision," in
Proceedings of the 30th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval, 2007, pp. 271-278.

[23] W. Tan, J. Zhang and I. Foster, "Network analysis of
scientific workflows: a gateway to reuse," IEEE Computer,
Vol. 43, pp. 54-61, 2010.

32

