
 
Fig. 1 Services-enabled scientific workflow development. 
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Abstract—Services computing technology enables 

scientists to expose data and computational resources 

wrapped as publicly accessible Web services. However, our 

study indicates that scientific services are currently poorly 

reused in an ad hoc style. This project aims to help domain 

scientists find interested services and reuse successful 

processes to attain their research purposes in the form of 

workflows. In contrast to existing interface-based services 

discovery approaches, this paper proposes a novel approach 

of proactively recommending services in a workflow 

composition process, based on service usage history. The 

underpinning is a People-Service-Workflow (PSW) network 

that models existing scientific artifacts, services and 

workflows, and their past usage relationships into a social 

network. Various social network analysis techniques are 

applied to discover hidden knowledge accrued. A 

prototyping search engine has been developed as a proof of 

concept, and is seamlessly integrated as a plug-in into the 

Taverna workbench, a widely used scientific workflow 

management tool. 
 

I. INTRODUCTION 

To accelerate data-intensive scientific exploration, many 

disciplines including biology and astronomy have adopted 

workflows [1] as data-pipeline orchestrators to design 

scientific applications. As illustrated in Fig. 1, a scientific 

workflow precisely describes a multistep procedure to 

streamline a composition of tasks (T1~T6) and the dataflow 

among them. Such a workflow may be collaborated among 

multiple scientists, e.g., scientist S3 handles tasks T5 and T6. 

Recently emerged services computing technology 

enables and encourages scientists to expose data and 

computational resources wrapped as Web services [2], so 

that they become publicly available to other researchers 

through standard interfaces. For example, BioCatalogue [3] 

has registered over 1,700 life science services. A scientific 

workflow thus may leverage published Web services as 

tasks to speed up workflow composition. For example, task 

T3 in Fig. 1 calls an external Web service from the Internet. 

Throughout this paper, we will use two terms 

interchangeably: Web service and service. 

The scientific world is an open community. Researchers 

often publish workflows to share experimental routines with 

colleagues as best practices. These colleagues either use 

those workflows unchanged or repurpose them to compose 

new ones. To facilitate domain scientists in finding available 

workflows, several domain-specific online repositories have 

evolved in recent years. For example, myExperiment [4] 

stores over 1,000 life science workflows. As shown in Fig. 

1, task T4 invokes a sub-workflow registered at a repository. 

As software reuse may occur at any granularity, here we 

focus on service- and workflow-level reuse. The term 

artifact will refer to either workflow or service. 

However, our recent network analysis study [5] over the 

workflows stored in myExperiment revealed that, the use of 

life science services is low (about 7%) and only several 

utility services are frequently used. In myExperiment, only 

280 of the workflows leverage one service or more; only 

179 operations from 118 services are ever invoked. 

The goal of this research is to study how to facilitate 

scientific artifact reuse. In contrast to the existing interface-

based services discovery approaches, we explore and 

leverage hidden knowledge implied from historical service 

usage data. Our hypothesis is that: related researchers’ past 

experiences are carried by the structure of the past use of 

artifacts. Such information may convince and guide domain 

scientists in using existing artifacts properly; therefore, we 

study the published scientific experiments and mine their 

implied knowledge. 

Our key approach is to model available scientific 

artifacts using social networks and leverage social network 

analysis to study their relationships and usage patterns. 

Social network analysis [6] refers to the techniques of 

mathematical and visual analysis of the nodes; while 

relationships are measured as various social relationship 

ties. To our best knowledge, this research is the first attempt 

to exploit social network analysis techniques to study 

relationships between artifacts, in addition to people-related 

relationship analysis, to mine hidden knowledge to facilitate 

2011 IEEE International Conference on Services Computing

978-0-7695-4462-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SCC.2011.120

48



 
Fig. 2 A motivating example. 

services-oriented scientific artifact reuse. 

We proposed a network-based People, Services and 

Workflows (PSW) framework in a services-oriented e-

science community, as a foundation to answer services 

discovery-related queries. We also implemented a 

prototyping framework named CASE – for information 

Collection, Annotation, Search and rEcommendation, as a 

plug-in to Taverna [7], a widely used scientific workflow 
management environment. 

The remainder of the paper is organized as follows. In 

Section 2, we use a motivating example to explain the 

technical challenges. In Section 3, we present our PSW 

network and associated techniques. In Section 4, we present 

the CASE framework. In Section 5 and 6, we present system 

implementation and preliminary experimental results, 

respectively. In Section 7, we discuss related work. In 

Section 8, we draw conclusions. 
 

II. MOTIVATING EXAMPLE AND CHALLENGES 

In recent years, we have assisted scientists in various 

domains, including astronomy and life science, in building 

scientific workflows. From the projects, we have observed a 

significant reason that may explain the scarcity of scientific 

artifact reuse, as explained using the following example. 

The workflow aims to automate a process for cancer 

researchers to diagnose tumor type by leveraging the 

microarray analysis [8] technique. The upper left part of Fig. 

2 shows its high-level workflow comprising three sequential 

tasks: task 1 extracts hybridization data from tumor 

samples; task 2 pre-processes the obtained hybridization 

data; task 3 builds a classification model. 

In contrast to the original in-house implementation by 

Shipp et al. [8], the right-hand side of Fig. 2 is our 

realization featuring artifact reuse. Six tasks pointed by 

arrows underneath represent invocation of four external 

services
1 ,2 ,3 ,4

 registered at BioCatalogue; the middle sub-

workflow is repurposed from a more generic workflow
5
 

registered at myExperiment. 

Our ability to develop this workflow depends on in-depth 

knowledge of available artifacts. For example, we selected 

from the same service provider the preProcessTrainingData 

service in the pre-processing sub-workflow and its 

subsequent PerformKNN service (a machine learning 

method K-Nearest Neighbor) in task 3 of Fig. 1. As another 

example, we duplicated the procedures of the general pre-

processing workflow
5
 to handle training data and test data, 

respectively (task 2 in Fig. 1). 

Life scientists, on the other hand, may not possess such 

experience. As a result, they may be reluctant to reuse 

existing artifacts from their peer organizations, since 

scientific artifacts usually carry complex application logic 

and require careful tuning. 

Thus, we strive to tackle two research questions in this 

project: 1) What implicit knowledge (usage patterns) may 

be automatically extracted from historical data to help 

scientists better understand existing artifacts? and 2) How to 

leverage such data to facilitate scientific artifact reuse? 
 

III. PSW NETWORKS 

Our main strategy is to model the published scientific 

artifacts using networks and leverage social network 

analysis to study and extract hidden knowledge. Since our 

aim is services-based artifact reuse, we will focus on the 

relations between published workflows and services. 

Meanwhile, human reputation and relationships are usually 

important for artifact selection. For example, given several 

candidate services with similar functional and non-

functional measurements, a scientist may select one 

provided by a past collaborating group. Therefore, we view 

our study space as a triple model: 

>=< WSPPSW
���

,, , where: 

P
�

 represents people involved in the lifecycle of 

scientific workflow development and usage. S
�

 and W
�

represent published scientific services and workflows at 

public repositories, respectively. 

Our task then turns into constructing the space, mining 

the relations among the three comprising elements in the 

space, and establishing a network-based People, Services 

and Workflows (PSW) framework. Note that although we 

focus on the interactions between the three dimensions in 

this project, the data structure is extensible for other 

dimensions to be included. 
 

                                                           
1 caArray service: http://array.nci.nih.gov/wsrf/services/cagrid/CaArraySvc?wsdl 
2 preprocessing service: http://node255.broadinstitute.org:6060/wsrf/services/cagrid/ 

PreprocessDatasetSTATMLService?wsdl 
3 SVM service:http://node255.broadinstitute.org:6060/wsrf/services/cagrid/SVM?wsdl 
4 KNN service:http://node255.broadinstitute.org:6060/wsrf/services/cagrid/KNN?wsdl 
5 http://www.myexperiment.org/workflows/964.html 
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Fig. 3 PSW space. 

A. PSW data models 

According to social network theory, structural relations 

between entities are often more important than their 

individual attributes [6]. Therefore, we study the implicit 

relations in the PSW space by analyzing the published data. 

In contrast to typical social networks [6] focusing on uni-

modal networks, the PSW space represents a multi-modal, 

multi-relational, and multi-featured network. 

As the high-level ontology diagram shown in Fig. 3, 

PSW space comprises three high-level node types: service, 

workflow and people. People may in turn be divided into 

various sub-categories according to their roles (such as 

composer, annotator, and user) on artifacts (workflow or 

service) organized in groups. As shown in Fig. 3, we also 

study finer-grained level of the node type service, as a 

service may expose multiple accessing points as operations. 

Using the common social network terminology [6], the 

nodes (called actors) can be denoted as: 

}...,,,,,{},,{ 21 nrrrR PPPWSWFPWSWFA ==  

Each node carries a rich set of metadata. For example, a 

workflow carries five categories of metadata: (1) basic 

information (workflowId, workflowTitle, workflowURI, 

currentVersion, description), (2) content information 

(workflowType, workflowTypeURI, createdOn, 

lastEditedOn, imageThumbnail, imageSVG, licenseType, 

licenseTypeURI, contentURI, contentType, contentValue), 

(3) annotation information stored in the format of arrays 

(tags, taggings, versions, reviews, comments, ratings, 

credits), (4) comprising components (inputs, processors, 

beanshells, outputs, links, coordinations), and (5) references 

(attributions, citations). We store each category of data in 

individual relations. Therefore, each node type can be 

represented as a relation: 

)__...,,__,__,_( 21 idMAidMAidMAidAAT m=  

where A_Mi_id (i=1-m) indicates the foreign key of the 

relation that stores the corresponding category of metadata 

for the node type. 

In other words, various categories of metadata of a node 

type are maintained separately, while only keys of each 

relation are maintained in the main workflow relation. Such 

a design not only ensures flexibility and extensibility of the 

node type; more importantly, it allows us to apply multiple 

levels of various join operations while ensuring performance 

and data consistency. 
 

B. Building PSW networks 

On top of the PSW space, a variety of networks can be 

built based on various kinds of relationships that may link 

different types of nodes together. For example, two different 

workflow-service networks can be built: one is based on 

their inclusive relationships (an edge exists if a service is 

invoked in a workflow), and one is based on their co-

ownership relationships (an edge exists if a workflow and a 

service come from the same research group). 

We started from building workflow-service relationships 

based on inclusive events, by examining the source code of 

published scientific routines. A structural connection can be 

dynamically built between a workflow and a service through 

code analysis. Leveraging XPath to iterate through all 

workflows, we can find all service invocations in each 

workflow. To ensure performance, only workflows that 

invoke at least one service will be included, and only 

services that are used by at least one workflow will be 

included. We will thus obtain a matrix Q that describes the 

inclusive relationships between workflows and services: 

mjmiqQ ij ≤≤≤≤= 0,0],[ , where: 

1=ijq  if workflow i contains service j. 

This matrix can be obtained using relational algebra 

operations over our PSW space. Given relations WP and 

WS, representing workflows and services, respectively, the 

matrix Q can be achieved by applying a series of relational 

algebra operations as follows: 

πWP.wp-id,WS.ws-id((πWP.wp-id,WP-Content.content( 
WP WP.wp-content-id=WP-Content.wp-content-idWP-Content)) 

WS.ws-id ∈ WP-Content.content(πws_idWS)) 
 

Such a relation is equivalent to the matrix Q: the set of 

all workflows and services represent the nodes; each row 

between a workflow and a service represents an edge in the 

graph. Relation Q can be viewed as a projection of the 

three-dimension space PSW on the >< WS
��

,  plane. Such 

projections allow users to view interested relationships only. 

We can derive two more relations, W and S, from Q as 

follows: 

mjiwQQW ij
T

≤≤=•= ,0],[ , where: 

wij = number of services shared by workflows i and j; wii 

= number of services in workflow i; 

njisQQS ij
T

≤≤=•= ,0],[ , where: 

sij = number of workflows where both services i and j are 

invoked; sii = number of workflows where service i is 

invoked. 

The three matrices illustrate workflow-service, 

workflow-workflow, and service-service relations derived 

from the service-level workflow usage history. Note that 

such relations each carry a base entity as a context. For 

example, the relation W is a workflow-workflow relation 

based on service usages; the relation S is a service-service 

relation based on their usages in workflows. 

Building indirect relations can be formalized as follows. 
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Table I. Summary of PSW networks built. 
Networks Descriptions 

W-S | S workflow-service based on service usages 
W-W | S workflow-workflow based on services 

S-S | W service-service based on workflows 

W-P | CP workflow-people based on composers 

W-W | CP workflow-workflow based on composers 

S-P | CP service-people based on composers 

S-S | CP service-service based on composers 
W-P | AP workflow-people based on annotators 

W-W | AP workflow-workflow based on annotators 

S-P | AP service-people based on annotators 

S-S | AP service-service based on annotators 
 

Table II. Queries that PSW networks can answer. 
Category  Example queries 

workflow-service How are different services used together in 
workflows? What types of workflows in which a 
service is usually used? 

service-service Are there many services collaborate with each 
other in workflows, and how? What are the key 
services in these collaborations? 

people-service How different groups of people use services, do 
they have any preference? 

people-people Do people share services/workflows, and how? 

people-workflow How different groups of people produce 
workflows? 

workflow-workflow Do workflows collaborate? 
 

We have three types of entities E1, E2 and E3 (an entity 

could represent people, service or workflow, PSWE ∈3,2,1 ), 

and two relations }1,0{: 211 →× EER
 
and

}1,0{: 322 →× EER . An indirect, 2-hop relation can be 

derived between 1E  and 3E  through a matrix 

multiplication }1,0{: 313 →× EER
 
where: 213 RRR •= . 

Assume E1, E2 and E3 refer to workflow, service and 

workflow, respectively. If 1R defines a relation “workflows 

invoke services” (relation Q) and 2R defines “services are 

invoked by workflows” (relation TQ ), then 213 RRR •=
 

defines an indirect relation between workflow and workflow 

through services (relation W). 

In summary, our data model allows us to explore various 

implicit relationships. For example, we also built workflow-

workflow relation based on people who develop them, and 

people who annotate them as users. After using relational 

algebra operations to obtain basic matrixes, we apply matrix 

operations to obtain derived matrixes. Table I summarizes 

the relationships we have built and their usability of 

providing different views of the PSW space. Throughout the 

paper, we will use the PSW networks as a generic term to 

refer to PSW networks together with all of its projections 

and derivations. 

In addition to undirected networks, we also built directed 

graphs over service operations. A directed link represents an 

invocation order between the operations on its two ends in 

some workflow. Such a graph depicts both intra- and inter-

workflow invocation sequences. 

 

C. Calculating network metrics and significant patterns 

After establishing the PSW networks, we calculated 

various metrics over them to comprehend the interaction 

patterns between people, services and workflows. 

Our approach builds on the rich tradition of calculation 

of centrality and prestige in social network analysis. For 

example, our metrics include degree centrality, betweenness 

centrality, PageRank value [9], and clique. Regarding 

degree centrality (popularity), in the PSW networks (e.g., 

W-S|S), we identify the highly used services and workflows 

that invoke more services based on the popularity of 

corresponding nodes. Regarding betweenness centrality, in 

the PSW networks, we examine how information flows 

through different services and workflows, aiming to identify 

the hinge services or workflows in the myExperiment. 

Regarding PageRank value, we study the degree of 

connection to nodes with high PageRanks. 

Through clique, we delimit a maximal complete 

subgraph of three or more nodes, all of which are directly 

connected to one another. Such metrics represent 

collaboration relationships at both workflow and service 

levels. Such collaboration relationships at service level 

imply association rules among services. 

Through these calculations, we aim to answer six 

categories of direct queries as summarized in Table II: 

workflow-service, service-service, people-service, people-

people, people-workflow, and workflow-workflow. Indirect 

relations calculated from PSW networks can answer a 

category of questions regarding existence of a path or entity, 

such as, is there any path between two entities, what is a 

given entity’s counterpart in a relation, and so on. 

We also conducted cross-validation of network metrics 

to verify if they are incidental or coherent with each other. 

The simplest approach we considered is to see if important 

entities in one type of relation are also important in another. 

For example, we constantly check whether services 

frequently reused in myExperiment workflows are also 

attracting more attention in BioCatalogue. 

Besides studying the global characteristics of the PSW 

networks, we also investigated methods to identify 

nontrivial patterns implied. Especially, statistically 

significant paths are of primary interest to us, which may 

carry diversified meanings depending on the context. 

Examples are the paths with more frequency (e.g., what is 

the most common succeeding service after people use 

service foo), across less organizational boundary (e.g., what 

is the workflow which can generate a given data, and uses 

services hosted by least different institutions), or with less 

length (e.g., what is the shortest path scientist A can reach 

scientist B in a collaboration network). Detailed techniques 

are reported in our another paper [10]. 
 

IV. CASE ENGINE 

A. CASE Framework 

We designed and developed an information Collection, 

Annotation, Search and rEcommendation (CASE) 
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Fig. 4 CASE framework. 

 
Fig. 5 CASE visualization. 

framework to systematically facilitate scientists in artifact 

reuse. As shown in Fig. 4(a), CASE is centered on the PSW 

networks and comprises four major components. (1) data 

collection: Artifacts will be incrementally collected from 

centralized repositories as primary data sources. Additional 

information may be collected from people directories from 

bioCatalogue, myExperiment, and websites of individual 

research institutions. (2) annotation: Automatic annotation 

elicitation, generation and analysis instruments will create 

incremental knowledge to support services-oriented 

scientific workflow discovery and composition. (3) search: 

We adopted Apache Lucene [11], an open-source search 

library to index the information collection and associated 

annotations. Besides the full-text search function, we used 

the PSW networks to support structure-aware cross-artifact 

search. (4) recommendation: The ultimate goal of CASE is 

to provide recommendation support in workflow 

composition. Recommendation can be either passive 

(requested explicitly by users) or proactive (automatically 

delivered when CASE perceives such a need). 

The overview of the CASE framework is shown in Fig. 

4(b) as a feedback system, which possesses internal controls 

and reacts to surrounding environments. The inputs of 

CASE are contextual data; the outputs may be represented 

in the formats of recommendations, notifications, 

visualizations, or annotations that dynamically integrate 

analysis data results into existing knowledge. Sensors 

denote system elements that monitor and detect changes 

from surrounding contexts, so that the CASE system may 

react accordingly to provide better services. In summary, a 

CASE system can be informally defined as a 6-tuple:  

CASE = <Inputs, Outputs, Contexts, Transformation, 

Components, Sensors>, where: 

Internally, CASE comprises eight major components: 1) 

a requirement manager that handles interpretation of user 

requirements; 2) a user manager that handles user profile 

and social network analysis; 3) a PSW network analysis 

manager that handles monitoring and analyzing various data 

sources; 4) a context manager that handles sensing ever-

changing surrounding environments; 5) a recommendation 

manager that applies systematic analysis over all data and 

yields recommendations to users; 6) a notification manager 

that handles user subscriptions and notifies users with 

relevant updates; 7) an annotation manager that dynamically 

creates annotations and builds the links to corresponding 

resources; and 8) a visualization manager that handles 

generation of requested visual data based on user interests 

and preferences. 
 

B. CASE visualization 

After studying various social network visualization tools 

(including Pajek [12], Prefuse [13], and JUNG [14]), we 

decided to adopt JUNG as a foundation to build our 

visualization framework mainly due to its embedded rich 

graph mining algorithms. In addition, the JUNG framework 

offers a good object-oriented programming support, and a 

rich selection of vertex icons and graph layouts. 

We also found some technical issues of applying JUNG 

into our project: 1) JUNG does not provide native SQL 

support; 2) nodes have to be added individually as opposed 

to using an array (i.e., parallelism); 3) its building on top of 

multiple third-party libraries may limit its reusability. We 

built another layer on top of JUNG so that users can directly 

leverage SQL descriptions. 
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Table III. Summary of myExperiment workflows. 
New version Old version 

Services 
invoked 

Number Services 
invoked 

Number 

0 0 0 9 

1 304 1 100 

2 65 2 29 

3 27 3 8 

4 9 4 10 

5 1 5 9 

10 1 6 3 

Total 407 Total 178 

 
Fig. 6 Change of ways of recommendation. 

Fig. 5 illustrates our generated workflow popularity 

graph. Note that upon right-clicking a node, a comment bar 

is shown as the name of the workflow. As shown on the 

right, the CASE engine dynamically goes to the workflow 

repository and retrieves the details of the selected workflow 

via the REST service invocation technique. 
 

V. SYSTEM IMPLEMENTATION 

The ultimate goal of CASE is to provide 

recommendation support in workflow composition. We thus 

developed the CASE framework as an independent software 

as a service to help scientists design scientific workflows. 

As a proof of concept, we built CASE as a plug-in to the 

Taverna [7] workbench, a widely used scientific workflow 

management system. 

The old service recommendation model used in Taverna 

is shown in Fig. 6 on the left. Every Taverna workbench 

application connects to the BioCatalogue website and 

retrieves a list of the links of all services (i.e., a total of 106 

services). A user may expand the package and browse the 

full list and click a link to view the WSDL description of the 

corresponding service. 

In contrast to its preliminary service listing facility, we 

developed a CASE-enabled fine-grained service 

recommendation mechanism. As shown in Fig. 6 on the 

right, a Taverna workbench is embedded with a local CASE 

engine, which dynamically communicates with the CASE 

engine at the server side to retrieve only related workflows 

and services to the user. The CASE engine server spawns 

several agents, each monitoring a data source (including 

myExperiment for workflows and BioCatalogue for 

services). Any specific event happens on these data sources 

will trigger a recalculation and subsequent changes on the 

workflow-service networks maintained at the CASE server. 

Such events include a new workflow publication at 

myExperiment, a new service publication at BioCatalogue, a 

new user annotation association to a workflow at 

myExperiment, a new ranking adjustment at BioCatalogue, 

and so on. Changes at the workflow-service networks will in 

turn be propagated to related Taverna users, through the 

publication-subscription relationships between local CASE 

engines and the CASE engine server. 
 

VI. EXPERIMENTS 

A. Testbed Establishment and Analysis 

Our preliminary work shows that studying workflow and 

service usage is feasible in the open science community. 

Our study shows that 11 out of 857 registered 

bioinformatics workflows in myExperiment are available to 

protected groups only, which means 98.72% of the 

applications are open to public (data obtained on 19 August 

2010). 

We examined all workflows published on the 

myExperiment repository, on October 6, 2010. Altogether, 

we have found 880 Taverna workflows. Among them, 800 

are available to the public and 79 are set to be private to 

corresponding groups. 798 out of 800 were downloaded 

successfully through their REST interfaces. The rest two 

have to be manually downloaded because of non-UTF-8 

characters existing in their file names. From our experience, 

every time we tried to build the testbed, several workflows 

may have to be manually downloaded to get over the 

“Connect exception” (i.e., time-out exception). 

Studying the content of all workflows in our testbed, we 

found that 407 workflows invoke at least one external Web 

service (comparing to 280 such workflows on March 20, 

2010 [5]). All these workflows are shown with their current 

versions. Among the 407 workflows, as shown in Table III, 

74.7% of the workflows invoke only one Web service; only 

2.7% of them invoke more than three services. 

For each workflow, we examined its version number. If a 

version number is greater than one, it means that the 

workflow has historical versions. We thus tracked down to 

fetch all historical versions of such workflows. For each 

historical workflow version, we again examined the number 

of services it invoked. 

As shown in Table III, 110 workflows have more than 

one version. The record is that one workflow (id: 1360) has 

10 versions. Altogether, we found 178 historical workflows. 

Most of the workflows invoke more or the same number of 

services in newer versions. The exceptions are 16 workflows 

that have a fluctuating number of services in their various 

versions. Two workflows invoke less number of services in 

their more recent version (90, 746). 
 

B. Service-workflow relationship analysis 

Based on the workflow-service invocation network, we 
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Fig. 7 Shortest path between a pair of workflows. 

Table IV. Summary of service-workflow closeness. 
Workflow-Workflow Service-Service 

Shortest path 
length 

Number of 
occurrences 

Shortest path 
length 

Number of 
occurrences 

2 3,637 2 168 

4 6,019 4 254 

6 5,523 6 265 

8 3,114 8 340 

10 946 10 213 

12 139 12 13 

Total 19,378 Total 1,253 

Average 5.19 Average 6.34 

Mean 6 Mean 6 

have studied the communication channels between pairs of 

services and workflows. The idea is to find out the 

relationship ties (connections) between the artifacts. If two 

workflows invoke the same service, there is a path between 

them with a length of 2 (i.e., the shared service as the 

intermediate node between them on the path). As shown in 

Fig. 7, two workflows at the two ends (in blue) have a path 

of length 8 between them, comprising intermediate services 

and workflows shown alternatively in the path. 

We leveraged the Dijkstra's algorithm [15] to study the 

shortest path between each pair of workflows and services, 

respectively. We used the workflow-service invocation 

network instead of workflow-workflow network or service-

service network due to two reasons. First, we aim to force 

the shortest paths to go through workflow-service invocation 

paths (i.e., workflows and services appear alternatively). 

Second, we would like to not only evaluate the shortest paths 

between each pair of artifacts, but also evaluate and visualize 

the details of actual paths (i.e., the intermediate nodes). 

As shown in Table IV, over the total of 407 workflows in 

the test bed that invoke at least one service, we found 19,184 

paths. It means that 91 workflows do not have paths to other 

workflows. Over the total of 179 services in the test bed that 

are invoked in at least workflow, we found 1,250 paths. It 

means that 91 services do not have paths to any other peer 

services. Since our major goal is to study how to leverage the 

past connections between workflows and services to 

facilitate artifact reuse, we focus on the connected workflows 

and services. 

Table IV summarizes the statistical shortest path 

information between each pair of workflows and services, 

respectively. Our study exposes an interesting phenomenon. 

The average shortest path between a pair of workflows is 

5.18; and the average shortest path between a pair of services 

is 6.34. Their mean values are both 6. This means that even 

though the scientists independently work on their own 

experimental research, their work can become connected 

through a small number of other colleagues’ works in the 

field. The phenomenon again proves the famous “small 

world theory” that is widely acknowledged in social 

networks, which says that any two person in the social world 

can become connected through 6 people they know. 

The shortest path between each pair of artifacts can be 

considered as their social tie. The closer they are, the tighter 

their tie is. Therefore, if an artifact is selected, we can rank 

other artifacts sorted by the length of the shortest path 

between each artifact and the selected artifact. Such 

knowledge can become complementary to artifact selection, 

in addition to other selection criteria such as functional and 

non-functional requirements. This experiment also reveals a 

way to support service composition. Connected artifacts can 

be grouped together as an encapsulated artifact to support 

composition of larger-scale artifacts. 
 

VIII. RELATED WORK 

Artifact reuse and recommendation is well studied in 

software engineering [16], e.g., recommendation for 

debugging [17], inter-team collaboration [18], and auto 

completion of mashups [19]. It is gaining more attention in 

the area of scientific workflow. VisComplete [20] provides 

auto-complete suggestions for VisTrails system by mining 

frequent patterns in existing pipelines. Leake et al. [21] 

propose a case-based approach to suggest the possible next 

step(s) aiding re-use of portions of prior workflows. Xiao et 

al. propose a layered workflow structure that allows users to 

specify workflows at different levels of abstraction, and a 

graph matching method to find similar ones [22]. Compared 

to these approaches, our method can provide suggestions 

from cross-boundary relations (e.g., suggest a workflow 

which combining relations from multiple workflows), and 

more flexible by using full-text search in such an open 

environment where similar entities are not easily identified 

by their full names only. 

Harrer et al. [23] transform structured data (e-mail, 

discussion boards, and bibliography sources) into social 

network data formats to visualize dynamic communities. 

Duong et al. [24] study automatic generation and 

visualization of personal ontology from personal and 

organizational websites, blogs, and publications. Viégas et 
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al. [25] propose history flow visualization, as an exploratory 

data analysis tool, to analyze cooperation and conflict of 

authorships in the wiki context. Vizster system [26] offers 

an online visualization of social networking, allowing users 

to discover communities, people and connections. Invenio 

[27] is a tool for visualizing multi-modal, multi-relational 

social networks. To visualize workflow-service networks 

supporting workflow composition, our work focuses on 

visualization framework and performance issue of dynamic 

visualization generation. 

Our research differentiates with the current literature of 

interface-based services discovery in two significant ways. 

First, we focus on the more open scientific world where 

more workflow and service usage data are available. Second, 

we develop a technique that can be seamlessly integrated 

into existing scientific workflow tools to facilitate service 

and workflow discovery. 
 

VIV. CONCLUSIONS AND FUTURE WORK 

In this paper we reported our efforts of building a 

discovery engine, for scientists to find appropriate artifacts 

(workflows and services) and obtain advice on their use, 

more rapidly than at present. We have answered the two 

research questions laid in the introduction section: 1) much 

knowledge can be extracted (table II); 2) by mining 

historical artifact usage patterns, we show how to answer 

various queries (table III). We also reported a prototyping 

system as a proof of concept. 

In future research we plan to enhance our history-based 

recommendation techniques with semantics-based discovery 

ones. We also plan to accumulate practice data to create 

benchmarks for the presented approach in this paper. 
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