
28 IT Pro September/October 2009 P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 1520-9202/09/$26.00 © 2009 IEEE

Service ModelS

Liang-Jie Zhang, IBM T.J. Watson Research Center

Jia Zhang, Northern Illinois University

To effectively align business and IT using a service-oriented
architecture (SOA), a proposed integrated service model divides service
construction into loosely coupled perspectives according to a service’s
business logic, interface, and implementation.

A lthough the service-oriented architec-
ture (SOA) has become a prominent
strategic model in the modern busi-
ness world, SOA solution design and

development is often still ad hoc, rather than part
of a systematic implementation.1 Companies lack
a business-aligned service model to guide and
facilitate the design, development, and manage-
ment life cycle of highly reusable services and
service components. Existing approaches, such
as the SOA triangular model2 and various hybrid
system integrating methods,3–5 provide high-lev-
el guidance instead of detailed instructions.

Over the past 50 years, researchers have estab-
lished a wealth of architectural models that guide
software application design and development.
However, some significant challenges arise when
we attempt to directly apply these architectural
models to a SOA-based solution design process
because of the unique features of SOA require-
ments. For example, a SOA solution requires that

a system center around reusable services instead
of specific software components, and a SOA solu-
tion must be able to adapt to changing business
requirements. Existing software engineering ar-
chitectural models insufficiently address these
SOA-related needs.

Based on the Service-Oriented Reference Ar-
chitecture (S3),6 we propose an integrated service
model (ISM) that decouples three perspectives of
a service: business logic, interface, and implemen-
tation. By enhancing the existing SOA triangu-
lar model, our ISM supports increased flexibility,
extensibility, and adaptability of services. Based
on industry best practices, we also introduce an
ISM-based methodology to guide service decom-
position and composition. (For the purposes of
our discussion, a service implies a broader domain
than just a Web service. In fact, a service can be
implemented using various technologies, which is
an important way of realizing solution architec-
tures for services computing.1)

An Integrated
Service Model
Approach for
Enabling SOA

	 computer.org/ITPro 	 2 9

Separating the service model into logical layers
hides the complexity of leveraging existing appli-
cations to deliver services. Such an approach can
help companies leverage existing applications as
reusable assets for constructing new business
services and coordinating multiple business pro-
cesses. Our proposed logical service model can
guide and facilitate the rapid creation of business-
IT-integrated services at the enterprise level.

Motivation
To date, the triangular conceptual model is the
most well-known and widely accepted SOA-
based architectural model;2 it provides the back-
bone for creating, registering, and discovering
interface-exposed services. As Figure 1 shows, a
SOA’s three roles over a service include acting as

•	 a service provider that offers services by publish-
ing them to a service registry,

•	 a service registry that helps service requestors
find service providers for proper services by
organizing registered services and providing
search, and

•	a service requestor that invokes services by query-
ing a service registry and then binding to the
service provider to invoke those services.

According to this SOA triangular model, an
existing software application (whether it’s a pack-
aged application, customer application, or legacy
system) can be wrapped with a service-compliant
interface and then published as a Web service into
a service registry. The encapsulated application
in a Web service might range from a single appli-
cation component to a comprehensive large-scale
software product containing many components
as well as other software products. Meanwhile,
this model allows a new application, developed
from scratch, to be published as a Web service.
Based on this service model, a wealth of wrap-
ping and development platforms have been devel-
oped, such as IBM’s WebSphere (www.ibm.com/
websphere), BEA’s AquaLogic (www.bea.com/
framework.jsp?CNT=index.htm&FP=/content/
products/aqualogic), and open source software
products such as Sun’s JBoss (which is available
at www.jboss.org).

This model’s major drawbacks stem from its
simplicity. It doesn’t systematically identify and
address service-handling-related issues, suchas

decomposition, aggregation, transformation,
and invocation. Consequently, solution archi-
tects must design component models for each
service from scratch based on their personal ex-
periences. In addition, the model doesn’t provide
architecture-level support for configuring and
reconfiguring services and service components.
Furthermore, a solution based on the current
triangular service model developed using this
approach might suffer from low reusability and
might not provide adaptability for runtime evolu-
tionary changes.

Many researchers and practitioners have ex-
plored methodologies for engineering services
design and development and proposed various
hybrid system integration methods.3–5 However,
such efforts still only provide high-level direc-
tion instead of detailed normative guidance.

Integrated Service Model
Figure 2 shows our proposed ISM. By grouping
interaction patterns and configuration manage-
ment according to semantic coherence, we’ve
identified three interrelated but loosely coupled

Service providerService requestor
Bind services

Service registry

Publish servicesSearch services

Figure 1. Service-oriented architecture (SOA) triangular
model. The service provider, registry, and requestor
roles are accompanied by their behaviors and
responsibilities.

Business process layer

Service layer

Service component layer

Operational system layer

Service model

Services
registry

Publish
as a Web
service

Figure 2. Multigranular integrated service model. The
three interrelated, loosely coupled logical layers are
realized in the Service-Oriented Reference Architecture.

30	 IT Pro September/October 2009

Service Models

logical layers to align with the high-level objec-
tives defined in S3:6 the business process, service, and
service component layers. (IBM proposed S3 to guide
IT architects in designing the overall architecture
of an enterprise-level SOA solution.)

Our model decouples three perspectives of a
service: the business process layer handles any
business-logic-related service composition and
decomposition; the service component layer han-
dles any implementation-related service integra-
tion and invocation; and the service layer handles
all interface-related (Web Service Description
Language-related) service publication, location,
and aggregation.

As Figure 2 shows, the service model is built on
top of an operational system layer,6 which repre-
sents the following:

•	packaged applications typically provided by in-
dividual service vendors (ISVs);

•	 customer applications developed in-house; or
•	 legacy systems typically developed using tradi-

tional technologies.

Each of these applications could traditionally only
be used for one purpose and serve one specific
user or user group. With the aid of a SOA, we
can make such applications available as a service
with standard interfaces so that other services or
applications can discover and reuse them.

Business Process Layer
The business process layer leverages the service
layer to manage services in the context of busi-
ness workflows. This layer performs 3D process-
level service handling: top down, bottom up, and
horizontal. The top-down direction provides fa-
cilities to map business requirements into tasks
comprising activity flows, each being realized by
existing business processes, services, and service
components. The bottom-up direction provides

facilities to quickly compose and choreograph
existing business processes, services, and ser-
vice components into new business processes to
fulfill customer requirements. Finally, the hori-
zontal direction provides service-oriented col-
laboration control between business processes,
services, and service components.

The business process layer doesn’t focus on in-
dividual business process representations, which
can be fulfilled by dedicated workflow descrip-
tion languages such as Business Process Execu-
tion Language for Web Services (BPEL4WS).
Rather, this layer focuses on building SOA solu-
tions using business processes—for example, the
layer might take 10 existing business processes
and aggregate them into three big processes,
while monitoring and managing the collabora-
tion between them.

To decompose a business process, we first di-
vide it into smaller tasks and then map each one
into service clusters (or conceptual services) that
actual Web services will realize in the service
layer. In other words, the business process layer
provides facilities to decompose a business pro-
cess into conceptual services that fulfill business
functions, or service clusters.

Service Layer
The service layer extends the triangular SOA
model into a comprehensive logical layer that en-
ables and facilitates service registration, decom-
position, discovery, binding, aggregation, and
service lifecycle management.

The service layer leverages the concept of a
Web service cluster,7 which is a collection (cate-
gory) of Web services serving a common business
function. These Web services can be published
by different service providers and differentiated
from one another by specific features—for exam-
ple, we might consider a generic shipping service
a conceptual service cluster. Many service pro-
viders (such as the United Postal Service [UPS],
the US Postal Service [USPS], and Federal Ex-
press [FedEx]) might exist for the same shipping
purpose. In addition, one service provider—say,
UPS—might also provide various shipping ser-
vices with different timeframes and guarantees.
For example, a UPS service can provide over-
night, second-day, two-day, three-day, five-day,
and one-week deliveries. Our model considers all
these types of shipping service implementations

The business process layer provides
facilities to decompose a business
process into conceptual services that
fulfill business functions.

	 computer.org/ITPro 	 3 1

as a conceptual shipping service cluster. As a best
practice, we always categorize services in this lay-
er into service clusters based on some business
function, such as reporting or purchase-order-
management services.

A business process only cares about the level
of service clusters, instead of individual services,
because a selected service might be unavailable
at invocation time. In this case, the SOA shall re-
place it with another available service in the same
service cluster, making the switch transparent to
users. Each potential service is kept in the logical
service layer.

The service layer performs both top-down
and bottom-up service-level handling. In the
top-down direction, the layer provides facilities
to locate actual service interfaces for business
processes; in the bottom-up direction, the layer
provides facilities to expose service interfaces
to the outside world (see the services registry in
Figure 2).

The service layer handles the actual top-down
mapping from business processes into real ser-
vices. As we discussed earlier, our model decom-
poses a business process into service clusters.
Then, for each service cluster identified, the ser-
vice layer is responsible for

•	 finding an appropriate service provider,
•	 locating where the target service resides and

accumulating other requirements such as ac-
cess control, and

•	binding to the target service interface.

From the bottom up, the service layer exposes
Web service interfaces for service components.
One service component can become available in
different formats and service interfaces; Figure 3
shows one service component available in four ser-
vice interfaces. In other words, one service com-
ponent can implement multiple services defined
in the service layer. Therefore, the number of ser-
vices in the service layer can exceed the number
of service components in the service component
layer. In the service component layer, a wrapper
that implements the interface defined by the ser-
vice layer can use multiple service components.

The service layer can also perform some high-
level service aggregation. Figure 3 illustrates two
categories of services: an individual service refers
to an atomic service that doesn’t depend on oth-

er services, and a composite service depends on
more than one individual service.

Figure 4 illustrates the composite service con-
cept using a composite stock service example. The
three individual services include stock quoting,
selling, and buying. Each service is wrapped by a
corresponding service component in the service
component layer and represents one stock-related
activity—that is, quoting a stock price, selling a
stock, or buying a stock. The stock service aggre-
gates the three individual services into a composite
service with a new service interface. This kind of
service aggregation is based on interfaces (packag-
ing) only, without business logic involved.

Figure 4 shows that no control flow exists be-
tween the three aggregated services. In fact, each

Business process layer

Service layer

Service component layer

Service model

Figure 3. One-to-many relationship for a service
component to multiple service interfaces. The number
of services in the service layer can exceed the number of
service components in the service component layer, so a
single service component can implement multiple services.
An individual oval indicates an individual service, and
a dotted oval comprising several individual services
indicates a composite service.

Service layer

Service component layer

Stock
quote

Stock
sell

Stock
buy

Stock
service

Figure 4. The composite service concept. In this
example, a composite stock service consists of three
individual services (quoting, selling, and buying).

32	 IT Pro September/October 2009

Service Models

of the three services could become a separate
operation of the aggregated interface (such as a
WSDL interface). Also, a composite service typi-
cally contains a special kind of service compo-
nent, which we call a technical service component, in
the service component layer to implement the in-
terface aggregation. As Figure 4 shows, the com-
posite stock service consists of a technical service
component in the service component layer to re-
alize or the three services (service interfaces) in
the service layer.

A composite service must comprise more than
one service (interface), or it would be an indi-
vidual service. Figure 5 shows a service imple-
mented by a service component in the service
component layer, which is in turn implemented
by two legacy systems in the operational system
layer. Because only one service (interface) from
the service layer is involved, we consider this an
individual service.

Hence, a composite service must include a
composite interface and an implementation
through a technical service component, which in
turn invokes or realizes more than one service in
the service layer and/or another technical com-
ponent, such as a legacy system.

We use the term “aggregation” here instead of
“composition” as in the business process layer.
On one hand, service composition refers to in-
tegrating services into a business process with
business logic. With service composition, busi-
ness flow exists between services, which can be
represented using a business flow description
language such as BPEL. On the other hand, ser-
vice aggregation refers to turning services into
individual operations in a new service interface

without adding any business logic between them.
Note that our model doesn’t define business
flows between the aggregated services. In short,
service aggregation is merely a new way to release
existing services.

In general, a given organization has two dis-
tinct groups of services: external and internal.
The first group, also known as common business
services, refers to a set of business-aligned ser-
vices fulfilling an organization’s enterprise pro-
cesses and goals. These services can be tied back
to business processes or exposed to other lines
of business or to the outside world of partners
and the SOA ecosystem. The second group con-
tains those services that address IT integration
and infrastructure problems. Typically, one orga-
nization doesn’t necessarily apply the same rigor
in identifying and exposing this type of service.
Although internal services are designed to meet
certain requirements, they might not directly
represent an important aspect of the SOA value
proposition from a visibility perspective.

Service Component Layer
The service component layer provides code con-
tainers that implement services dealing with how
to actually implement services. A service compo-
nent might rely on one or more packaged applica-
tions, customer applications, or legacy systems;
it can also invoke services in the service layer or
business processes in the business process layer
to implement the method signatures defined in
the service layer. For example, a service compo-
nent can be implemented in a Java class, an En-
terprise JavaBean (EJB), a .NET component, and
so on, or it might include the implementations of
multiple methods, with some methods exposed
as services.

The service layer is in charge of binding to an
actual service, but it doesn’t handle invocation
adaptation. The services component layer han-
dles service invocation,1 including input-method
signature transformation and output-method
signature adaptation.

Enhancing service invocation and automat-
ing it remain challenging. Web services can only
be accessed through their service interfaces de-
fined in the standard WSDL. Because the cur-
rent form of WSDL specifications only exposes
limited information for Web services interfaces,
parameter adaptations and interpretations are

Service layer

Service component layer

Operational system layer

Figure 5. An individual service concept. Because only
one service (interface) from the service layer is involved,
this is an individual service even though it’s eventually
implemented by more than one legacy system.

	 computer.org/ITPro 	 3 3

typically required prior to and after actual service
invocations. A WSDL service method signature
only defines the method name and the param-
eters’ data types. This information is usually too
generic and inadequate for a program to prop-
erly invoke the target Web service, and there’s no
semantic information available to help correctly
construct input parameters.

O rganizations can start with our ISM, cus-
tomize it, and then apply it to develop
reusable, flexible, and extensible SOA

services for one or more business lines. This
model is especially suitable for software architects
responsible for designing software architectures
for business-driven SOA solutions. They could
quickly configure and customize this model into
an architectural proposal for their customers
based on specific business requirements. More-
over, users can directly deliver the customized ser-
vice model to a corresponding development team
as architecture templates and normative guidance
for the actual solution development. Currently,
our ISM has become an integral part of the IBM
SOMA Modeling Environment (SOMA-ME),8

which various industry projects are using as the
core tool to conduct SOA solution services.	

Acknowledgments
This major work of this research was conducted while Jia Zhang
was an academic visitor at IBM T.J. Watson Research Center in
2006.

References
	 1.	 L.-J. Zhang, J. Zhang, and H. Cai, Services Computing,

Springer & Tsinghua Univ. Press, 2007.

	 2.	 C. Ferris and J. Farrell, “What Are Web Services?”
Comm. ACM, vol. 46, no. 6, 2003, pp. 31–35.

	 3.	 J. Hutchinson et al., “Migrating to SOAs by Way of
Hybrid Systems,” IT Professional, vol. 10, no. 1, 2008,
pp. 34–42.

	 4.	 Y.L. Blevec et al., “Service-Oriented Computing:
Bringing Business Systems to the Web,” IT Profes-
sional, vol. 9, no. 3, 2007, pp. 19–24.

	 5.	 B. Benatallah et al., “Service Mosaic: A Model-Driv-
en Framework for Web Services Life-Cycle Manage-
ment,” IEEE Internet Computing, vol. 10, no. 5, 2006,
pp. 55–63.

	 6.	 A. Arsanjani et al., “S3: A Service-Oriented Refer-
ence Architecture,” IT Professional, vol. 9, no. 3, 2007,
pp. 10–17.

	 7.	 L.-J. Zhang and B. Li, “Requirements Driven Dy-
namic Services Composition for Web Services and
Grid Solutions,” J. Grid Computing, vol. 2, no. 2, 2004,
pp. 121–140.

	 8. L.-J. Zhang et al., “SOMA-ME: A Platform for the
Model-Driven Design of SOA Solutions,” IBM Sys-
tems J., vol. 47, no. 3, 2008, pp. 397–413.

Liang-Jie Zhang is a research staff member and program
manager of application architectures and realization at the
IBM T.J. Watson Research Center. His technical interests
include services computing, Internet media, and software
engineering. Zhang has a PhD in pattern recognition and
intelligent control from Tsinghua University. Contact him
at zhanglj@ieee.org.

Jia Zhang is an assistant professor in the Department
of Computer Science at Northern Illinois University. Her
technical interests center around services computing. Zhang
has a PhD in computer science from the University of
Illinois, Chicago. She is a member of the IEEE. Contact her
at jiazhang@cs.niu.edu.

For more information on any topic
presented in IT Professional,

visit the IEEE Computer Society
Digital Library at

www.computer.org/csdl

