
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 37, NO. 6, NOVEMBER 2007 955

Toward a Service-Oriented Development
Through a Case Study

Jia Zhang,Member, IEEE, Carl K. Chang, Fellow, IEEE,
Liang-Jie Zhang, Senior Member, IEEE, and Patrick C. K. Hung

Abstract—The rapidly emerging technology of Web services
paves a new cost-effective way of engineering software to quickly
develop and deploy Web applications by dynamically integrating
other independently developed Web-service components to con-
duct new business transactions. This paper reports our efforts on
designing and developing a Web service of pass-through authen-
tication (PTA) for 12 online electronic-payment Web applications.
In accordance with how a PTA service is developed and integrated
with a corresponding back-end e-payment system, our strategies
can be categorized in three stages: end-to-end integration stage,
Web-services-enabled stage, and Web-services-oriented stage.
Derived from real-world industrial experience, this three-stage
pathway can be applied to a broad range of Web-application
development projects to guide smooth transformation from a
specific application-oriented design and development model to-
ward a reusable Web-services-oriented model. Furthermore,
this paper contributes to an engineering process that leads to prac-
tical Web-services-oriented software development. New research
issues revealed by this project are also reported.

Index Terms—Architecture, case study, software-application
development, Web-services deployment.

I. INTRODUCTION

THE DEVELOPMENT of Web applications can be quite
complex, costly, and time-consuming [10], due to their

unique features such as complicated business logic, high inter-
activity, requests of quick delivery, high-quality requirements,
and ambiguous requirements at the start. In order to increase
the productivity and quality of Web-application development,
Web engineering has emerged as a peculiar research area that
contributes to manage the diversity and complexity of the Web-
application development process [13]. Its essential goal is to
provide systematic, disciplined, and quantifiable approaches
to assist the design, development, and maintenance of Web
applications [8].

Manuscript received January 30, 2006; revised August 16, 2006. This paper
was recommended by Associate Editor H. R. Rao.

J. Zhang is with the Department of Computer Science, Northern Illinois
University, DeKalb, IL 60115 USA (e-mail: jiazhang@cs.niu.edu).

C. K. Chang is with the Department of Computer Science, Iowa State
University, Ames, IA 50011 USA (e-mail: chang@cs.iastate.edu).

L.-J. Zhang is with IBM T. J. Watson Research, Yorktown Heights, NY
10598 USA (e-mail: zhanglj@us.ibm.com).

P. C. K. Hung is with the Faculty of Business and Information Technology,
University of Ontario Institute of Technology, Oshawa, ON L1H 7K4, Canada
(e-mail: patrick.hung@uoit.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org

Digital Object Identifier 10.1109/TSMCA.2007.904820

In recent years, the rapidly emerging concept of Web services
has been gathering significant academic and industrial momen-
tum, as it has been changing the Internet from a repository of
data into a repository of services. A Web service itself is a
programmable Web application that is universally accessible
through standard Internet protocols [9]. It is normally self-
contained with well-defined interfaces with no compulsory
deployment. This paradigm of Web services paves a new cost-
effective way of engineering Web applications by integrating
other independently developed Web-service components. As a
result, numerous software organizations are going through a
transformation of their engineering models, aiming at achieving
faster and cheaper Web development.

In a Web-services-based Web-application development, two
essential issues need to be tackled: 1) how to design and
develop a new application utilizing available Web services as
components and 2) how to build a reusable application that
exposes part or all of its functionalities as Web services. This
paper describes the process of creating an architectural model
as a solution to these two issues at a software consulting firm.
As a case study, we report on a project aiming at constructing
a Web service of pass-through authentication (PTA) to support
online-payment (electronic payment, e-payment) applications.
It is the first step toward a comprehensive Web service of online
e-payment. Currently, such a PTA service acts as a Web service
to support our multiple e-payment deployments with three
major functionalities: 1) providing a PTA service; 2) allowing
a client administrator to register and update authentication
criteria; and 3) functioning as a Web-service front-end to our
e-payment back-end servers. This paper examines how our
Web-services-based service-oriented architecture (SOA) was
formed through this project and how it has benefited the cor-
responding Web-application development.

The remainder of this paper is organized as follows. We will
first analyze the project domain and project requirements, as
well as research questions. After closely examining the case
study, we will present how an architectural model is extracted to
facilitate Web-services-oriented Web-application development
and its impact. Then, we will analyze the case study and discuss
related work. Finally, we will draw conclusions.

II. CASE-STUDY CONTEXT

We will first describe the context in which the case study
was performed. Our e-payment system is an online-payment-
processing application. Contrasted with PayPal [50] as a known
Web-services-based payment system serving generic purposes,

1083-4427/$25.00 © 2007 IEEE

956 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 37, NO. 6, NOVEMBER 2007

Fig. 1. Original e-payment system deployment.

our e-payment system focuses on providing a customizable
and comprehensive payment facility, which can be plugged
into existing Web applications as an integral part. For ex-
ample, our e-payment system supports more comprehensive
payment methods. The payment methods that PayPal allows
are as follows: PayPal balance, PayPal buyer credit line,
PayPal plus credit card, debit card, or confirmed bank ac-
count. Our e-payment system generally allows payment credit
card, debit card, personal and business check, money order,
and so on. Another example is that our e-payment system
for a particular organization may possess very specific fea-
tures, e.g., supporting a specific-transaction report format and
schedule.

Our e-payment system typically contains two modes: syn-
chronous or asynchronous, meaning that it can perform both
real-time and batched payment transactions. The applica-
tion handles credit-card payment, e-check payment, account-
receivable updates, payment processing and reconciliation, bill
presentment and payment-history presentation, and so on. As
a project conducted at a Web-software-consulting firm, the e-
payment system was originally designed as a stand-alone Web
application that can be customized and deployed at different
organizations.

Fig. 1 illustrates the overall design and distribution of the
e-payment application over organizations. Based on different
deployment expenses, two options are provided to organiza-
tions. The first one is called an enterprise style, meaning that
an e-payment system is deployed at a server machine hosted at
an organization site, as shown in Fig. 1 for Organization #1. The
organization needs to maintain the server, and the deployment
fee is paid up once for all at the deployment time. The sec-
ond option is a so-called Application Service Provider (ASP)
style [37], [46]. An e-payment system for an organization is
hosted at a central server place, which is normally a dedicated
third-party Web-hosting place. In Fig. 1, Organizations #2, #3,
and #4 adopt this latter style; the e-payment systems serving
different organizations reside on different physical server ma-
chines. Note that these e-payment systems may reside on the
same physical machine, each on a different application-server
instance, such as a Macromedia JRun server [17] instance. Dif-
ferent e-payment servers are isolated applications even though
they reside at the same machine. Through this deployment

option, maintenance and host fees are paid on a monthly
basis. It is known that the ASP model is shifting businesses
from buying software products to renting services [37]. In our
experience, most organizations did adopt the second option.
Although, in the long run, organizations spend more money,
they benefit from no resource consumption on maintenance and
easier future upgrade of the e-payment systems. In either op-
tion, users of each organization are required to access the login
page of the corresponding deployed e-payment system before
utilizing the application. Normally, an organization embeds a
link in its own Web site to point to its corresponding e-payment
server site.

As we continued to deploy e-payment applications for more
organizations, this original design reveals several integration
issues. First, a user uses different sets of login IDs and pass-
words to access the e-payment application and the original
Web site of the organization, respectively. We could permit the
users to access the e-payment application if we prestore all user
information of the organizations. However, it means that the
organizations have to transfer batch files with sensitive informa-
tion, such as user names and passwords. The process apparently
exposes a potential security problem. This issue becomes more
severe if an organization adopts the ASP model, since the
sensitive information needs to be conveyed through the public
Internet to the central-server place. Second, this design forces
users to go through the Web pages of the e-payment systems
to utilize any functionality of the application, which may not
be so desirable sometimes. For example, an organization may
wish to utilize the e-payment system to process a transaction
without walking through any Web pages. In other words, it is
expected that the transactional information is conveyed to the
e-payment system over the Internet through a hypertext-
transfer-protocol (HTTP) request, and the result code is passed
back through an HTTP response. This scenario requires that our
e-payment system expose some functionality for direct access.
Without any doubt, our e-payment system must have a means
to verify whether the transaction is originated from the sites of
specific trusted organizations.

A. PTA Service

As a result, we realized the necessity of PTA in our
e-payment application. PTA or so-called single sign on is not
a new concept. Instead, it has been widely utilized in network
computing to enable users to logon to the network and access
resources from computers or domains where they have no
accounts [26]. In this project, we refer PTA to a transitive trust-
authentication process, which allows users to be seamlessly
authenticated into the e-payment system from another trusted
secure Web site, without visiting any e-payment login page.
The PTA process can convey either already authenticated users
or detailed payment information to an e-payment system.

Since our e-payment system is usually integrated into orga-
nizations’ Web sites as a dedicated online-payment-processing
engine, the PTA offers several significant advantages. First,
users who signed on to the original Web sites will automatically
obtain the access to the e-payment applications. Definitely,
a technique is required to synchronize the user information

ZHANG et al.: TOWARD A SERVICE-ORIENTED DEVELOPMENT THROUGH A CASE STUDY 957

stored in the e-payment systems with the original organization
sites. Second, the e-payment system can be plugged into a
legacy system of an organization as a third-party component
to process real-time payment transactions if so desired. Third,
organizations have more flexibility to choose to adopt either a
stand-alone e-payment system or a plug-in e-payment service,
or both under different circumstances. Fourth, PTA facilitates
the scheme of e-payment applications to shift to an ultimate
ASP model, where a central e-payment server handles online-
payment transactions for different organizations. Comparing
to the ultimate ASP model, the current ASP model should be
adjustably called a semi-ASP model, as it actually provides a
central hosting for all independent e-payment servers. Fifth,
delivering access to the e-payment service in the ASP manner
allows small to medium enterprises to eliminate the time and
costs associated with the customization, installment, deploy-
ment, maintenance, and management of their own e-payment
applications. Sixth, no data integration and synchronization
is needed between the e-payment systems and the original
organization systems, since our e-payment systems only need
to verify that a request is originated from a trustworthy source
(organization). Therefore, we conclude that PTA is the first step
for the e-payment application toward a universally accessible
Web service.

The PTA is implemented by a process, where an e-payment
system evaluates a secure HTTP/HTTPS request sent by an
organization. Two categories of data are conveyed by each
HTTPS request string: data information and validation informa-
tion. The former contains a list of (name, value) pairs, and the
latter uses standard encryption techniques (e.g., Message Digest
5 [21] or Secure Hash Algorithm (SHA1) [32]) to comprise
hash data and timestamps.

As more organizations request for the PTA function, in-
cluding the organizations with e-payment systems already
deployed, we decided to start a project aiming to construct
PTA Web services. The goal of this project is twofold: one
is to integrate a PTA service into each deployed legacy e-
payment application and the other is to design a reusable PTA
Web service so that it will become an integral part of future
e-payment applications.

The empirical study reported in this paper is a case study,
which was designed at the beginning of the project. This case
study intends to investigate how the concept of Web services
can benefit the design of our PTA service and e-payment
applications and how to transform from an application-oriented
architecture toward a Web-services-based SOA. It should be
noted that this paper does not discuss service-interface de-
scriptions, resolutions, and binding, such as syntax check-
ing, semantics understanding, and automatic tools for service
searching, matching, and binding. We realize that component-
interface design is one critical yet difficult aspect in services-
based software development; this paper only focuses on the
architectural model of a services-oriented system.

B. Research Questions

At the beginning of the project, we identified three specific
research questions as follows: 1) How will the project benefit

Fig. 2. Stage 1: End-to-end integration to legacy e-payment system.

from the concept of Web services? We planned to analyze
the problems and issues that challenge us in designing a PTA
function and examine whether the concept of Web services pro-
vides sufficient solutions to these problems. 2) Is a new Web-
services-based SOA needed? We planned to explore whether
we need a new Web-services-based SOA model to facilitate the
PTA-service development. 3) How can an application-oriented
architecture be migrated to a Web-services-based SOA? We
planned to explore a pathway of transforming to a Web-
services-based SOA, if there is one.

III. CASE STUDY

In this section, we will report our case study through the
project. In accordance with how a PTA service is developed and
integrated with an e-payment system, the project can be divided
into three stages: 1) end-to-end-integration stage; 2) Web-
services-enabled stage; and 3) Web-services-oriented stage. We
will discuss each stage in detail. For clarification, when we
use the term “service,” we simply mean a function. If a Web
component is developed into a Web service, we will use the
term “Web service” explicitly. Similar to testing common Web
applications, we used a popular unit test tool called JUnit [18]
to create test cases.
Stage 1—End-to-End Integration: Due to the nature of the

signed business contracts, the goal of our first stage of the
project was to develop PTA functions and add them to legacy
e-payment systems. The tasks were in a fixed-rate manner with
urgent fixed time frames. Furthermore, at that time, there was
only one architect available with several junior-level develop-
ers and quality-assurance (QA) people, so that there was not
enough time to perform an overall design. As a result, for the
first such customer, we implemented the PTA algorithm and
integrated it into the original e-payment system. The redeployed
integrated e-payment system thus became a customized self-
contained application, as shown in Fig. 2(a). The issues of
this strategy are apparent: The reusability and extensibility of
the PTA part were low, because the code was mixed with
the e-payment system and the interfaces between them were
not well defined. However, we gained the initial experience of
implementing a PTA function. Furthermore, some code pieces
in this PTA function could be reused in later development. In
addition, keeping in mind that our ultimate goal was to build

958 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 37, NO. 6, NOVEMBER 2007

a generic PTA Web service, we intentionally emphasized clear
low-level application-programming interfaces (APIs) when we
implemented the PTA function. The first task was finished in
two months by one architect together with one junior developer
and one QA resource, including requirement elicitation.

The second engagement is similar to the first one, which goal
is to add the PTA service to another legacy e-payment system.
At the time, more resources were assigned to participate in
the engagement in order to redesign the architecture. However,
because of lacking of Web-services experience and tight project
deadline, we still did not adopt the concept of Web services for
the engagement. Instead, by understanding that a Web service
is, in fact, a Web component [9] and the paradigm of Web ser-
vices intends to facilitate component engineering, we decided
to construct a PTA-service component, while spending time
learning Web-services technology. In the corresponding design,
the original e-payment system acts as a back-end supporting
system for the PTA-service component, as shown in Fig. 2(b).

The PTA-service component serves as the gate of the back-
end e-payment application, replacing the original login process.
With the new design, instead of embedding a uniform resource
locator (URL) in the Web site of the organization to simply
redirect it to the login page of the e-payment system, the
organization generates an HTTPS request and sends it to the
PTA-service component. There are two scenarios that an orga-
nization may request services from the PTA component: one
is to pass through user credential authentication and the other
one is to pass through transaction authentication. To match
the two scenarios, the PTA-service component consists of two
functional subcomponents: a PTA-user component and a PTA-
transaction component, as illustrated in Fig. 2(b). Based on the
incoming HTTPS requests, the PTA-service component will
decide which subcomponent it will invoke.

In more detail, the first scenario is while a user, who has al-
ready been authenticated by the organization, wants to visit the
e-Payment system. In this case, the organization will generate
an HTTPS request including the user credential and send it to
the PTA service component. The format of the HTTPS request
is as follows:

https://epayment.com/organization/payer.do?userId=99
9999×tamp=949924800&hash=b14ac94d2960e53d
bb2f061b236d7a0a

Shown above is a simplified request that includes user cre-
dential: a user identification number. The timestamp and the
hash value help to validate that the user has been authenticated
by the organization. When the PTA-service component receives
an HTTPS request as above, the PTA-user-service subcompo-
nent will be invoked. The PTA user service will authenticate
the user-identification information and use the user ID passed
to load the user’s personal information from the database and
direct the user to the e-payment personal-statement Web page.

The second scenario is that the organization wants to pass
through a payment transaction for processing. The format of
the HTTPS request is as follows:

https://epayment.com/organization/payer.do?userId=99
9999&accountId=0011789&cardType=3&cardNumber=

6011001190119900&amount=100.00×tamp=94992
4800&hash=b14ac94d2960e53dbb2f061b236d7a0a
Shown above is a simplified request that includes informa-

tion of a payment transaction: a user-identification number, an
account ID, a credit-card type, a credit-card number, and a
payment amount. The timestamp and the hash value help to val-
idate that the user has been authenticated by the organization.
When the PTA-service component receives an HTTPS request
as exhibited above, the PTA-transaction service subcomponent
will be invoked. The PTA transaction will authenticate the
transaction information, call the e-payment system to process
the transaction, and pass back the result information to the
organization through an HTTP response.

In either scenario, this end-to-end integration is accom-
plished through direct calls from the PTA-service component to
the low-level functional APIs defined in the e-payment system.
This strategy leaves the original e-payment system completely
intact. However, each such PTA-service component is tightly
coupled with the corresponding e-payment system. Since every
deployed e-payment system is different, this strategy decreases
the reusability of newly constructed PTA services. Another
issue arising from this architectural model between a PTA
component and an e-payment system is flexibility. In order to
invoke a PTA service, each client generates an HTTP request
string containing a hash value. The order of the parameter
values on which to perform the hash algorithm is imperative.
This order and the list of the parameter values are normally
predefined and hard-coded into the PTA component. As a
result, the PTA-service component cannot be easily reused for
different e-payment applications.

The second engagement was finished in one month by two
developers with one QA tester.

In this stage, from the testing perspective, testing has to be
conducted over each integrated e-payment system with the PTA
functionality. Reusability of test cases is limited.
Stage 2—Web-Services-Enabled Stage: To increase

reusability and flexibility of the PTA-service component, we
decided to construct an administration module for it. Through
the administration module, an organization can dynamically
set up or update the list of the parameter types and the or-
der of the parameters for encryption. With the help of the
administration module, a PTA service does not have to have the
hash algorithm hard-coded any longer. In addition, the interface
between the PTA service and the administration module can
be standardized. Furthermore, the administration module is
highly reusable to all PTA services. In other words, we decided
to construct one administration module shared by multiple
PTA services. As we discussed in the section of the project
context, e-payment systems may reside at either the central
server place or at individual organizations. Therefore, this
administration module should be accessible via the Internet,
which seems to fit into the picture of Web services. As a result,
we decided to adopt the concept of Web services to implement
the administration module.

The paradigm of Web services mainly embraces three
categories of supporting facilities: communication protocols,
service descriptions, and service discovery [6], [48]. Each
category possesses its ad hoc standard, as Simple-Object

ZHANG et al.: TOWARD A SERVICE-ORIENTED DEVELOPMENT THROUGH A CASE STUDY 959

Fig. 3. Stage 2: Web-services-enabled stage to legacy systems.

Access Protocol (SOAP) [35], Web-Service Description Lan-
guage (WSDL) [41], and Universal-Description Discovery and
Integration (UDDI) [38], respectively. The SOAP acts as a
simple and lightweight protocol for exchanging structured and
typed information among Web services. The WSDL [41] is an
XML-based description language that is used to describe the
programmatic interfaces of Web services. The UDDI provides
a mechanism to publish, register, and locate Web services.
It should be noted that, here, we adopted a narrow defini-
tion of Web services that refers to an implicit definition of
SOAP + WSDL + UDDI for the purpose of simplicity. Our
decision implies a focus on the management of stand-alone
Web services, instead of the compositions and the interactions
between multiple Web services. Therefore, we utilized SOAP,
WSDL, and UDDI in our project.

Thus, the architectural model between a PTA service and an
e-payment system was altered, as illustrated in Fig. 3. Every de-
ployed e-payment system is wrapped with a specific PTA Web
service: e-payment system 1 with its corresponding wrapper
PTA service 1; e-payment system 2 with PTA service 2; and
e-payment system 3 with PTA service 3. Such an integrated
system is referred to as a PTA-enabled e-payment application.
The integration bus is introduced as a common communi-
cation channel for PTA-enabled e-payment applications. By
integration bus, we mean that the communication channel is
based upon SOAP message exchange, and constructed Web
service is available from the UDDI registry. In addition, a PTA-
administration Web service is constructed and shared by all
PTA-enabled e-payment applications.

As shown in Fig. 3, using arrows with different notations
between PTA-services wrappers and corresponding e-payment
systems, the integrations between e-payment systems and their
PTA-service wrappers vary from each other. The individual
integrations depend on the corresponding e-payment systems.
There are distinctions between PTA-service wrappers in this
architectural model and those in the first stage. As shown in
Fig. 3, the PTA-service wrappers all exhibit the same Web-
service interfaces of registry and invocation to the integration
bus. In addition, they are only accessible through the integra-
tion bus.

A simplified WSDL definition of the administration mod-
ule is given as follows. A “ptaadministrationservice” Web
service is defined. Here, we declare the WSDL namespace
as the default namespace so that all elements belong to this
namespace unless they have another namespace prefix. Here,
we omitted all other namespace declarations to keep it simple.

Inside the service element, we specify one port on which
this service is accessible: PTAAdministrationRegistrationPort.
Users can register a new PTA service to the administration
Web service. The port has a unique name and a binding at-
tribute. Our “ptaadministrationservice” can be accessed using
the SOAP.

<definitions name = ′ptaadministrationservice′

xmlns =′http://schemas.xmlsoap.org/wsdl/ ′>

<import namespace =
′http://localhost/ptaadministration/wsdl/definitions′

location =
′http://localhost/ptaadministration/wsdl/ptaadministra
tionregistration.wsdl′/>

<binding name =′PTAAdministrationBinding′

type =′defs:PTAAdministrationPortType′>
<soap:binding style =′document′

transport=′http://schemas.xmlsoap.org/soap/http′/>
<operation name =′RegisterUser′>

<soap:operation soapAction =
′http://localhost/ptaadministration/RegisterUser′>

<input>
<soap:body use =′literal′/>

</input>
<output>

<soap:body use =′literal′/>
</output>

</operation>
</binding>

<service name =′PTAAdministrationService′>
<port name =′PTAAdministrationRegistrationPort′

binding= ′wsdlns: PTAAdministrationRegistrationBinding′>
<soap:address

location=′http://localhost/ptaadministration/wsdl/ptaad
ministrationregistrationservice.jsp′/>

</port>
</service>
</definitions>

As shown above, a WSDL document “ptaadministrationreg-
istration.wsdl” is imported. The service also specifies the bind-
ing mechanism “PTAAdministrationBinding.” One operation is
defined: “RegisterUser,” which has one input parameter and
one output parameter.

This administration Web service intends to enable users to
adjust the authentication criteria after they are set. For exam-
ple, one organization may decide to change the order of the
parameter values for encryption. With the introduction of the
administration Web service, this enforcement of the order of
the parameter values does not have to be hard-coded into the
PTA service; therefore, the reusability of PTA service is largely
improved. Meanwhile, the single administration Web service is
shared by all PTA-enabled e-payment applications through the
common integration bus; thus, new PTA-enabled e-payment ap-
plications can be plugged into the integration bus and utilize the

960 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 37, NO. 6, NOVEMBER 2007

Fig. 4. Stage 3: Web-services-oriented stage.

administration Web service. Therefore, the scalability of the
administration Web services is guaranteed. Considering that
the single administration Web service can become a single
point of failure, a fail-over administration Web service was
constructed in case of outages from the primary administration
Web service.

It can be seen that, in this architectural model shown in Fig. 3,
the PTA service is actually a Web-service façade attached to
existing e-payment applications. These facades reveal the same
Web-service interface over diverse e-payment legacy systems.
It can also be seen that this “Web-services-enabled stage”
is, as a matter of fact, a direct application of the wrapper
and mediator design patterns [11]. The key idea is that all e-
payment applications are wrapped in such a way that they are
accessible through a common interface, based upon the SOAP
and WSDL. “Encapsulating how a set of objects interact”
[11], the simple administration Web service acts as a mediator:
It communicates with all e-payment systems through their
wrappers.

In summary, at this stage, we divided the service-to-be PTA
component into two parts: an administration part and a wrapper
part. The administration part provides a capability of configu-
ration and customization of the PTA service, while the wrapper
part provides a PTA-service template that can be configured and
customized. This stage is an intermediate step of adopting Web-
services technique. While the compatibility with the emerging
Web-services standards can be claimed by the architectural
model in this stage, limited benefits are derived from such a
solution. First, each PTA-service wrapper still implements a
proprietary version of common services, such as logging in
and notifications. Second, since each PTA-service wrapper is
built on top of each individual e-payment system, the reusability
of the PTA-service wrapper remains limited. Third, no central
management of services is provided, such as monitoring and
load balancing.

We used the same strategy to construct the PTA service
for four organizations, two of which had similar e-payment
systems. Therefore, we divided them into three categories, as
shown in Fig. 3. The average development time for the first
organization of a category was one month by two developers.

The development time for the second task in the same category
was two weeks by two developers.

In this phase, each Web-service-enabled PTA service has
published interfaces that can be tested over different appli-
cation implementations underneath. Adopting Ant [1] script
to automate the test process in addition to the building
process, we ran the same set of test suites of the PTA ser-
vice against different e-payment systems through different
configurations.
Stage 3—Web-Services-Oriented Stage: As we accumulated

experience of building a customizable PTA Web-service com-
ponent at the second stage, we were ready to construct a
PTA-service component into a stand-alone Web service. The
architectural model of the project was redesigned, as illustrated
in Fig. 4. An integration bus is still used as the common
communication channel for all applications. However, we built
a stand-alone PTA Web service that is shared by all e-payment
systems, either existing ones or future ones. As shown in Fig. 4,
a PTA Web service is constructed as a self-contained and well-
defined Web service, which is accessible via the integration bus
by all e-payment systems. If needed, each e-payment system
registers itself at the PTA Web service in order to obtain PTA
services. Users are unaware of the existence of the PTA service
and only access the e-payment systems as before. When the
PTA service is needed, the corresponding e-payment system
will prepare an HTTPS request to the PTA Web service and
obtain an authentication result for further operations. As shown
in Fig. 4, a user is not aware of the existence of the PTA service.
Instead, he/she accesses an e-payment system to obtain PTA
service.

As shown in Fig. 4, published by a set of interfaces defined
in WSDL, the PTA Web service consists of three internal com-
ponents: 1) a PTA-services component; 2) an administration-
support component; and 3) a thread-management component.
The PTA-services component provides pass-through authen-
tication functionality, such as checking incoming user and
payment-transaction credentials.

The administration-support component handles the registra-
tion of e-payment systems, as well as the configuration and
customization of the basic PTA service in according to specific

ZHANG et al.: TOWARD A SERVICE-ORIENTED DEVELOPMENT THROUGH A CASE STUDY 961

e-payment systems. Separated from the PTA-services compo-
nent, the administration-support component not only enables
clients to dynamically adjust the authentication criteria for each
specific e-payment service but also implements some common
services (e.g., notification and logging services) for the PTA
service. As shown in Fig. 4, there is only one PTA Web service
shared by all e-payment systems; therefore, all e-payments
systems have to register to the PTA Web service before utilizing
its services. Typically, the secret key of a specific organiza-
tion has to be stored in the PTA Web service. Recalling the
ASP model shown in Fig. 1, most of the organizations adopt
our ASP solution, where application services are handled at
a centralized location. Our new architectural model enables
a hierarchical structure of the central server site. The PTA
service is extracted from e-payment systems and set up as an
independent Web service, which can reside on another server
machine. Thus, the credential information can be protected by a
dedicated layer.

Another critical component in the PTA Web service is a
centralized-service-management unit, which provides system-
level utility services, such as thread management and monitor-
ing services. In our project, we call it a “thread-management”
module, as shown in Fig. 4. Since the PTA Web service serves
multiple e-payment systems simultaneously, it is essential to
the success of the PTA Web service on how to guarantee the
synchronization of different threads of operations, together with
the load-balancing facility, to enhance performance and scal-
ability. The service-management component can also provide
additional services, such as message-broker functions that as-
sist translation between application-specific data formats. As a
result, this central component facilitates the applications toward
an ultimate ASP model.

As shown in Fig. 4, inside of the PTA Web service, the
PTA service acts as a container that supports multiple in-
stances to perform load balancing. In our practice, the PTA
service is deployed onto an application server, whose cluster-
based load-balancing facility supports the functionality. The
administration-support and thread-management components
are shared by all PTA-service components. Furthermore, the
administration-support and thread-management components
can each contain a primary component and a secondary com-
ponent for failing over in case of outages. Such a design can
further enhance the scalability, reliability, and fault tolerance of
the PTA Web service.

As shown in Fig. 4, for new e-payment systems that require
the PTA service, we just embedded the code to access the
PTA Web service according to its interfaces defined in WSDL
(more detailed discussions about building a Web application
using Web services as components will be described in the
next section). For existing e-payment systems that need to
add the PTA service, a simple wrapper will be added, which
handles the communications with the PTA Web service via
SOAP messages. In this way, the original e-payment legacy
systems are largely intact and reused.

This architectural model offers a certain degree of ex-
tensibility and reusability for the PTA service. Several new
e-payment systems were implemented by plugging-in the inte-
gration bus and automatically reusing the PTA Web service. In

addition, several legacy e-payment systems were successfully
plugged into the integration bus through corresponding wrap-
pers to reuse the same PTA Web service. As we developed
and deployed various e-payment systems, either new or old,
we encountered some new requirements to the PTA service,
such as adding new notification methods after the authentica-
tion process is complete. Instead of modifying any e-payment
system, we upgraded the PTA Web service and redeployed it at
some midnight time. The changes were automatically applied
to all e-payment applications, without even known by any e-
payment system. While we enabled the PTA service to more
e-payment applications, we even added to the generic PTA
Web service a new authentication approach through a variant
SHAH1 [32] digital-signature approach. The original request
came from one particular organization. After we implemented
and integrated the approach into the generic PTA Web service,
this new ability became reusable to all previously registered
e-payment applications.

In summary, the major differences between the architectural
model in Fig. 4 and that in Fig. 3 are threefold. First, the
wrapper between an e-payment system and the PTA Web
service becomes very thin, meaning that it does not contain
any business logic regarding a PTA service. Instead, it acts
merely as a proxy of the remote PTA Web service for the
corresponding e-payment system, so that any e-payment system
can access the common PTA Web service in a standard manner.
Second, a stand-alone and self-contained PTA Web service is
established containing any PTA-related business logic. This
common PTA Web service can be shared and reused by any
e-payment system. Any upgrade in the common PTA Web
service can be automatically applied to all registered e-payment
systems. Third, utility modules are implemented in the PTA
Web service, such as load balancing and thread management.
These utility services can enable higher scalability of the
PTA Web service while providing better performance and
management.

We implemented the PTA service for six organizations in this
stage: three of them had legacy e-payment systems and the other
three organizations request the whole package of e-payment
system including the PTA service. It took us two months by two
developers to develop the PTA Web service. In average, each
legacy e-payment system took us one month by one developer,
to adjust the legacy e-payment system to utilize the PTA Web
service. For each of the new e-payment systems, the time, on
average, to develop the code to utilize the PTA Web service
was three weeks.

In this phase, test cases were designed against different Web-
service components. The test cases were utilized and reused for
newly plugged-in components.

IV. WEB-SERVICES-ORIENTED ENGINEERING MODEL

After intensively implementing and deploying the 12 PTA
engagements, we did not see immediate contracts on the to-do
list. Upon predicting that more PTA engagements are forthcom-
ing, we decided to reexamine the engineering model used in
the project. By engineering model, we mean the procedure of
constructing a new e-payment system using the published PTA

962 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 37, NO. 6, NOVEMBER 2007

Fig. 5. Web-services-oriented engineering and architecture.

Web service or constructing a PTA Web service. Our goal is to
construct an architectural model that can be reused to guide the
design and development process of a Web application utilizing
Web services as components.
Web-Services-Based SOA: The typical architectural model

of Web application is a three-tier model [31]: front-end,
middle tier, and back-end tier. The front-end tier manages
interface presentations and Web-page input/output; the mid-
dle tier contains business logic; and the back-end tier stores
data in databases. Using this three-tier model, considerations
and compositions of Web-service components are mainly con-
ducted at the middle tier.

Based upon the experiences gained from the project, we
adjusted the three-tier model into a Web-services-based SOA
model, as illustrated in Fig. 5. A Web-services-based Web-
application design is organized as a three-tier structure: front-
end, Web-services integration, and component repository. The
front-end tier represents the interface of the application to
clients. The component-repository tier contains software com-
ponents that are needed for the application, exposed with
Web-services interfaces. One Web-services-integration tier is
used as a separate layer where components are integrated and
plugged-in.

As shown in Fig. 5, each Web-service component in the
repository exhibits another three-tier structure. Based upon the
typical three-tier architectural model and some most recent Web
technology, such as The Java 2 Platform, Enterprise Edition
(J2EE) [16], our previous research yielded a Web-application
architecture that is oriented to exposing Web services [44],
[45]. As shown in Fig. 5, the internal architectural model
of the PTA Web service is, in turn, divided into three tiers:
front-end tier, Web-services tier, and back-end tier. Comparing
with the traditional three-tier model, the front-end tier remains
the same; the back-end tier contains the business-logic tier
(i.e., middle tier), as well as the persistent tier (i.e., database
tier); a new Web-service tier is introduced as an independent
tier. The concept of application server in J2EE hides database
details from Web-application developers. Therefore, from a
software developer’s perspective, the traditional middle tier
and the database tier can be combined, thus, to simplify de-
velopment considerations. The newly introduced Web-service
layer enables a Web-service component to become a self-
contained Web-application system associated with well-defined
Web-services interfaces. The ad hoc industry standard WSDL
[41] is used to define the Web-services interface, and SOAP
is adopted as the information-exchange tool between the Web-

services layer and the front-end and back-end tiers, respec-
tively. To enable higher reusability, the three tiers (front-end,
Web-services, and back-end tiers) of a component could be
independently stored as three types of assets in the compo-
nent repository, so they can be reused to compose complex
and extensible applications. In practice of this project, for
simplicity, we store the whole three-tier application as one
component.

This hierarchical architectural model facilitates the integra-
tion of Web services as components, by providing a joint
point for gluing Web services together. First, the model pro-
vides guidance on not only the application development uti-
lizing Web services as components but also the application
development serving as Web-service components. Second, this
architecture implies that the system design starts from the
system requirements’ analysis and transformation into Web-
services tier design. Third, this model proposes a practical
Web-services-centered model, which will benefit organiza-
tions by accumulating Web-services component repository for
future uses.
Engineering Services-Oriented Applications: Based on the

architectural model and experiences from the case study, we
formed an engineering process of developing Web-services-
based system. Three essential steps are identified: 1) identify
which Web service to use; 2) use the WSDL specification of
the Web service to develop code to bind the Web service; and
3) use the WSDL specification of the Web service to develop
code to invoke the Web service.

Using our project as an example, the process of engineering a
PTA-based e-payment system starts from elicited requirements.
Instead of starting right away to design every needed com-
ponent, we started from considering available Web-services
composition. Being aware of the PTA Web service existing in
the component repository, we focused on how to utilize the PTA
Web service. Our strategy was to embed code to access the
PTA Web service according to its interfaces defined in WSDL.
Since the PTA Web service is accessed via SOAP messages, the
e-payment system needs to be able to generate SOAP requests.
Similarly, since the replies from the PTA Web service are in
the format of SOAP messages, the e-payment system needs to
be capable of parsing SOAP replies. In one word, the newly
constructed e-payment systems need to have the ability of
handling SOAP communications.

We further summarized a Web-services-based application-
development process into three phases, as depicted in Fig. 6.
The initial phase is the collection of requirements, followed
by the formalization of business requirements as a set of Web-
service specifications in WSDL. This phase is basically human-
intensive but can be facilitated by some WSDL editing tools. In
our project, we wrote our own editor tool to generate WSDL
interfaces.

The second phase contains two parallel development
processes focusing on the front-end and the back-end, respec-
tively. Engineers can work on the two processes independently
and separately, both on the basis of the output of the first
phase as contracts. Tools can provide support for the effi-
cient production of each process. Our previous work yielded
a J2EE-based Web-application code generator (WGenerator)

ZHANG et al.: TOWARD A SERVICE-ORIENTED DEVELOPMENT THROUGH A CASE STUDY 963

Fig. 6. Web-services-oriented engineering process.

[44], [45], which was used in this project to automatically
generate significant part of code, both in the front-end and the
back-end. The back-end in-memory simulation templates help
generate in-memory back-end support for the front-end tier; so
that, the front-end can be tested independent of the back-end
development. The back-end test case templates help generate
test cases for the back-end tier; so that, the back-end can be
tested separately as well.

The third phase also contains two parallel parts. The first
part contains four steps. The first part is the integration and
deployment of the Web application with normal Web-browser
interfaces. The front-end and back-end tiers are integrated
through the Web-service interfaces. Integration tests are fol-
lowed accordingly. The second part is the deployment of the
Web application with Web-service interfaces, together with the
corresponding Web-service test. This part can be extended from
the test of the back-end tier directly. Fourth is the management
of services. These four steps complete a life cycle of a solution
development.

The second part is to expose some back-end functionalities
as Web services, which, in general, is composed of five steps:
1) identify the functionalities to be turned into a Web service;
2) define the interfaces of the Web service; and 3) organize
internal implementation of the Web services.

V. USE CASE DISCUSSIONS

Project Efforts Analysis: Table I summarizes the efforts that
we spent on each task throughout the case study. As shown in
Table I, in the first stage of end-to-end integration stage, we
performed two tasks in building a PTA service into two legacy
e-payment systems. In the first task, we did not consider much
of the reusability aspect, and we took a lot of time gathering

and eliciting requirements for a PTA service. It took two-person
months. The second task is similar to the first task, so some
development time was saved. However, it took time to refractor
the PTA service into a component. As a result, the time spent
was the same as that for the first one.

Tasks 3–6 belong to stage two—Web-services-enabled stage:
all four tasks built a Web-services-enabled PTA service for
four legacy e-payment systems divided in three categories.
Building time for the first e-payment system in each cate-
gory was the same as two-person months. The reason is that
for each e-payment system, constructing different facades of
the PTA service took almost the same time to adjust to the
specific requirements and environments of each category of
e-payment system. Meanwhile, the time spent on the trial of
Web-services technology was also significant. Thus, the efforts
were almost the same as those spent in the first stage. The build-
ing time for the second e-payment system decreased to half due
to reuse.

Tasks 7–12 belong to stage three—Web-services-oriented
stage, after a PTA Web service was built. Three tasks (i.e., tasks
7–9) enable three legacy e-payment systems to utilize the PTA
Web service, and the other three tasks (i.e., tasks 10–12) built
the PTA Web-service invocation engine in three newly built
e-payment systems. The time spent on the former three tasks
was one-person month, and the time spent on the latter three
tasks was three-person weeks. We can see that, after the PTA
Web service was created, the time spent on building the engine
in e-payment systems dropped significantly.

From our case study, we also observed that the lack of
standardization and a structural model of Web-services-based
SOA and a Web-services-oriented engineering process pre-
vented quick adaptation and slowed down the transition toward
a Web-services-based SOA within an enterprise application.
Rather than a one-step direct transition, the process exhibits a
sequence of three stages: end-to-end integration stage, Web-
services-enabled stage, and Web-services-oriented stage. As
we discussed in the case study, each stage is triggered by
the introduction and acceptance of a new architectural model.
Meanwhile, each stage is characterized by an architectural-
model adoption curve. The overlay of multiple adoption curves
defines the overall adoption of SOA.

As of now, we find ourselves in both the Web-services-
enabled stage and Web-services-oriented stage, which is de-
fined by a relatively quick adoption cycle, but realizes only
a portion of the possible benefits. For some of the deployed
e-payment systems, it is likely that we will still stay in the
second stage due to the consideration of decreasing budget and
time. For the new e-payment projects and some deployed sys-
tems with additional budgets, we will adopt the Web-services-
oriented strategy.
Experiences and Lessons Learnt: Based upon the experi-

ences gathered from the project, we will now answer the
research questions that we raised at the beginning of the case
study.

Benefits from adopting the concept of Web services: At
each stage of this project, we analyzed the issues and chal-
lenges with which we faced and examined what solutions the
concept of Web services can provide. As shown in our case

964 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 37, NO. 6, NOVEMBER 2007

TABLE I
EFFORTS SPENT ON EACH TASK OF THE CASE STUDY

study, the concept of Web services helps us solve all the
problems. Here, we will summarize the benefits that the concept
of Web services brought to our project in the following six
aspects: 1) service integration; 2) testing; 3) maintainability;
4) security; 5) reusability; and 6) central management.

1) Service integration: In the first phase, a PTA service
is embedded in every specific e-payment application;
therefore, the PTA service has low reusability. In the
second phase, every PTA service generally possesses the
same service APIs; therefore, the reusability is higher
for the similar types of supportive e-payment systems.
However, since each PTA service is customized to spe-
cific e-payment system, its ubiquity is limited. In the
third phase, the PTA service is implemented as a Web
service. Its functionality is defined and fixed at the very
beginning, and the communication interface between the
PTA Web service and the e-payment system is also pre-
defined. Therefore, the integration between the PTA Web
service and an e-payment system is easy and simple. In
addition, the PTA Web service can be considered as a
reusable asset that can be combined with other compo-
nents in ways not conceived by the originators. Develop-
ers will benefit from new applications being developed
more quickly as a result of these kinds of reusable Web
services.

2) Testing: In our case study, we examined the feasibility
to perform testing in different stages. In the first phase,
since the PTA functionality is embedded into each in-
dividual e-payment system, reusability of test cases of
PTA functionality is limited. In the second phase, each
PTA-enabled e-payment exhibits the same PTA service
interface; thus, testing cases for the PTA service can be
performed upon every system. In the third phase, since
the PTA service is constructed into a PTA Web service

to be shared by every e-payment system, testing over the
PTA service can be conducted at one centralized place
and does not have to be repeated over every e-payment
system. Therefore, Web-services-based SOA facilitates
the testing process.

3) Maintainability: In the first phase, since the PTA service
has high coherence with the integrated e-payment sys-
tems, maintenance has to be conducted on each system
basis. In the second phase, since the only difference
between different PTA services exist in the different
invocations over corresponding e-payment systems, some
changes on one PTA-service case can be easily deployed
to other PTA-service cases. In the third stage, since
all PTA-service instances are managed in a centralized
manner, maintenance becomes much easier.

4) Security: The separation of a Web service from its invoca-
tion environment enhances security. As in our case study,
each e-payment system has its own security protection.
Isolating the PTA service as a Web service and placing
it on a separate server adds one more layer of security
safeguard to the sensitive information contained in the
PTA Web service as well as e-payment systems.

5) Reusability: In the first stage, the code of the PTA service
is tightly coupled with corresponding e-payment systems;
therefore, its reusability is limited to low-level functional
segments. In the second stage, the reusability of the PTA
service extends to the whole service component if the
invocation environment (i.e., the e-payment system) is the
same. However, reusability is limited to manual instal-
lation and redeployment of the PTA-service component.
In the third stage, the PTA service is implemented as a
self-contained Web service. Each e-payment system can
independently invocate its service. Moreover, since the
PTA Web service is accessible via XML-based SOAP
messages, an e-payment system implemented using

ZHANG et al.: TOWARD A SERVICE-ORIENTED DEVELOPMENT THROUGH A CASE STUDY 965

different languages and running on different platforms
can still reuse the same service.

6) Central management: In the first stage, any change to
the PTA service has to be applied to every PTA-service
instance that needs it. In the second stage, changes to
a category of PTA service can be applied once and
redeployed to the same category of integrated e-payment
systems. In the third stage, since the PTA service is
implemented as a Web service, any change to the PTA
service only has to be conducted at the PTA Web-service
site once and be applied to every e-payment system that
uses the PTA Web service.

Necessity of Web-services-based SOA: A Web-services-
oriented application development is twofold: 1) develop an
application utilizing Web services as components and 2) build
an application that exposes part or all of the functionalities as
Web services. The first style focuses on quickly incorporating
existing Web services into new applications; the second style
focuses on building reusable Web services for future uses. As
we illustrated in our case study, a new architectural model will
facilitate Web-services-oriented Web-application development
and Web-services construction.

From our case study, we found that our Web-services-
based SOA model has the following four merits that facilitate
Web engineering: 1) developer roles; 2) return on investment;
3) code mobility; and 4) parallelism in development.

1) Developer Roles: Our architectural model enforces lay-
ered development, i.e., development is distributed to
multiple teams. Each team has a set of specific roles
identified for developers, with each role requiring a set
of skills. For instance, the service layer needs developers
that have experience in data formats, business logic,
persistence mechanisms, and transaction control. A front-
end developer has to be familiar with the technologies
such as JSP, HTML, and Struts tags. To the extent that
developers can specialize, they will excel at their craft in a
particular layer of the application. Lower-level developers
can be assigned to focus on specific development tasks.
For example, an architect was in charge of designing
the service layer and the integration at the service layer,
while a JSP developer was assigned to the front-end
development task.

2) Return on Investment: The isolation of the Web-service
layer and the engineering of the service layer has the
benefit of a better return on the investment made in the
Web-application development. Our case study examined
two options to implement the PTA service. First was de-
veloping the PTA service to be embedded into e-payment
applications; second was developing the PTA service as
a separate Web service. Our case study shows that the
latter Web-services solution outlives the original applica-
tion life cycle. In our project, the constructed PTA Web
service has been reused for newly developed e-payment
systems without individual changes and redeployment.
As shown in Table I, excluding the experiences earned
along with the list of tasks, the efforts of establishing a

customized PTA service was decreased from the original
two-person months to 0.75-person months.

3) Code Mobility: The separation of the Web-services layer
offers location transparency; therefore, code mobility be-
comes a reality. The lookup and dynamic binding be-
tween the PTA service and an e-payment service means
that the client does not care where the Web service is
located. Therefore, the client has the flexibility to move
services to different machines or to move a service to an
external provider.

4) Parallelism in Development: The benefit of multiple
layers means that multiple developers can work on those
layers in parallel and independently. Developers commu-
nicate using interface contracts at the start of a project
and are able to create their parts independently of one
another.

Pathway of transforming to a Web-services-based SOA:
As shown in the case study, due to budget and time-frame
requirements, transformation from an application-oriented ar-
chitecture to a Web-services-based SOA normally cannot be
realized in one step. Instead, a three-stage pathway is more
realistic: 1) end-to-end integration; 2) Web-services-enabled
stage; and 3) Web-services-oriented stage. This pathway can be
applied to other projects and organizations for guiding a smooth
transformation.

From this case study, we learned that the code modular-
ization and code-by-interface are two critical strategies that
facilitate Web-services identification and construction. If the
code is well designed following the common object-oriented
approach considering information hiding and encapsulation
(e.g., different modules only communicate with each other via
message passing), it is easier to transform some functionalities
of an application into Web services. Meanwhile, another object-
oriented design strategy of design-by-interface [3] was proved
to be highly valuable in our case study. To a certain degree,
changing a component into a Web service implies changing its
interface definition into one that is defined using Web-services
definition language (e.g., WSDL). Therefore, if a component
is well designed and developed with clear interface definitions,
changing it into a Web service becomes much easier.

The wrapper and mediator design patterns [11] were proved
to be practical in our case study. These two patterns help
to identify what needs to be placed into the administration
component and what needs to be left in the generic PTA-service
component. They help us promote loose coupling between the
administration component and individual PTA services, thus,
enhance the flexibility and usability of the PTA service.
Limitations: In this case study, we adopted a narrow defin-

ition of Web services, which has an implicit assumption that
Web services means SOAP + WSDL + UDDI. This definition
reflects only the functionality of Web services. Most stakehold-
ers, however, now agree that it is imperative for successful
Web services to be trustworthy, which require much broader
attributes such as reliability, security, trust, fault tolerance, and
orchestration [43]. There are several ongoing efforts aiming at
addressing these aspects. For example, two software-industry
giants, IBM and Microsoft, combine their efforts and propose

966 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 37, NO. 6, NOVEMBER 2007

WS-Security [40] standard, which can be used to accommodate
a wide range of security models and encryption technologies.
For another example, BEA, IBM, and Microsoft’s Business
Process Execution Language for Web Services [5] is a program-
ming abstraction that allows developers to compose multiple
synchronous and asynchronous Web services into an end-to-
end business flow. However, as aforementioned, the goal of this
case study was to build a PTA Web service that can be used by
different e-payment systems, which was the first step toward a
real Web-services-oriented e-payment system. Therefore, this
case study focused on exploring a way to turn part of the
functionalities of a system into a Web service. In other words,
in this project, we did not consider how to make the PTA Web
service trustworthy. Toward our ultimate goal of turning the
entire e-payment system into a Web service, we will have to
weave in considerations about trustworthiness attributes.

It should also be noted that, for our Web-services-enabled ar-
chitectural model (i.e., shown in Fig. 4) to work, it is necessary
that the e-payment applications that rely on the PTA service
are aware of the “ontology” used by the PTA Web service
defined in WSDL. In other words, every e-payment application
using the PTA Web service will be coded in such a way that
it knows the names of the operations and their associated
parameter types. This is, as a matter of fact, the limitations of
the WSDL; there are ongoing efforts in the area of semantic
Web-enabled services aiming at providing means for relaxing
this “common ontology” assumption [22]. However, this case
study did not consider the semantic meaning of Web-services
interfaces.
New Research Issues Revealed: Our case study reveals a

new research issue regarding Web-services construction. The
literature of current efforts on creating a Web service focuses
on how to build its functionality, how to define its interfaces
using standard WSDL, how to compose it using other published
Web-service components, how to publish it, and so on [5],
[6], [9], [14], [15], [22], [30]. In other words, these efforts
imply that the process of constructing a Web service is one that
defines the interfaces of a Web application using specific Web-
services description languages (e.g., WSDL) and publishes it
using standard language (e.g., UDDI). Our case study points
out that, to enable a Web service to serve different users simul-
taneously, the Web service itself has to weave in considerations,
such as parallel processing and load balancing. Although these
requirements exist for generous Web-application systems, the
current technologies do not carry sufficient facilities to support
them in the context of Web services. For example, since Web
services are hosted by corresponding service providers and
are executed through remote invocation via the Internet, load
balancing of Web services has to consider dynamic availability
and reliability of Web services. These issues apparently require
further research efforts.

In addition, to enhance the usability of a Web service for
different users, the Web service should have a certain degree
of flexibility to serve different users. Our solution was to build
into our PTA Web service as an administration module, so
that, the PTA service can be configurable and customizable
for different organizations. However, considering that this con-
figuration and customization requirements might be applica-

ble to a lot of Web services, maybe it should be considered
and designed in a more generic way. In other words, we
predict that a generic Web-services platform, which is anal-
ogous to the application-server platform to Web applications
[23], should be established as a common running environment
for Web services. This Web-services platform should provide
system-level utilities, such as load balancing, configuration, and
customization.

As our PTA Web service is used by multiple e-payment
systems, it appeared that, at some peak traffic time, the PTA
Web service had too heavy load, and its availability was lowered
down for some registered organizations. Although our PTA
Web service included a load-balancing component, it seemed
that a single instance of the Web service could not afford the
heavy loads. Our solution was to provide a repository of mul-
tiple PTA Web-service instances to support increasing service
requests. Therefore, our case study points out a new research
issue of Web services. Since a Web service is a published Web
application that can be searched and used by any application on
the Internet, it has to consider how to maintain its availability
during heavy request loads. One possible solution is to auto-
matically breed new instances of the Web service when needed
and automatically annihilate unnecessary ones. However, how
to effectively and efficiently monitor and manage dynamically
generated Web-service instances remains a challenge.

VI. RELATED WORK

It has been extensively accepted that applying the con-
cepts of Web services and SOA in business-to-business (B2B)
applications leads to the future of business on Internet.
However, how to adapt the traditional application-oriented
software-engineering methodologies to the services-oriented
paradigm remains a challenge [27].

Radeka [29] reports experience in implementing a Web-
service project in 90 days. Four elements are identified
as critical aspects for delivering a successful Web-service
project: scenarios, business-process modeling, carefully scoped
components, and a flexible architecture- and standards-based
interfaces. Sikka [34] also identifies open challenges for
services-oriented data management: Web-service technology,
model-driven development methodology, and service platform.
Kim et al. [19] conclude that B2B framework standards can
facilitate interoperability. Lee et al. [20] emphasize the im-
portance of securing e-Business systems and reviewed current
techniques and standards for securing knowledge-management
systems.

A variety of research work has been conducted to expe-
dite and automate the development of services-oriented Web
applications. Architecture-based or so-called model-driven
methodology has been used to simplify and automate the de-
velopment of Web applications. Many researchers and prac-
titioners have been focusing on extending existing models
to serve Web services-specific features. Brambilla et al. [4]
report an industrial experience in using Web services to in-
tegrate both data- and process-intensive Web applications.
Their work focuses on visual modeling and declarative de-
scription of integration of traditional data sources with Web

ZHANG et al.: TOWARD A SERVICE-ORIENTED DEVELOPMENT THROUGH A CASE STUDY 967

services. Proposing a set of primitives, they extend the Web
modeling language to model Web-services-oriented integration.
Quartel et al. [27] propose a conceptual model for service-
oriented design, applying a modeling language: interaction
system-design language derived from distributed computing.
Stojanovic et al. [36] propose an SOA modeling and design
approach based upon a concept of “service component” and
UML modeling language. Ganesh et al. [12] propose a mul-
titier SOA-based framework-supporting multiple channels. In
contrast with their work focusing on conceptual modeling,
our project proposes a practical services-oriented architectural
model to guide the design and development of services-oriented
Web applications. We used our own code generator (WGenera-
tor) [44], [45] to generate services-oriented code.

Yang [42] proposes a concept of “service component” for
Web-services composition and specialization. A service com-
ponent contains two parts: interface specification and construc-
tion specification. While his work presents an abstract approach
for specifying service components for using as a packaging
mechanism for Web-services composition, this paper focuses
on how to turn an existing component into a services-enabled
component.

From the loosely coupling requirement of Web-services-
based design, Pasley [25] conclude that a WSDL-first approach
should be utilized for Web-services development. Our approach
starts from analyzing business requirements and design Web-
services interfaces. Therefore, our method matches Pasley’s
proposal.

Shaiva [33] proposes a services-oriented adaptive-
component architecture, which utilizes an “adapter” mech-
anism to support adaptive services-oriented components. An
iterative approach is proposed to realize a phased migration
of legacy systems. Comparing to their work, we use an
autonomous administration module inside of the PTA Web
service to allow dynamic user adaptation.

Wieringa et al. [39] propose design guidelines on func-
tional decomposition toward modular Web-services architec-
ture. Papazoglou and Yang [24] propose functional- and
nonfunctional-service-design guidelines for Web services and
business processes. In their methodology, a business process
is defined as a set of collaborative Web services. However,
although there are a variety of principles about Web-services-
oriented design and development, there lacks widely accepted
design frameworks and architectural models.

Quartel et al. [27] propose a generic services-oriented de-
sign approach, which identifies generic design milestones and
assessing design conformance at different abstraction gran-
ularities. Four stages are identified: business-process speci-
fication, application-service specification, application-service
design, and application-service implementation. Contrasting to
their work, our three-stage approach illustrates to a practical
pathway migrating an application-oriented design to services-
oriented design. In addition, while their work proposes a
generic services-oriented design approach, our work proposes
an architectural model to guide a feasible services-oriented
design illustrated in an industrial case study.

Zhang and Yang [49] propose an approach in exposing
legacy-system functionality as Web services. Their approach

contains four steps: 1) service identification; 2) legacy-system
understanding; 3) agglomerative-clustering analysis; and
4) service packaging and integration. Their work focuses on
automatically extracting functionalities from legacy systems as
publishable Web services; this paper focuses on how to build
new functionalities as Web services so that legacy systems can
be left intact.

There is also numerous literature reporting experiences and
lessons from building systems using SOA. Dang et al. [7]
report experience in building Tele-Immersion, a teleconfer-
encing system using SOA. Baglietto et al. [2] report expe-
rience in deploying services-oriented technology in business
communities. They both report business-requirement analysis
and a tuned architecture to support stepwise deployment. Shan
report experience in constructing an SOA-based online e-bank
system. Rabhi et al. [28] report experiences of building an
SOA-based application for capital market. In contrast to their
case studies on applying SOA to design a new system, this pa-
per focuses on exploring a practical way to migrate an existing
system to an SOA-enabled system. In addition, we explore an
architectural model that guides the migration and development.

Finally, our previous research yields a two-tier model-view-
controller (MVC) architecture (TTMVC) for Web-application
development [44], [45]. Utilizing the popular MVC paradigm
for each application tier from the G front-end to the back-end
components and databases, our TTMVC clearly abstracts an
object-oriented component-layered structure for Web applica-
tions. This structured architecture provides a foundation for the
automatic code generation of Web applications. However, our
previous architecture was tailored for stand-alone Web appli-
cations and does not support Web services. The overlapping
on action layer between the front-end and back-end limits the
reusability of the back-end system as a Web service. In addition,
our previous architecture does not leave the space for out-of-
shelf third-party Web services to be plugged in applications.

VII. CONCLUSIONS

In this paper, we presented a real-life industrial case study
over an on-going project concerned with the design and de-
velopment of a PTA Web service for online e-payment appli-
cations. In accordance with how a PTA service is developed
and integrated with the corresponding e-payment system, our
strategies can be categorized in three stages: end-to-end inte-
gration stage, Web-services-enabled stage, and Web-services-
oriented stage. Derived from real-world industrial experiences,
this three-stage pathway can be applied to a broad range of
Web applications to guide smooth transformation from an
application-oriented design and development model toward
a Web-services-oriented model. Furthermore, the case study
contributes an engineering process that leads to practical Web-
services-oriented software development. New research issues
revealed by our case study are also reported.

We plan to continue to enhance our Web-services-based
SOA. Our future work will be focused on working toward an
engineering process on the basis of our architectural model
and constructing a system environment where all aspects of
our architecture-based development are supported. The ultimate

968 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 37, NO. 6, NOVEMBER 2007

goal of our future work intends to provide efficient production
of Web-services-supported Web applications. In addition, we
plan to investigate rapidly integrating application-service com-
ponents through advanced Web-services discovery and optimal
composition technology [48].

REFERENCES

[1] Ant, 2006. [Online]. Available: http://ant.apache.org/
[2] P. Baglietto, M. Maresca, A. Parodi, and N. Zingirian, “Deployment of

service oriented architecture for a business community,” in Proc. 6th IEEE
EDOC Conf., Lausanne, Switzerland, Sep. 17–20, 2002, pp. 293–304.

[3] G. Booch, I. Jacobson, and J. Rumbaugh, The Unified Modeling Language
User Guide. Reading, MA: Addison-Wesley, 1998.

[4] M. Brambilla, S. Ceri, P. Fraternali, R. Acerbis, and A. Bongio, “Model-
driven design of service-enabled web applications,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, Baltimore, MD, Jun. 14–16, 2005,
pp. 851–856.

[5] IBM Corporation, Business Process Execution Language for Web Services
(BPEL4WS), 2002. Version 1.0.

[6] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and
S. Weerawarana, “Unraveling the web services web: An introduction to
SOAP, WSDL, and UDDI,” IEEE Internet Comput., vol. 6, no. 2, pp. 86–
93, Mar./Apr. 2002.

[7] G. Dang, Z. Q. Cheng, S. Y. Jin, T. Yang, and T. Wu, “A service-oriented
architecture for tele-immersion,” in Proc. IEEE EEE, Hong Kong,
Mar. 29–Apr. 1, 2005, pp. 646–649.

[8] Y. Deshpande, S. Murugesan, A. Ginige, S. Hansen, D. Schwabe, and
M. Gaedke, “Web engineering,” J. Web Eng., vol. 1, no. 1, pp. 3–17, 2002.

[9] C. Ferris and J. Farrell, “What are web services?”Commun. ACM, vol. 46,
no. 6, p. 31, Jun. 2003.

[10] P. Fraternali and P. Paolini, “Model-driven development of web
applications: The autoweb system,” ACM Trans. Inf. Syst., vol. 28, no. 4,
pp. 323–382, 2000.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.
Reading, MA: Addison-Wesley, 1994.

[12] J. Ganesh, S. Padmabhun, and D. Moitra, “Web services and multi-
channel integration: A proposed framework,” in Proc. IEEE ICWS,
San Diego, CA, Jul. 6–9, 2004, pp. 70–77.

[13] A. Ginige and S. Murugesan, “The essence of web engineering man-
aging the diversity and complexity of web application development,”
IEEE Multimedia, vol. 8, no. 2, pp. 22–25, Apr.–Jun. 2001.

[14] N. Gold, C. Knight, A. Mohan, and M. Munro, “Understanding
service-oriented software,” IEEE Softw., vol. 21, no. 2, pp. 71–77,
Mar.–Apr. 2004.

[15] P. Holland, “Building web services from existing application,” AI J.,
pp. 45–47, 2002.

[16] J2EE, 2006. [Online]. Available: http://java.sun.com/j2ee
[17] JRun, 2006. [Online]. Available: http://www.macromedia.com
[18] JUnit, 2006. [Online]. Available: http://www.junit.org/index.htm
[19] D. J. Kim, M. Agrawal, B. Jayaraman, and H. R. Rao, “A framework

for the comparison of business-to-business e-service solutions,” Commun.
ACM, vol. 46, no. 12, pp. 317–324, Dec. 2003.

[20] J. K. Lee, S. Upadhyaya, H. R. Rao, and R. Sharman, “Secure knowledge
management and the semantic web,” Commun. ACM, vol. 48, no. 12,
pp. 48–55, Dec. 2005.

[21] MD5, 2006. [Online]. Available: http://www.ietf.org/rfc/rfc1321.txt
[22] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid, “Composing web

services on the semantic web,” Int. Journal Very Large Data Bases,
vol. 12, no. 4, pp. 333–351, Nov. 2003.

[23] R. Monson-Haefel, Enterprise JavaBeans. Sebastopol, CA: O’Reilly &
Assoc. Inc., 2001.

[24] M. P. Papazoglou and J. Yang, “Design methodology for web services
and business processes,” in Proc. 3rd VLDB-TES Workshop, Hong Kong,
Aug. 2002, pp. 54–64.

[25] J. Pasley, “How BPEL and SOA are changing web services development,”
IEEE Internet Comput., vol. 9, no. 3, pp. 60–67, May/Jun. 2005.

[26] PTA, 2004. [Online]. Available: http://www.mcpmag.com/columns/
article.asp?EditorialsID=761

[27] D. Quartel, R. Dijkman, and M. V. Sinderen, “Methodological support for
service-oriented design with ISDL,” in Proc. 2nd ACM Int. Conf. Service
Oriented Comput., New York, Nov. 15–19, 2004, pp. 1–10.

[28] F. A. Rabhi, F. T. Dabous, H. Yu, B. Benatallah, and Y. K. Lee, “A case
study in developing web services for capital markets,” in Proc. IEEE Int.
Conf. EEE, Taipei, Taiwan, R.O.C., Mar. 28–31, 2004, pp. 38–41.

[29] K. Radeka, “Designing a web services project for maximum value: The
90 day challenge,” in Proc. ACM Conf. OOPSLA Practitioners Rep.,
Seattle, WA, Nov. 4–8, 2002, pp. 1–10.

[30] J. Ray and A. Ramanujan, “Understanding web services,” IEEE IT Prof.,
vol. 3, no. 6, pp. 69–73, Nov./Dec. 2001.

[31] O. Robert, H. Dan, and E. Jeri, Client/Server Survival Guide. Hoboken,
NJ: Wiley, 1999.

[32] SHA1, 2006. [Online]. Available: http://www.w3.org/PICS/DSig/SHA1_
1_0.html

[33] V. Shaiva, “Designing adaptive components for a services oriented archi-
tecture,” in Proc. IEEE Int. Conf. ITRE, Newark, NJ, Aug. 11–13, 2003,
pp. 390–394.

[34] V. Sikka, “Data and metadata management in service-oriented architec-
tures: Some open challenges,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, Baltimore, MD, Jun. 14–16, 2005, pp. 849–850.

[35] SOAP, Simple Object Access Protocol (SOAP) 1.2, May 2003. [Online].
Available: http://www.w3.org/TR/soap12-part1/

[36] Z. Stojanovic, A. Dahanayake, and H. Sol, “Modeling and design of
service-oriented architecture,” in Proc. IEEE Int. Conf. Syst., Man,
Cybern., Hague, The Netherlands, Oct. 10–13, 2004, pp. 4147–4152.

[37] L. Tao, “Shifting paradigms with the application service provider model,”
Computer, vol. 34, no. 10, pp. 32–39, Oct. 2001.

[38] UDDI. Universal Description, Discovery, and Integration, UDDI
Specification Version 3, 2004. [Online]. Available: http://www.oasis-
open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

[39] R. J. Wieringa, H. M. Blanken, M. M. Fokkinga, and P. W. P. J. Grefen,
“Aligning application architecture to the business context,” in Proc. 15th
Int. CAiSE, Klagenfurt, Austria, Jun. 16–18, 2003, pp. 209–225.

[40] WS-Security, 2004. [Online]. Available: http://www-106.ibm.com/
developerworks/webservices/library/ws-secure

[41] WSDL. Web Services Description Language, 2004. [Online]. Available:
http://www.w3.org/TR/wsdl

[42] J. Yang, “Web service componentization,”Commun. ACM, vol. 46, no. 10,
pp. 35–40, Oct. 2003.

[43] J. Zhang, “Trustworthy Web services: Actions for now,” IEEE IT Prof.,
vol. 7, no. 1, pp. 32–36, Jan./Feb. 2005.

[44] J. Zhang and J. Y. Chung, “An architecture for building web service appli-
cations,” in Proc. ICWS, Las Vegas, NV, Jun. 23–26, 2003, pp. 265–271.

[45] J. Zhang and J. Y. Chung, “Mockup-driven fast-prototyping methodology
for web application development,” Softw. Pract. Exp. J., vol. 33, no. 13,
pp. 1251–1272, 2003.

[46] L.-J. Zhang, H. Chang, T. Chao, J.-Y. Chung, Z. Tian, J. Xu, Y. Zuo,
S. Yang, and O. Ao, “A manageable web services hub framework and
enabling technologies for e-sourcing,” in Proc. IEEE Conf. SMC, Tunisia,
Oct. 6–9, 2002, pp. 6–13.

[47] L.-J. Zhang, T. Chao, H. Chang, and J.-Y. Chung, “XML-based advanced
UDDI search mechanism for B2B integration,” Electron. Commer. Res.
J., vol. 1, no. 3, pp. 25–42, 2003.

[48] L. J. Zhang and B. Li, “Requirements driven dynamic services composi-
tion for web services and grid solutions,” J. Grid Comput., vol. 2, no. 2,
pp. 121–140, Jun. 2004.

[49] Z. Zhang and H. Yang, “Incubating services in legacy systems for ar-
chitectural migration,” in Proc. 11th IEEE Asia-Pac. Softw. Eng. Conf.,
Busan, Korea, Nov. 20–Dec. 3 2004, pp. 196–203.

[50] [Online]. Available: http://www.paypal.com

Jia Zhang (M’03) received the Ph.D. degree in
computer science from the University of Illinois at
Chicago, in 2000.

She is currently an Assistant Professor with the
Department of Computer Science, Northern Illinois
University, DeKalb, and also a Guest Researcher
with the National Institute of Standards and Technol-
ogy, Gaithersburg, MD. Her current research inter-
ests center around Services Computing, with a focus
on reliability, integrity, security, and interoperability.
She also has seven years of industrial experience as

Software Technical Lead in Web-application development. She has published
over 70 journal papers, book chapters, and conference papers.

Dr. Zhang is currently serving as an Associate Editor of the International
Journal of Web Services Research. She is Program Vice Chair of the IEEE
International Conference on Web Services (ICWS 2008 & 2007 & 2006). She
is a member of IEEE and the Association for Computing Machinery.

ZHANG et al.: TOWARD A SERVICE-ORIENTED DEVELOPMENT THROUGH A CASE STUDY 969

Carl K. Chang (S’79–M’82–SM’88–F’01) received
the Ph.D. degree in computer science from North-
western University in 1982. He is currently a Pro-
fessor and Chair with the Department of Computer
Science, Iowa State University, Ames. His research
interests include requirements engineering, software
architecture, and net-centric computing.

Dr. Chang is a founding member of the IEEE
International Requirements Engineering Conference
(RE), and served as the General Chair of ICRE 2000
and RE2003. He also chaired the steering committee

for the 2004 IEEE-CS/IPSJ International Symposium on Applications and
the Internet (SAINT) after serving as the Program Chair of SAINT2002 and
General Chair of SAINT2003. In 2005, he was the General Chair of the IEEE
International Conference on Web Services and IEEE International Conference
on Services Computing. In 2006, he was the General Chair of the IEEE
30th Annual International Conference Computer Software and Applications
Conference. He is also active in educational activities and spearheaded the
Computing Curricula 2001 project, which was jointly sponsored by the IEEE
Computer Society, Association for Computing Machinery, and the National
Science Foundation. He was the Editor-in-Chief for IEEE SOFTWARE in
1991–1994. He is a Fellow of the American Association for the Advancement
of Science and the 2004 President of the IEEE Computer Society.

Liang-Jie Zhang (M’99–SM’03) received the B.S.
degree in electrical engineering from Xidian Univer-
sity, Xi’an, China, in 1990, the M.S. degree in elec-
trical engineering from Xi’an Jiaotong University,
Xi’an, in 1992, and the Ph.D. degree in computer en-
gineering from Tsinghua University, Beijing, China,
in 1996.

He is currently a Research Staff member with
the Services Technologies Department, IBM T. J.
Watson Research Center, Yorktown Heights, NY. He
has been leading service-oriented architecture and

Web services for Business Consulting Services and Industry Solutions research
since 2001. He is the Founding Chair of the Services Computing Professional
Interest Community, IBM Research, and lead professional activities for IBM’s
services-computing discipline. In 2004 and 2005, he was the Chief Architect
of Industrial Standards with the IBM Software Group, where he played a
leadership role in helping define IBM’s strategy for industrial standards and
open architecture for service-oriented business solutions. He has filed more than
30 patent applications in the areas of e-commerce, Web services, rich media,
data management, and information appliances, and he has published more than
80 technical papers in journals, book chapters, and conference proceedings.

Dr. Zhang is the Chair of the IEEE Computer Society’s Technical Committee
on services computing and the Editor-in-Chief of the International Journal of
Web Services Research. He is the General Chair (2008 & 2006) and Program
Chair (2007) of the IEEE International Conference on Web Services (ICWS)
and the General Chair (2008 & 2006) and Program Chair (2007) of the IEEE
Conference on Services Computing (SCC).

Patrick C. K. Hung received the Ph.D. degree in
computer science from the Hong Kong University
of Science and Technology (HKUST), Hong Kong.
He was a Research Scientist with the Common-
wealth Scientific and Industrial Research Organi-
zation (CSIRO), Canberra, Australia, and was a
Visiting Assistant Professor with the Department of
Computer Science, Hong Kong University of Sci-
ence and Technology, Hong Kong. He also has prior
industrial experience in e-business projects in North
America and Hong Kong. Since 2000, he has been

serving as a panelist of the Small Business Innovation Research and Small
Business Technology Transfer Programs of the National Science Foundation,
USA. He is currently an Assistant Professor of business and information
technology with the University of Ontario Institute of Technology, ON, Canada.
He is currently collaborating with Boeing Phantom Works, Seattle, WA, and
Bell Canada’s Privacy Center of Excellence on security- and privacy-related
research projects in industry. He is the holder of a U.S. Patent 05-0176 Invention
Disclosure “Mobile Network Dynamic Workflow Exception Handling System”
with Boeing Corporation, USA. He has published more than 80 research papers
in different journals, conferences, workshops, and books.

Dr. Hung is the General Chair of the 10th IEEE International EDOC
Conference (EDOC 2006) “The Conference on Enterprise Computing,” and
the Program Committee Vice-Chair of the IEEE International Conference on
Services Computing (SCC 2007 & 2006). He is an Executive Committee
Member of the IEEE Computer Society’s Technical Steering Committee for
services computing and an Associate Editor/Editorial Board member in sev-
eral international journals such as the International Journal of Web Services
Research and the International Journal of Business Process Integration and
Management.

