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Abstract—Web service recommendation has become 
increasingly important as services become increasingly 
prevalent on the Internet. Existing methods either focus on 
content matching techniques such as keyword search and 
semantic matching, or rely on Quality of Service (QoS) 
prediction. However, the fact that services and their mashups 
typically evolve over time has not been given sufficient 
attention. We argue that a practical service recommendation 
approach should take into account the evolution of services in 
the context of a service ecosystem. In this paper, we present a 
method to extract service evolution patterns by exploiting 
Latent Dirichlet Allocation (LDA) and time series prediction. 
Based on it, we have developed a time-aware service 
recommendation framework guiding mashup creation 
seamlessly integrating service evolution, collaborative filtering 
and content matching. Experiments on real-world 
ProgrammableWeb data set show that our approach leads to a 
higher precision than traditional collaborative filtering and 
content matching methods. 

Keywords-service recommendation; LDA; service ecosystem; 
time-aware; mashup creation 

I.  INTRODUCTION 

With the wide adoption of Service-Oriented Architecture 
and Cloud Computing, the number of web services 
(nowadays usually in the form of web APIs) published on 
the Internet has been rapidly growing [1]. Mashup, a web 
application created through service composition, has become 
a popular technique to reuse existing services and shorten 
development cycles [2]. As a consequence, several web 
service ecosystems (such as Bell lab’s ProgrammableWeb1 
and myExperiment 2  by the universities of Southampton, 
Manchester and Oxford) have emerged in the recent years, 
continuously accumulating web services and their mashups 
in a centralized location [3, 4]. In spite of such encouraging 
facts, however, creating a mashup may take an inexperienced 
developer a great amount of time to search in the sea of 
available services in the repositories for suitable service 
components. Therefore, service recommendation and 

                                                           
*Communication Author 
1 http://www.programmableweb.com 
2 http://www.myexperiment.org 

discovery approach is essential to facilitate developers in 
locating desired services. 

Most existing service recommendation approaches are 
content matching methods, mainly focusing on keyword 
search [6, 7] and semantic-based search [8]. However, 
keyword search is usually inefficient while semantic-based 
approach is expensive to construct in practice. A 
probabilistic approach for service discovery based on Latent 
Dirichlet Allocation (LDA) is proposed in [9] to address the 
challenge. It extracts features from WSDL documents and 
employs the LDA model to characterize the latent topics 
between services and user queries. In contrast to these 
service recommendation methods considering functional 
requirements, other methods focus on helping developers 
find services meeting expected Quality of Service (QoS). 
Non-functional properties of services under consideration 
include reliability, availability, and response time. In 
addition to formal QoS measurement, user-centric 
collaborative filtering [10, 11] mechanism has also been used 
to support service recommendation. For example, a hybrid 
approach that combines collaborative filtering and content 
matching is proposed in [12] to improve the performance of 
service recommendation. Recently, some researchers also 
apply social network analysis to service recommendation 
[13, 14, 23] and combine service ranking with service 
clustering [15]. 

One phenomenon that has usually been ignored in service 
discovery is that, services and their mashups evolve over 
time. Few existing methods consider or exploit temporal 
information for service recommendation. Our previous work 
[5, 16] proposed a method based on link prediction in a time-
varying service network. Nevertheless, it is purely based on 
past service usage and does not take into account the 
functional requirements of individual mashups. Thus, its 
recommendation precision was not satisfactory. 

In this paper, we address such limitations by conducting 
joint analysis on temporal information, topology and content 
in an evolving service ecosystem environment. Two 
assumptions are put forth. First, services with similar 
functions form a particular service domain that can be 
interpreted as a specific topic. Second, developers tend to 
adopt popular services in popular domains at the moment of 
request. Under these two assumptions, service usage over 
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time is modeled as a probabilistic generative model. Our key 
idea is to represent each sliced time interval as a "bag of 
services" and introduce the concept of topic modeling to 
describe the relations between timestamps, topics and 
services. Through our parameter estimation technique, our 
model is able to predict service usage at subsequent intervals. 
In addition, combining with past usage and text description 
of services and mashups, our model offers a comprehensive 
service recommendation technique taking into consideration 
of functional user requirements as well as peer experience. 
The main contributions of this paper are summarized as 
follows: 

First, we propose a novel service activity prediction 
method based on Latent Dirichlet Allocation (LDA), which 
is capable of extracting a time sequence of topic activity and 
service-topic correlation matrix from service usage history. 
Applying our time series prediction method, we can forecast 
topic evolution and predict service activity in the near future. 

Second, combining service activity prediction with 
mashup-description-based collaborative filtering and service-
description-based content matching, we propose a time-
aware service recommendation framework for mashup 
creation in an evolving service ecosystem environment. 

Third, comprehensive experiments on a real-world data 
set from ProgrammableWeb.com show that our approach 
yields better precision by taking temporal information into 
account. 

The rest of this paper is organized as follows. Section II 
introduces a model to describe an evolving service 
ecosystem and formulates the service recommendation 
problem. Section III describes model training methods. 
Section IV presents our time-aware service recommendation 
framework. Section V reports the experimental results. 
Section VI summarizes the related work and Section VII 
concludes the paper. 

 

II. PROBLEM DEFINITION 

We propose to model an evolving service ecosystem 
along three dimensions: topology, content and temporal 
information. 

Definition 1: Topology. The topology of a service 
ecosystem is modeled with an undirected graph 

 ,G M S E   in which:  1 2, ,..., nM m m m  is the set of 

mashups and  1 2, ,..., kS s s s is the set of services; 

E M S   is the historical composition relation between 
mashups and services, i.e., if a mashup invokes a service, 
there exists a relation between them. 

Definition 2: Content. Every mashup m M  comprises 

a collection of words    1 2, ,...,
mnMW m w w w  to describe 

its functional abilities. Similarly, each service s S  is 
associated with a collection of words 

   1 2, ,...,
snSW s w w w  to describe its functions. 

Definition 3: Temporal information. Given a sequence 
of timestamps with a particular time granularity (e.g., day, 

week, month)  1,2,...,TG t , the service usage history in 

an evolving service ecosystem is described in a set of 
ordered pairs by   , , , ,H s m t s S m M t TG     where 

 , ,s m t  indicates that service s  is invoked by mashup m  at 

timestamp t . 
A service ecosystem is dynamic in nature, i.e., with 

interactions between mashups and services evolving over 
time. Compared with the static topological view of G , H  
takes such evolution into account. Based on the 3-
dimensional service ecosystem definition, we formulate the 
problem of service recommendation for mashup creation as 
follows: 

Definition 4: Time-aware Service Recommendation 
for Mashup Creation. Given G  and H  regarding passed 

time points  1,2,..., t , for a new mashup m  required at time 

 1t   with user requirements in a collection of words 

 1 2, ,..., pQ q q q , a ranked list of services denoted by 

 R m  will be recommended. A service with higher rank in 

 R m  has a higher probability to be adopted by m . 

The mashup creation problem is thus turned into finding 
the ranked recommendation list  R m . We propose a time-

aware service recommendation approach that systematically 
considers temporal information, topology and content of 
services in an evolving service ecosystem. 

 

 
Figure 1.  Time-aware service recommendation framework. 

As shown in Fig. 1, our method consists of three 
components: temporal information (TI) extraction, mashup-
description-based collaborative filtering (MDCF) and 
service-description-based content matching (SDCM). The 
three components derive service recommendation from 
different perspectives. TI exploits service usage history to 
predict service activity in the near future. It offers popularity 
scores of services in recent time frame regardless of 
functional requirements of individual mashups. 
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Complementary to TI, MDCF and SDCM score the 
relevance of services against the functional requirements of a 
user required mashup. MDCF recommends services based on 
historical mashups with similar functional requirements; 
SDCM calculates semantic similarity between the functional 
requirements of the mashup and the content description of 
services. All scores will be integrated to generate the 
recommended list of services for the required mashup. We 
will discuss in detail the three components in the next section 
and the recommendation framework in section IV. 

 

III. MODEL TRAINING 

In this section, we will introduce the construction of the 
three components in our approach: TI, MDCF and SDCM. 

A. Temporal Information Extraction 

One fundamental assumption is that users tend to 
consume popular services in prevalent service domains at a 
given time. We apply a similar idea to topic modeling and 
analyze the service usage history in a probabilistic manner. 
Specifically, service domains are viewed as latent topics thus 
the concepts of LDA [17] can be employed to model the 
generative process of service usage over time. As a 
preliminary step, we retrieve a collection of services that 
were consumed at timestamp t  from H  for every t TG

and denote it by    1 2, ,...,
tnST t s s s . The generation 

process of  ST t  can be modeled as follows: 

1) For each topic 1,2,...,k T : 

Draw  k Dirichlet �  

2) For each timestamp t TG : 
a) Draw  t Dirichlet �  

b) For each  s ST t  

i. Draw a topic  tz Multinomial �  

ii. Draw a service  zs Mutinomial �  

where T  is the number of topics and k  is the multinomial 

distribution over services specific to topic k ; t  is the 
multinomial distribution over topics specific to timestamp t ; 
  and   are the prior parameters of Dirichlet distribution 

for t  and k , respectively. 
We then apply the Gibbs sampling [18] to infer the 

desired parameters t  and k . t is a 1 T  vector 

 1 2, ,..., T
t t t    for every t TG  which can be interpreted as 

topics activity at time t . For every topic k ,  k
t t TG   

constitute a time series. The activity of topic k  at time 1t   
can be forecasted by applying a time series prediction 
method to  k

t t TG  . Several methods exist to solve the 

time series prediction problem, such as linear weighted 
moving average [19] and auto regression [20]. In this paper, 
we choose to adopt the linear weighted moving average 
because of its efficiency and simplicity. 

Given a time window length l , for every topic 

 1,2,...,k T  we can predict the activity of topic k  at time

1t   through the following equation: 

 1 1
1

l
k k
t i t i

i

   


   (1) 

where  1,2,...,i i l   are positive real numbers subject to 

the constraint 
1

1
l

i
i




 . By tuning i , we can adjust the 

impact of topic activities in different past time intervals on 
that of future. A reasonable policy is to place more weight on 
more recent time intervals. 

Similarly, we have k  as a 1 S  vector  1 2, ,..., S
k k k    

for every  1,2,...,k T . S  is the cardinality of the set of 

services S . k  represents correlation strength of services 

with topic k .  1,2,...k k T   constitute a T S  service-

topic correlation matrix. With latent topics as a bridge 
between timestamps and services, the activity of service 
s S  indexed by n  in the matrix at time 1t   can be 
calculated as follows: 

   1
1

1
T

k n
TI t k

k

p s t  


   (2) 

 1TIp s t   carries service usage evolution and will be 

incorporated into our time-aware service recommendation 
framework.  

B. Mashup-description-based Collaborative Filtering 

Collaborative filtering is one of the state-of-the-art 
methods in the recommendation community [10]. Its basic 
idea is that similar users are likely to consume similar items. 
Previous works [10, 12] focus on application of collaborative 
filtering to QoS-aware service recommendation. However, it 
is often hard to obtain QoS data in reality. In contrast to 
existing work, we collect objective description data about 
mashups and services. To apply the idea of collaborative 
filtering to our setting, we propose to recommend services 
for a new mashup based on historical service compositions 
of similar mashups. For example, if a new mashup m is 
similar with a historical mashup 'm  and 'm  constitutes 
services 1s and 2s , then we believe m  is also likely to 

consume 1s and 2s . Since we leverage mashup description to 
calculate the similarities between mashups, this component is 
named as mashup-description-based collaborative filtering 
(MDCF). 

We apply the LDA model to calculate the similarity 
among mashups using mashup descriptions. Specifically, we 
input the set of mashups M  and their associated sets of 
words  MW m  for all m M  into the LDA model. 

Afterwards we run Gibbs Sampling to get posterior 

distribution of mashup over topics  p k m  and topic over 

words  p w k . When a new mashup m  comes up with user 
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queries  1 2, ,..., pQ q q q , its similarity with a past mashup 

jm M  can be calculated using the following equation: 

     
1

,
T

j j
q Q k

sim m m p q k p k m
 

   (3) 

After obtaining similarities between mashups, the 
probability of a service s S  to be used by m  at time 1t 

 
can be evaluated as follows: 

   
( , )

, ( , )
j

CF j j
m U K m

p s m sim m m y m s


   (4) 

where  ,U K m  contains the Top K  similar mashups with 

m ;  , 1jy m s   if  ,jm s E  and  , 0jy m s   if 

 ,jm s E .  CFp s m  will become an important factor in 

the subsequent recommendation framework. 

C. Service-description-based Content Matching 

Content matching recommends services for a new 
mashup through semantic matching between user queries of 
the new mashup and content descriptions of services. Since 
we employ service description to calculate the semantic 
similarities between mashups and services, this component is 
named as service-description-based content matching 
(SDCM). 

Similar with [9], we apply the LDA model to calculate 
the similarities. The input of the component is the set of 
services S  and associated collections of words  SW s  for 

all s S . We then run Gibbs Sampling to get probability 

distribution of service over topics  p k s  and topic over 

words  p w k . When a new mashup m  comes up with user 

queries as a collection of words  1 2, ,..., pQ q q q , SDCM 

calculates the semantic similarity between m  and a service 
s  as follows: 

      
1

T

CM
q Q k

p s m p q k p k s
 

   (5) 

Note that our SDCM is slightly different from [9], in that 
summation over queries is replaced by multiplication. Our 
hypothesis is that over a large candidate service pool, 
extracting feature union shall yield higher performance 
comparing to feature intersection. Experimental results on 
our data set show that the two methods are comparable in 
performance. So we can view SDCM as a baseline method 
from existing content matching approaches in performance 

comparison of our experiment.  CMp s m
 
will be integrated 

into our service recommendation framework in the following 
section. 

IV. TIME-AWARE SERVICE RECOMMENDATION 

FRAMEWORK 

Based on previously introduced TI, MDCF and SDCM, 
in this section, we show how to integrate them to support 
time-aware service recommendation. 

When a new mashup m  is requested at time 1t   with 

user queries as a collection of words  1 2, ,..., pQ q q q , we 

first use MDCF to calculate  CFp s m  through equation (4). 

Then we use SDCM to obtain semantic similarity  CMp s m  

through equation (5). Together with service activity 

 1TIp s t  , we can obtain the probability of a service s  to 

be consumed by m  as follows: 

        1CF CM TIp s m p s m p s m p s t   (6) 

Finally, we offer a ranked list of services  R m  for m  in a 

descending order w.r.t.  p s m .  

The detailed recommendation algorithm is as follows: 
 

Algorithm 1: time-aware service recommendation

Input: 
1)  ,G M S E  : The topology model 

2)  iMW m : The functional requirements of im M  

3) ( )jSW s : The content description of js S  

4) H : The service usage history 
5)  ST t : services consumed at timestamp t 

6) TG : The sequence of timestamps 
7) T : The number of latent topics in LDA model 
8)   and  : The prior parameters in LDA model 

9) l : The window length 
10)  1,2,...,i i l  : Weights on different time intervals 

11) K : Top-K similar mashups in MDCF 

12)  1 2, ,..., pQ q q q : User queries for new mashup m  

Output: 
1)  R m : recommended list of services for m  

Procedure: 

01.      , ,t k GibbsSampling TG ST t    

02. Predict topic activity at time 1t   by equation (1) 
03. Calculate service activity at time 1t  by equation (2) 

04.         , ,p k m p w k GibbsSampling M MW m  

05.         , ,p k s p w k GibbsSampling S SW s  

06. Calculate similarities among mashups by equation (3) 

07. Get  CFp s m  by equation (4) 

08. Get  CMp s m  by equation (5) 

09. Calculate integrated result  p s m  by equation (6) 

10. Return  R m  in descending order of  p s m  

 
Lines 01~03 are the implementation of TI that predicts 

service activity in the near future; Lines 04, 06 and 07 
describe the construction of MDCF; Lines 05 and 08 
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complete the calculation of SDCM; Lines 09~10 integrate 
the three components and generate a recommended list of 
services for the new mashup. 

We now discuss the computational complexity of 
Algorithm 1. We can divide it into two stages: offline stage 
(lines 01~05) and online stage (lines 06~10). The offline part 
only needs to be conducted once at the start of each time 
interval while the online part performs when receiving a 
query. We assume that the online query has a number of P  
word tokens and N  is the number of iterations in Gibbs 
sampling. 

The complexity of Gibbs sampling to estimate the 
parameters in TI (Line 01) is bounded by  O N H T  . From 

equation (1), we know the complexity of topic activity 
prediction (Line 02) is  O l T . Similarly, the complexity of 

service activity prediction (Line 03) is  O S T . So the 

overall computational complexity of TI is 

 N H S l TO  
 
 

    . 

MDCF involves offline (Line 04) and online (Line 06~07) 
computation.  The complexity of LDA in Line 04 is 

 O N V T   where V is the total number of word tokens 

appeared in the functional requirements of all existing 
mashups. For the online part, the time complexity of 
similarities computation among mashups is  O P M T   

according to equation (3). Line 07 involves sorting of 
mashups with a complexity of  logO M M K S .  

Similarly, for the offline part of SDCM (Line 05), the 
computational complexity is  O N W T  where W  is the 

total number of word tokens appeared in the content 
description of all services.  By equation (5), we know the 
computational complexity of  Line 08 is  O P S T  .  

The complexity of the integration (Line 09) is  O S  and 

the ranking of services (Line 10) is  logO S S . In practice, 

usually N W S l � � , logK S�  and logPT M� , 

and therefore the overall complexity of offline computing is 

  O N T H V W    and the online part is 

  O P T M S K S    . 

 

V. EXPERIMENTS 

In this section, we explain how we have applied our time-
aware service recommendation approach for mashup 
creation to a real data set, crawled from 
ProgrammableWeb.com, to evaluate its performance. A 
collection of experiments were designed to compare our 
approach with state-of-the-art methods. 

A. Data Set Preparation 

To the best of our knowledge, ProgrammableWeb is by 
far the largest online repository of web services and their 
mashups. Through RESTful APIs, we crawled the metadata 

of services and mashups from the web with timestamps 
ranging from September 2005 to August 2012. Each service 
contains metadata such as name, summary and description. 
Every mashup contains the information such as name, 
creation date, description and the list of services used. Table 
I summarizes the basic properties of our data set. 

TABLE I.  PROPERTIES OF PROGRAMMABLEWEB DATA SET 

Number of services 7,077
Number of mashups 6,594 
Size of vocabulary 13,648

B. Preprocessing 

For each service in our data set, there is a description 
consisting of a bag of words that describe the functionality of 
the service. Before we can view the description as the 
underlying service’s associated collection of words in our 
model, however, several nature language preprocessing tasks 
have to be done. In this work, we applied the four-step data 
preprocessing method similar in [21] to extract meaningful 
words from the original description: 

 
1) Original Words Generating. First of all, we extract all 

original words contained in the descriptions. 
2) Pruning. Secondly, we filter words that are not 

meaningful for recognizing the service. Some examples 
include: some articles such as a, an, the; some 
prepositions such as in, on, with, by, for, at, about, from, 
etc; some adverbs such as where, when, quite, etc; and 
general words such as api, service, mashup, etc. 

3) Suffix Striping. In the third step, we perform suffix 
stripping to obtain stem words. For example, map, 
mapping, maps, and mappings will be replaced with the 
same stem map. 

4) Spell Correcting. In the last step, we use spell correct 
tool to adjust misspelled word. For example, websit will 
be corrected as website. 

 
The topology model  ,G M S E   can be directly 

derived from the list of services of a mashup from our data 
set. Given a time granularity, we can obtain a sequence of 
timestamps TG  and service usage history H  according to 
the creation dates and the list of services of a mashup. 
Moreover, we use the processed description data of a service 
as its associated collection of words in our model. Similar 
actions are performed on mashups. 

In our experiment, we adopted a time granularity of one 
month. To examine the performance of our approach, we 
divided the data set into training and testing sets, with a 
moving cutoff timestamp. Given a cutoff timestamp, we use 
the data before it as the training set and data with exactly that 
timestamp as testing set. We move the cutoff timestamp 
from September 2011 to August 2012, obtaining twelve 
corresponding training data and testing data sets. In other 
words, we tested our method in one year period month by 
month. For each mashup appeared in the testing month, we 
use its description as a user query and its services as the 
ground truth. 
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C. Evaluation Metric 

The evaluation metric that we used in this experiment is 
Mean Average Precision (MAP) [22], which is a widely used 
measure in information retrieval and recommendation 
system: 

 
 

1 1

c mm M s Sc m

n s
MAP

M S r s 

    (7) 

where cM  denotes the set of mashups in the testing month 

and mS  represents the set of services consumed by m  for 

every cm M ; for each ms S ,  r s  denotes the ranking 

position of s  in  R m  and  n s  refers to the number of 

services in mS  that rank higher than or equal to s  in  R m . 

MAP is a real number between 0 and 1. The higher MAP 
indicates a better accuracy of the recommendation method. 
By moving the cutoff timestamp, we can calculate the MAP 
for each testing month and use the average value of MAP for 
all testing months as the evaluation metric to compare 
different methods. 

D. Comparison Methods 

To study the performance of our time-aware service 
recommendation approach, we compare our method with 
others generated from a combination of three components. 
MDCF alone can return a ranked list of services in a 

descending order of  CFp s m  and is exactly the well-

known collaborative filtering adapted to our setting. SDCM 

alone generates the list of services based on  CMp s m  and 

can be viewed as the representative of content matching 
approaches. MDCF*TI recommends services in a 

descending order of    1CF TIp s m p s t  . Similarly, we 

can define SDCM*TI, MDCF*SDCM and 
MDCF*SDCM*TI. Note that our time-aware service 
recommendation approach can be viewed as 
MDCF*SDCM*TI. 

To make our comparison more complete, we have 
introduced an alternative method to calculate popularity 
scores of services (named as FR). FR simply gives the 
popularity scores of services by normalizing service usage 
frequency. We can also combine FR with MDCF, SDCM 
and MDCF*SDCM, respectively. Taking MDCF as an 
example, the newly formed method MDCF*FR calculates 
the probability of a service s S  to be used by a new 

mashup m  at time 1t   with user queries  1 2, ,..., nQ q q q  

as follows: 

     *CF FR CFp s m p s m f s  (8) 

where  f s  is equal to the service usage times for 

service s S  divided by the sum of service usage times for 
all services. Finally, MDCF*FR returns a ranked list of 

services for m  in a descending order of  *CF FRp s m . 

Similarly, we can define SDCM*FR and MDCF*SDCM*FR 
by analogy with MDCF*FR and their descriptions are 

omitted due to space limitation. In summary, we consider 
nine methods: MDCF, MDCF*TI, MDCF*FR, SDCM, 
SDCM*TI, SDCM*FR, MDCF*SDCM, MDCF*SDCM*TI 
and MDCF*SDCM*FR. 

E. Experimental Results 

Next, we set up the parameters used in this experiment. 
As to parameters in the LDA model, we set 40T  , 

1.25   and 0.01   for all components. For MDCF, we 

set 150K  ; with respect to TI extraction, we set 2l  , 

1 0.9   and 2 0.1  . 
Fig. 2 reports the MAP of MDCF, MDCF*TI and 

MDCF*FR in the twelve testing months. MDCF employs 
functional requirements of mashups and mashup-service past 
usage to predict the relevance scores of services and its 
performance is moderate. With the help of popularity scores 
offered by TI, MDCF*TI gets the highest MAP among the 
three methods in nine of the twelve testing months. On the 
other hand, MDCF*FR is poorer in overall performance than 
MDCF. 

Fig. 3 depicts the MAP of SDCM, SDCM*TI and 
SDCM*FR in the twelve testing months. SDCM only 
employs content description of services and its performance 
is unsatisfactory. SDCM*TI gets a significant improvement 
than SDCM with TI included and ranks the highest in all 
testing months except one. SDCM*FR wins in only one 
month. 

 
Figure 2.  The MAP for MDCF*TI, MDCF*FR and MDCF in 12 testing 

months. TI helps boost the performance of MDCF. 

 
Figure 3.  The MAP for SDCM*TI, SDCM*FR and SDCM in 12 testing 

months. TI helps boost the performance of SDCM. 
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Figure 4.  The MAP for MDCF*SDCM*TI, MDCF*SDCM*FR and 

MDCF*SDCM in 12 testing months. TI helps boost the performance of 
MDCF*SDCM. 

Fig. 4 demonstrates the MAP of MDCF*SDCM, 
MDCF*SDCM*TI and MDCF*SDCM*FR in the 
experiment. MDCF*SDCM*TI surpasses others in MAP in 
eleven of the twelve testing months. MDCF*SDCM*FR gets 
the highest MAP in one month and there is no much 
difference between the overall performance of 
MDCF*SDCM and that of MDCF*SDCM*FR. 

Table II summarizes the average MAP in twelve testing 
months for all nine methods considered in this paper as 
follows: 

TABLE II.  THE AVERAGE MAP FOR DIFFERENT METHODS. 

 Alone TI FR 

MDCF 38.4% 42.2% 35.8% 

SDCM 4.2% 38.8% 29.4% 

MDCF*SDC
M 

36.6% 43.4% 36.9% 

 
The experimental results of Table II show that: (1) Our 

time-aware approach, i.e., MDCF*SDCM*TI, achieves the 
best performance among all nine methods since it exploits 
content, topology and temporal information of an evolving 
service ecosystem. (2) As to relevance scores calculation, 
MDCF gets much better MAP (Mean Average Precision) 
than SDCM and their combination also presents good 
performance. (3) With respect to popularity scores, our 
proposed component TI is much more effective than FR to 
help improve the prediction accuracy of MDCF, SDCM and 
MDCF*SDCM. 

Based on our experiments shown above, we can 
conclude that taking service evolution into consideration can 
lead to a higher precision in service recommendation for 
mashup creation. In addition, combining topology, content 
and evolution together can further improve the 
recommendation performance in the evolving service 
ecosystem. 

 

VI. RELATED WORK 

Service discovery and recommendation has been 
acknowledged as a key problem since the dawn of Web 
service technologies. Early works employed techniques from 
information retrieval such as TF/IDF and VSM on WSDL 
documents of services [6, 7]. These keyword search-based 
methods suffer from poor performance in practice. A recent 
work [8] focused on services described in semantic 
languages to automate the process of service discovery. But 
it is always difficult to acquire semantic information and 
construction of ontology is trapped in expensive running 
time and high complexity. Different from above content-
based methods, [9] proposed a probabilistic approach for 
service discovery based on LDA. It extracts features from 
WSDL documents and exploit LDA model to characterize 
the latent topics between services and user queries. Finally it 
recommends related services based on topic relevance. 
However, restful services have been widely used which 
make it hard to get WSDL documents of services. So in this 
work we view the description of a service as its source of 
content information. 

Furthermore, a number of research work center on QoS 
based web service selection and recommendation. For 
example, collaborative filtering, which originates from the 
idea that similar users are likely to consume similar items, 
has also been introduced into service recommendation 
recently [10, 11]. A hybrid approach was proposed in [12] 
which combines content-based matching and collaborative 
filtering. However, QoS information is not always available. 
So instead of using QoS attributes, we employ description of 
a mashup to calculate similarities in our paper. 

Another group of researchers try to introduce social 
network analysis into service recommendation. In [13], a 
service recommendation algorithm which takes users’ 
interest and social relationship between mashups into 
consideration is proposed. [14] proposed a matrix model 
where multi-dimensional social relationships among users, 
topics, mashups, and services are described. A recent work 
[15] tries to perform services ranking and clustering mutually 
in a heterogeneous service network to improve the 
performance of service ranking. 

However, we observed that services and their mashups 
evolve over time such as publishing, perishing and changing 
of interfaces [4]. Few existing methods aforementioned take 
evolution of service usage over time into account. Our 
previous work [5, 16] proposed a service recommendation 
method in an evolving ecosystem based on link prediction in 
a dynamic service network. It is purely based on past service 
usage and does not take the functional requirements of 
individual mashup into account. To move a step further, we 
have proposed a time-aware service recommendation 
approach for mashup creation based on LDA in this paper 
that combines together topology, content, and temporal 
information in an evolving service ecosystem. 
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VII. CONCLUSIONS 

In this paper, we have presented a model that combines 
network structure, content description and service usage 
history to describe an evolving service ecosystem. Based on 
our model, we have developed a time-aware service 
recommendation approach for mashup creation based on 
LDA, consisting of three components: temporal information, 
mashup-description-based collaborative filtering and service-
description-based content matching. The three components 
catch temporal information, topology and content of a given 
service, respectively. Experimental results on a real-world 
data set from ProgrammableWeb.com show that our 
approach is 5% better than collaborative filtering and nearly 
40% better than content matching in terms of mean average 
precision in service recommendation. 

In the following work, we plan to refine the algorithm of 
forecasting topic activity to further improve the short-term 
prediction of service activity. Moreover, we plan to 
incorporate user behavior into our model to make our time-
aware service recommendation framework more 
personalized and study the evolution of interactions among 
users, mashups and services. 

 

ACKNOWLEDGMENT 

This work is partially supported by the National Natural 
Science Foundation of China (No.61033005 and No. 
61174169), the National Science and Technology Support 
Program of China (2012BAF15G01) and the Independent 
Research Program of Tsinghua University (20111080998). 

 

REFERENCES 
[1] V. Andrikopoulos, S. Benbernou and M. P. Papazoglou, "On 

the evolution of services," IEEE Transactions on Software 
Engineering, Vol. 38, pp. 609-628, 2012. 

[2] X. Liu, Y. Hui, W. Sun, and H. Liang, "Towards service 
composition based on mashup," in Proceedings of IEEE 
Congress on Services, 2007, pp. 332-339. 

[3] A. P. Barros and M. Dumas, "The rise of web service 
ecosystems," IT professional, Vol. 8, pp. 31-37, 2006. 

[4] E. Al-Masri and Q. H. Mahmoud, "Investigating web services 
on the world wide web," in Proceedings of the 17th 
International Conference on World Wide Web, 2008, pp. 795-
804. 

[5] K. Huang, Y. Fan, and W. Tan, "Recommendation in an 
evolving service ecosystem based on network prediction," 
IEEE Transactions on Automation Science and Engineering, 
accepted in 2013. 

[6] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang, 
"Similarity search for web services," in Proceedings of the 
13th International Conference on Very Large Data Bases, Vol. 
30, 2004, pp. 372-383. 

[7] C. Platzer and S. Dustdar, "A vector space search engine for 
web services," in Proceedings of the 3rd IEEE European 
Conference on Services Computing, 2005, pp. 62-71. 

[8] G. C. Hobold and F. Siqueira, "Discovery of semantic web 
services compositions based on SAWSDL annotations," in 

IEEE 19th International Conference on Web Services, 2012, 
pp. 280-287. 

[9] C. Li, R. Zhang, J. Huai, X. Guo, and H. Sun, "A probabilistic 
approach for web service discovery," in Proceedings of the 
IEEE International Conference on Services Computing, 2013, 
pp. 49-56. 

[10] Z. Zheng, H. Ma, M. R. Lyu, and I. King, "Wsrec: A 
collaborative filtering based web service recommender 
system," in Proceedings of IEEE International Conference on 
Web Services, 2009, pp. 437-444. 

[11] X. Chen, X. Liu, Z. Huang, and H. Sun, "Regionknn: A 
scalable hybrid collaborative filtering algorithm for 
personalized web service recommendation," in Proceedings of 
IEEE International Conference on Web Services, 2010, pp. 9-
16. 

[12] L. Yao, Q. Z. Sheng, A. Segev, and J. Yu, "Recommending 
Web Services via Combining Collaborative Filtering with 
Content-Based Features," in Proceedings of IEEE 20th 
International Conference on Web Services, 2013, pp. 42-49. 

[13] J. Cao, W. Xu, L. Hu, J. Wang, and M. Li, "A social-aware 
service recommendation approach for mashup creation," 
International Journal of Web Services Research (IJWSR), 
Vol. 10, pp. 53-72, 2013. 

[14] B. Cao, J. Liu, M. Tang, Z. Zheng, and G. Wang, "Mashup 
service recommendation based on user interest and social 
network," in Proceedings of IEEE 20th International 
Conference on Web Services, 2013, pp. 99-106. 

[15] Y. Zhou, L. Liu, C. Perng, A. Sailer, I. Silva-Lepe, and Z. Su, 
"Ranking services by service network structure and service 
attributes," in Proceedings of IEEE 20th International 
Conference on Web Services, 2013, pp. 26-33. 

[16] K. Huang, Y. Fan, W. Tan, and X. Li, "Service 
recommendation in an evolving ecosystem: a link prediction 
approach," in Proceedings of IEEE 20th International 
Conference on Web Services, 2013, pp. 507-514. 

[17] D. M. Blei, A. Y. Ng and M. I. Jordan, "Latent dirichlet 
allocation," Journal of Machine Learning Research, Vol. 3, 
pp. 993-1022, 2003. 

[18] I. Porteous, D. Newman, A. Ihler, A. Asuncion, P. Smyth, and 
M. Welling, "Fast collapsed gibbs sampling for latent 
dirichlet allocation," in Proceedings of the 14th ACM 
SIGKDD International Conference on Knowledge Discovery 
and Data Mining, 2008, pp. 569-577. 

[19] R. Winter, J. H. Schiller, N. Nikaein, and C. Bonnet, 
"CrossTalk: cross-layer decision support based on global 
knowledge," IEEE Communications Magazine, Vol. 44, pp. 
93-99, 2006. 

[20] Y. Matsubara, Y. Sakurai, C. Faloutsos, T. Iwata, and M. 
Yoshikawa, "Fast mining and forecasting of complex time-
stamped events," in Proceedings of the 18th ACM SIGKDD 
International Conference on Knowledge Discovery and Data 
Mining, 2012, pp. 271-279. 

[21] K. Huang, J. Yao, Y. Fan, W. Tan, S. Nepal, Y. Ni, and S. 
Chen, "Mirror, Mirror, on the web, which is the most 
reputable service of them all?" in Service-Oriented 
Computing: Springer, 2013, pp. 343-357. 

[22] Y. Yue, T. Finley, F. Radlinski, and T. Joachims, "A support 
vector method for optimizing average precision," in 
Proceedings of the 30th Annual International ACM SIGIR 
Conference on Research and Development in Information 
Retrieval, 2007, pp. 271-278. 

[23] W. Tan, J. Zhang and I. Foster, "Network analysis of 
scientific workflows: a gateway to reuse," IEEE Computer, 
Vol. 43, pp. 54-61, 2010. 

 

32


