
Leveraging Fragmental Semantic Data to Enhance Services Discovery

Jian Wang*, Jia Zhang**, Patrick C.K. Hung***, Zheng Li*, Jianxiao Liu*, Keqing He*
*State Key Lab of Software Engineering, Computer School, Wuhan University, China

**Department of Computer Science, Northern Illinois University, USA
***University of Ontario Institute of Technology, Canada

*jianwang@whu.edu.cn, **jiazhang@cs.niu.edu, ***Patrick.Hung@uoit.ca, *hekeqing@whu.edu.cn

Abstract—As one foundational technology of cloud

computing, services computing is playing a critical

role to enable provisioning of software as a service

(SaaS). However, how to effectively and efficiently

discover proper available services from the cloud of

resources remains a big challenge. This paper reports

our continuous efforts on semantic services discovery.

We extend the Support Vector Machine (SVM)-based

text clustering technique in the context of service-

oriented categorization in a service repository, and

propose an iterative process to incrementally enrich

domain ontology. A popular Web 2.0 mashup

platform is used as a testbed; and preliminary

evaluation results are reported.

I. INTRODUCTION
One key advantage and goal of cloud computing is

resource pooling, meaning that various types of resources
can be shared on the cloud [1]. Leveraging existing
services available in the cloud, users can compose new
value-added processes and further publish them as
reusable services. However, as cloud has become an
unprecedented driving factor to encourage people to
publish and share resources as services, how to effectively
and efficiently discover interested services from the cloud
of resources remains a big challenge.

One major technique is to establish service registries
[2] as centralized yellow pages to help users find related
services. Earlier Universal Description, Discovery, and
Integration (UDDI) registries are going out of date – one
major reason is that it is ambitious to manage all kinds of
Web services. Thus, in recent years, various less formal
and more domain/usage-specific service registries have
emerged. For example, the BioCatalogue
(http://www.biocatalogue.org) site manages over 1,600
life science-specific services; the programmable web
(http://www.programmableweb.com, PWeb) site manages
over 3,500 services for users to design mashups.

Naturally, such service registries all provide a layer of
technique to facilitate users in querying and finding
interested services. However, their current querying
power is usually preliminary. Taking the PWeb as an
example, it requires that users select one specific domain
from a preset list. This requirement may cause confusion.
First, some user-categorized domains at service
registration time may not be accurate. Furthermore, some
services naturally belong to multiple domains, because

some predefined domains overlap with each other. For
example, domains “travel,” “shipping,” and “weather”
share many common concepts. Moreover, the PWeb
presets a domain named “others” and a significant number
of services are left in the category. Currently, 158 services
are listed in the category of “others,” which is the top 5
category with the most number of services (Other top 4
categories are: Internet (268), Social (245), Mapping
(206), Reference (170)).

As a result, there exist needs for existing service
repositories to enhance their query and search ability.
While such ability will attract more service users to visit
the repository, it will also attract more service providers
to publish services at the site.

This paper reports our continuous efforts on semantic
services discovery, extracting fragmental semantic data to
support services discovery. Specially, we aim to explore
an international standard-compatible approach to annotate
and classify services on the service registry side. Our
basic hypothesis is that, much knowledge is hidden in the
service repositories and can be leveraged to enable and
facilitate services discovery.

As integral parts of an ISO project, Metamodel
Framework for Interoperability (MFI, http://metadata-
stds.org/19763/index.html), Role-Goal-Process-Service
(RGPS) framework [3] aims at providing a language for
users to describe personalized requirements involving
domain-related services, toward an ultimate goal of
enabling on-demand service provisioning. This paper
reports our first attempt to extend the RGPS concepts
onto service registry side and describe registered services,
so that semantic match making can be conducted between
user requirements and service descriptions through a
meet-in-the-middle strategy. As a starting point, here we
focus on describing services to facilitate their
categorization.

We extend the Support Vector Machine (SVM)
technique in this project in the context of service
categorization on service repositories. While the SVM
engine being like a black-box, we propose an input
function and an output function for it to increase its
categorization accuracy based on incrementally
constructed domain knowledge. Our extended SVM
technique has two goals: one is to verify and adjust
existing author/user-centered service categorization; the
other one is to enrich domain ontology.

The remainder of the paper is organized as follows. In

2011 IEEE International Conference on High Performance Computing and Communications

978-0-7695-4538-7/11 $26.00 © 2011 IEEE

DOI 10.1109/HPCC.2011.149

687

Section II, we discuss related work. In Section III, we
introduce our service semantic model. In Sections IV and
V, we present our ontology-empowered SVM technique
and the consequent methodology, respectively. In Section
VI, we present experimental settings and preliminary
results and analysis. In Section VII, we draw conclusions.

II. RELATED WORK
Segev and Zheng [4] propose an ontology

bootstrapping method that automatically generates
concepts and their relations in a domain from WSDL files.
Lee and Kim [5] study how to enable similarity search
over RESTful services based on syntactic and semantic
descriptions. In contrast to their work, we focus on
incrementally build domain concepts and their
relationships from fragmental semantic data.

Liu et al. [6] derive semantic relations between
services based on their associated tags, and consequently
build a directed service graph to guide potential service
composition. In contrast, we categorize services based on
their associated sematic information including
descriptions, tags, and categorization information.

Zhou et al. [7] presents an algorithm that automatically
generates hierarchical concept relationships from social
annotations. In our research, we leverage the algorithm to
generate the initial domain ontology hierarchy.

Semantic Automated Discovery and Integration
(SADI) [8] framework is able to retrieve SADI services.
While SADI search only compares the input/output OWL
class URLs in SADI services, our work considers more
semantic conditions (e.g., functional profile and tags).

Zhang and Li introduce the concept of service cluster
[9] to represent a collection of available services provided
by multiple service providers to perform a specific
common function. Here we borrow the concept and
extend the SVM technique to help verify and justify
service clusters.

There have been a lot of efforts on semantic services
discovery, most of which performing profile-based
service signature (I/O) matching [10]. OWLS-MX [10]
and WSMO-MX [11] propose to combine logic-based
reasoning and syntactic concept similarity computations
in OWL-S. Sbodio et al. [12] propose to use SPARQL as
a formal language to describe the pre- and post-conditions
of services. Junghans et al. [13] propose a practical
formalism to describe functionalities and service requests.
In contrast, we focus on enriching domain ontology and
leveraging it to classify services.

The Information Retrieval (IR) community has created
a wealth of clustering algorithms and techniques [14]. In
contrast to these general-purpose text categorization
technologies, our work aims at services discovery and
targeting on service repositories with embedded
ontological information, which can be exploited to
facilitate service categorization when the scale of the
training data set is not large enough.

III. SERVICE SEMANTICS MODEL
Extending our previous work on service semantic

modeling [15], we propose an ISO-standard RGPS-
compatible service semantic model. Such a model will
serve as a contractual template between service providers
and service consumers, so that semantic match making
can be conducted between user requirements and service
descriptions.

As shown in Fig. 1 illustrating in a UML class
diagram, we propose a service semantics model
comprising static semantics and behavioral semantics, in a
composition relationship. Static semantics represents
published information of a service together with its
associated descriptions contributed by either creators or
users. It consists of functional profile (describe what a
service can do), goal (objectives of the service provided
by service creators) and comment (user comments and
tags), also in a composition relationship. Behavioral
semantics describes how a service should be used in the
best way, comprising a set of aspects including I/O
parameters, constraint, condition, usage pattern and QoS
property.

Fig 1. Service semantics model.

We will use an example of payment service to
illustrate how our service semantics model can be used to
describe a service. The semantic specifications of the
example service are summarized in Table I, some being
extracted from its published description file (WSDL file)
and some from related documents such as registration
documents. One integral element of our service semantics
model is the functional profile of a service. Existing
studies focus on either service interfaces (i.e., input/output
signatures) or comprehensive documents (e.g., user
manual). In contrast, we define the technical functional
profile of a service as a combination of information that
can be extracted from the standard descriptions of the
service (e.g., in WSDL): service name, portType name,
operation names and data variable names defined in
service operations. The goal indicates that the service
aims at providing a payment service. Creator input such

688

as keywords are inserted into the goal category to
complement service descriptions from published code
(e.g., free of charge). The comments can be ad hoc

fragmental documents such as social tags and user
comments (e.g., good user experience).

Table I. An example of service semantics model.
Static semantics

functional profile service_name：PaymentService
portType_name: PaymentServicePortType
operation_name: make_payment
input_message_name: paymentRequest
output_message_name: paymentResponse

Goal provide payment service for users
comment Payment, Free
Behavioral semantics

input parameter card_ID, card_PIN, transaction_Amount
output parameter transaction result(success/failure)
precondition validated PIN and enough balance
postcondition the balance of the card is decreased
Constraint An operation must be received from users in

every 15 minutes
usage pattern Usually used with a shipping service
QoS property High security

The input parameters of the service are card_ID,
card_PIN, and transaction_Amount, while the output
parameter is a Boolean variable transaction result. The
precondition of the service is that the input PIN has to be
valid and the balance of the card is greater than the value
of the input transaction_Amount. The postcondition is
that the payment is charged and the balance of the card is
decreased after the transaction is completed. The
constraint of the service is that if no operation is received
from users for 15 minutes during the execution process of
the service, the connection will be expired for security
reasons. The usage pattern indicates that the service is
usually used followed by a shipping service if a
merchandize is involved. The QoS property denotes that
the security of the service is guaranteed.

Specifically, in this research project, such a model will
help us compare similarity between services. As the first
step, we will use the combination of
{functional_profile} ∪ {goal} ∪ {comment} to guide
service categorization. Service similarity calculation
leveraging the entire structure of our service semantics
model will be our future work.

IV. EXTENDED SVM TECHNIQUE
Existing service categorization usually adopts

Information Retrieval (IR) similarity models such as
vector space models, probabilistic models, and
information theory-based models [16]. Their underlying
technique is semantic similarity measurement between
services, either based on keywords [17] or on ontology
[18]. The former method uses the Term Frequency –
Inverse Document Frequency (TF-IDF) [19] technique to
build a vector space; the latter leverages taxonomy,
information content (IC), or concept property to calculate
similarity between services.

A. Applying SVM

It is known that the Support Vector Machine (SVM)
method outperforms (accuracy of clustering) other text
categorization methods [14], especially when the number
of dimensions of the documents to be considered is
significant. Verifying and justifying the categorization of
services may not be a trivial task, since services may have
many semantic aspects to be considered as shown in our
service semantics model (Section II). Therefore, it is
suitable to apply the SVM method for service
categorization.

Fig. 2 shows the high-level workflow of how we
directly apply the SVM approach to conduct service
categorization. The input of the process is a repository of
services; the output is the classified services and the
ranking of the domain keywords (domain ontology). The
workflow comprises three phases. First, all input services
are transformed into a vector space based on the TF-IDF
formula. Second, a SVM classification model is built
based on a selected training set, and then runs over the
entire repository (i.e., testing set) to classify each
comprising service as either domain-relevant or domain-
irrelevant. Third, the mutual information (MI) value of
each keyword in the testing set is calculated to represent
the ranking of the keyword in the domain.

The construction of the SVM classification model can
be formalized as an optimization problem [20]. Given a
training set of pairs ��� , ��� , � ∈
�	 where �� ∈

representing each service in the form of a n-dimension
vector, and �� ∈ �1, �1� indicating whether a service
belongs to the domain or not. A SVM model aims to find
a solution:

min	��,�,�
12��� � �� ��|
�|

��1
�

subject to: �����∅���� � b� " 1 � ��, �� " 0

Training vectors xi are mapped into a higher
dimensional space by the function ∅. SVM finds a linear
separating hyperplane with the maximal margin in the
higher dimensional space. � $ 0 is a penalty parameter of
the error service.

B. Issues and Considerations

Applying the above approach to service repository
(e.g., PWeb), we found that the categorization results are
not satisfactory in a number of domains. Analyzing the
reasons, we identify several significant issues. Successful

Fig. 2. Directly applying SVM technique.

689

training of the SVM classification model heavily depends
on the scale and the precision of the training set. A service
repository, however, usually has an unbalanced
distribution of services in different domains. Some
domains contain a smaller number of services.
Meanwhile, ad hoc service categorization inputted by
service providers may not always be accurate.

After carefully examining PWeb, we noticed one
unique feature. The services registered at the repository
are organized into 55 separate domains. In other words,
services registered within the same domain should share
the same domain ontology. Our hypothesis is that, such
domain ontology may help build a more instructive vector
space as the input to the SVM, so as to enhance the
quality of the training set and in turn enhance
categorization accuracy.

In detail, we extended the algorithm used to measure
keyword-based service similarity, i.e., TF-IDF, which
does not take into account domain knowledge. When TF-
IDF calculates the significance of a term in a document, it
does not consider the significance of the term in the
corresponding domain.

C. Extensions to TF-IDF

Fig. 3 illustrates our extensions to the traditional TF-
IDF [19]. TF-IDF aims to calculate the weight (wj,i) of
every term (tj,i) inside of document (di). It indicates the
importance of the term, against the entire document
repository. Equation (1) shows that, the more documents
in which a term appears, the less important the term is.

 				%&−�'&��(,�� � %&(,�) �'&(� *+,,∑ ./,,/) 012 |�3�|45|�3:7+,,∈3�|				(1)

In contrast to TF-IDF measuring between documents
and corpus (entire set of documents), we propose to break
TF-IDF into two parts. As shown in Fig. 3, two concepts
are introduced: keyword frequency – inverse document
frequency – domain frequency (KF-IDF-DF) and
keyword frequency – inverse repository frequency (KF-
IRF). KF-IDF-DF intends to measure between a service
and its corresponding domain; while KF-IRF intends to
measure between a domain and the entire service
repository. Note that keywords here represent terms that
are significant enough to facilitate service categorization.
This also explains our rationale of using keywords instead
of all terms: keywords will decide service categorization.

Equation (2) shows how to calculate the significance

of keyword (k) in service (s) for domain (d). rank(k,d)
represents the rank of the keyword (k) in the domain
ontology (d). If a keyword highly represents a domain (it
ranks in the top Ω keywords, e.g., the top 100 keywords),
its tf-idf value will be amplified.

 kf−idf−df<,=,>																																																																																						�2�
� ?tf−idf<,= ∙ �1 � �1 � Brank�k, d�√Ω F /√Ω� ∙ β� rank�k, d� I Ω

tf−idf<,= otherwise

Since a domain ontology will keep on evolving, its top
ranked keywords are divided into sections (i.e., square
root of Ω) to decide its amplifier scale. For example, if we
consider the top 100 keywords for a domain, its top 10
(√100) keywords will be put into one section and will
amplify their tf-idf value by 1.1 (if the coefficient β
(β ∈ O0.1Q) is set to be 1).

Equation (3) shows how to calculate the ranking of
keyword (k) in domain (d). num(k,d) represents the
frequency of the keyword (k) in the domain ontology (d).
It is divided by the number of services in the domain for
normalization purpose. The frequency of the keyword is
further adjusted by the distribution of the keyword over
the corresponding domains in a service repository. α is a
coefficient that can be adjusted in specific domains.

 kf−irf<,> � num�k, d�|�s: sϵd�| ∙ �α ∙ �1 � 1log |W|54|�>:<X>�|
� � �1 � α�

∙ num�k, d�∑ num�k, dY�>ZXW �																										�3�

Consider two distribution scenarios as shown below,
where the frequencies of a keyword in two repositories
are the same (109). In scenario (a), the frequency of the
keyword in domain d1 is 100, and its frequency in domain
d2 is 9. In scenario (b), the keyword counts 100 times in
domain d1, and counts one time in nine other domains
(d2~d10).

 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10…
(a) 100 9
(b) 100 1 1 1 1 1 1 1 1 1

If a keyword appears in many domains (e.g., scenario
(b)), it is more likely that it is less important in
representing any domain. For example, since the PWeb is
a web service registry, many services in its comprising
domains possess the same keyword “service” with high
frequency, which is insignificant in representing any

domain. Therefore, the fraction �1 � 4\]^ |_|`a|�b:cdb�|) in

Equation (3) will lower the ranking of such keywords.
Meanwhile, in scenario (a), the keyword is likely to

represent domain d1 (frequency 100) more than to domain
d2 (frequency 9). In scenario (b), the keyword is likely to
represent domain d1 (frequency 100) more than to domain

Fig. 3. Extensions to TF-IDF.

690

Algorithm: Extended SVM

Input: a collection of annotated services (S) in a domain (d).
Output: ranked domain keywords.
1: build_corpus(S)
1.1: For each service e� ∈

1.2: {f� , &�}←extract_terms(e�)
1.3: {f� , &�}←normalize_terms({f� , &�})
1.4: {f(,3 , &(,3}←{f� , &�}
1.5: {hi, ji}←{f� , &�}
1.6: End For

2: For each service e� ∈

3 tf-idf(e� , �h, j��
4: revise(e��; lmn�em��f(,3, &(,3��
5: End For

6: Loop (lmop�qe�rf(,3 , &(,3s�) do

7: For each service e� ∈

8: build_vector_space(e�� 	←tf-idf-df(e��
9: End For

10: SVM(S)
11: For each keyword f� ∈ h3
12: tf-irf(f��
13: {f(,3, &(,3}←rerank(h3�
14: End For

15: goto Step 2
16:End Loop

d2 (frequency 1). The fraction � tuv�<,>�∑ tuv�<,>Z�bZd_ �	in Equation

(3) reflects such a consideration.

V. SVM-EXTENDED METHODOLOGY

Based on our extensions to TF-IDF, we propose an
ontology-empowered SVM methodology. Fig. 4
illustrates our overall idea; and Table II lists the detailed
pseudo-code algorithm. Domain ontology, keyword
ranking as explained in Equation (2), is used in our KF-
IDF-DF formula to assist in creating the vector space
(step 8). Generated vector space with all normalized
service vectors are sent to the SVM machine for
classification (step 10). Afterwards, our KF-IRF formula
is used to rank domain-related keywords (steps 11~14).

Table II. Ontology-empowered SVM approach.

Different from the traditional waterfall-like SVM
methodology, as shown in Fig. 4, our extended SVM
methodology does not stop at one single round. Instead,
we adopt an iterative approach to incrementally enhance
categorization quality. As explained in Equation (2),

domain-specific keyword ranking can be used to highlight
the importance of specific keywords (value of the
attribute in the vector) when building the vector space.
After one iteration, the ranking of the keywords in a
domain may be changed. In other words, the domain
knowledge may be enriched. Therefore, such enhanced
domain knowledge can be reapplied to the KF-IDF-DF
and reconstruct the vector space, and rerun the entire
process for another round (steps 6~16).

As shown in Table II, the input of the extended SVM
methodology is a collection of services in one specific
domain; the output is enriched domain knowledge in the
form of a list of ranked keywords. As the initialization
phase, step 1 reads in all services, extracts all terms,
normalizes them (e.g., applying Porter stemming
algorithm [21] for prefix and affix removal and Wordnet
[http://www.wordnet.princeton.edu] for solving the
synonym issue), and adds them to the domain ontology
(step 1.4) and repository ontology (step 1.5). The
repository ontology will be used for the TF-IDF algorithm
to remove insignificant terms (steps 2~5).

It is known that acquisition of domain ontologies is
difficult and costly [22]. In the context of a service
repository, meanwhile, services are continuously
registered into domains. Therefore, the corresponding
domain ontologies have to be incrementally built and
enriched.

As shown in Fig. 4, we iteratively extract domain
ontology (to revise keyword ranking) based on SVM-
based service categorization process. The initial keyword
ranking is obtained by counting word frequency (step 1.4)
and then removing insignificant terms through the TF-
IDF algorithm (step 4). Afterwards, each round of SVM-
based categorization process (steps 6~16) will revise the
keyword ranking; and the resulting list will serve as an
input for the next iteration of categorization process. The
termination criteria can be set when the resulting keyword
ranking remains unchanged (for example, when the top 50
keywords ranking remains unchanged in new iterations).

Extracted domain ontology can be further organized
into an ontology graph. Fig. 5 shows a segment of the

Fig. 4. SVM-extended methodology.

Fig. 5. Incrementally built domain ontology.

691

ontology graph in our study. To build a useful domain
ontology, we will try to keep only high-rank keywords
(for example, the top 200 keywords in the domain) in the
domain ontology. The method introduced in [7] can be
used to automatically build a hierarchical ontology graph.
An edge between two nodes represents the similarity
between the two keywords, whose original value can be
retrieved from the Wordnet. Popularity of a keyword can
be attached to the corresponding node as an annotation
(attribute), which can be used for future ontology-based
services discovery.

VI. EXPERIMENTS AND DISCUSSIONS

We have conducted a series of experiments to evaluate
our proposed technique and methodology.

A. Experimental setup

We use Web 2.0 service/mashup registry
(http://www.programmableweb.com, PWeb) as our
testbed, mainly because of its popularity. Currently,
PWeb has accumulated over 3,500 APIs (data gathered on
Jul. 25th, 2011). PWeb provides a set of programmable
APIs to allow users to fetch some descriptive data about
their registered services: summary, tag, description and
category information. An APIkey has to be applied and
granted before using these APIs. Upon request, an XML
file. called Atom feed document, will be responded
carrying requested information. However, one Atom feed
document can carry information for up to 20 services.
Therefore, to retrieve information for the entire set of over
3,500 services, we had to send many requests. We found
that all services can be extracted in this approach. Our
code continuously stopped at some service pages without
meaningful error messages.

Therefore, we tried a more labor-intensive approach,
using a crawler to go to every service page and extract
relative data based on embedded tags. The crawler we
adopted is Heritrix (http://crawler.archive.org/). However,
crawling all comprising hierarchical pages from such a
big website is not a trivial task. The crawler kept on
stopping in the process, even after our many times of
efforts. As a result, we had to leverage both methods and
combine the information from both of them to receive a
more complete picture of the service repository.

By examining the various services retrieved from the
PWeb, we selected its three related categories: travel,
shipping, and weather. The rationale is as follows. First,
the three categories are closely related to the concept of
“travel.” Second, combing the services from the three
categories will provide a relatively larger training set:
travel (87), shipping (11), and weather (15).

We implemented an SVM engine leveraging the
LIBSVM [23], a library with Java APIs for supporting
SVM-based classification and regression analysis.

All of our algorithms and experiments are developed in
Java, and conducted on PCs with Intel Core 2 CPU

T7300, @2 GHz and 2 GB main memory, running the
Windows XP operating system.

B. Domain Ontology Construction

We designed experiments to evaluate the effectiveness
of building domain ontology using our method. The first
step is to build a base line. From the three selected
categories, we wrote code to identify all terms in the
forms of verb and noun, and then rank all of them by their
frequency in the domain. Then focusing on the top 100
terms, three graduate/undergraduate students were asked
to manually adjust the rankings of the terms and sort them
by their relevance to the concept of travel.

Based on the constructed baseline of keyword ranking,
we ran three techniques (TF-IDF|D, MI, and our approach)
over the entire PWeb testbed. Particularly, applying TF-
IDF alone requires that we adjust its formula, so that a
term frequency is counted in the entire domain (including
all services in the domain) instead of in one document
(service). Therefore, we use TF-IDF|D to refer to Term
Frequency – Inverse Domain Frequency.

 %&−�'&�f, '�|w � qxo�f, '�∑ qxoyf� , '(z{,|}) 012 |w|1 � |�': f ∈ '�|		
Each method will result in a ranked keyword list.

Table III lists the top 10 ranked keywords identified by
the three approaches, respectively.

Table III. The top 10 ranked keywords.
MI TF-IDF|D KF-IRF
travel Travel travel
booking Flight weather
hotel Weather booking
weather Transit flight
transit Taxi transit
shipping Booking hotel
social Airport shipping
information Traveler Airport
flight Hotel Forecast
mapping Trip Trip

To precisely compare the effectiveness of generating
domain ontology using the three methods, we calculate
the standard deviation for each method as follows:

'�%me%, �pem� � ~∑ 	��lpqf7��7�%me%�� � lpqf�����%me%���/��
��4 �
q 	�4�

where base denotes the normalized ranked keyword
list generated by domain experts; test denotes the ranked
keyword list generated by a categorization method; � is a
normalization factor.

The basic idea is to measure diversity of how much
variation between the ranking of each keyword in one
approach from that in the baseline. The standard deviation
of one method checks the dispersion of all comprising
keywords. A lower standard deviation indicates that the
ranking method tends to be more accurate. Because
domain ontology has to be incrementally built, the
ranking of a specific keyword in a domain is not absolute.

692

Meanwhile, our baseline ranking is also depended on
human decisions. Therefore, we use a normalization
factor to eliminate such random factors. For example, a
keyword ranked as second or third is considered no
difference. When setting � � 5 , we obtained the
effectiveness comparison among the three approaches, by
considering the top 50 keywords and top 100 keywords,
respectively (on the left and right). As shown in Fig. 6,
our method shows the lowest standard deviation.

As discussed in Section V, our ontology-empowered
SVM methodology adopts iterations to incrementally
reach better service categorization accuracy. We thus
studied the convergence rate of our approach. We set the
termination criterion as the standard deviation remains
unchanged in two iterations (without losing much
accuracy, we consider the top 100 keywords). As shown
in Fig. 7, using different scales of testing sets including
80, 200, 500, 1000, 3000 services, the convergence rate
remains at 3. In other words, at most three iterations are
needed to get the best categorization results.

C. Accuracy Analysis

We designed a set of experiments to compare the
service categorization accuracy between using our
ontology-empowered SVM methodology and directly
applying the SVM methodology. We adopted two
indexes, Precision and Recall, to evaluate the
performance of service categorization. Precision is the
fraction of the services that are correctly considered as
relevant to the target domain; Recall is the fraction of the
relevant services that has been correctly categorized into

the target domain. Precision and Recall are formally
defined as follows:

�lm��e�1q � |��||�| ; �m�p00 � |��||�|

where,
C represents the set of services that are categorized as

relevant to a domain; |C| denotes the number of
services in C.

R represents the set services that should be categorized
as relevant; |R| indicates the number of services in R. �� represents the set of services as the intersection of
the sets R and C; | �� | indicates the number of
services in ��.

We evaluated the Precision/Recall values of using our
methodology and using the traditional SVM methodology,
for categorizing travel-related services. The same
experiments were conducted over difference scales of
testing sets containing different number of services: 80,
200, 500, 1000, 3000. As explained in Section V, the
experiments were repeated until the termination criterion
is met (the precision rate remains). Table IV summarizes
our findings.

Table IV. Categorization accuracy comparisons.
#test

Test# 80 200 500 1000 3000

TF-IDF precision 95.65% 85.19% 74.19% 64.86% 40%
recall 91.67% 95.83% 95.83% 100% 100%

Iteration
1

precision 100% 92.31% 82.76% 68.57% 45.28%
recall 95.83% 100% 100% 100% 100%

Iteration
2

precision 100% 88.89% 82.76% 64.86% 44.44%
recall 95.83% 100% 100% 100% 100%

Iteration
3

precision 100% 92.31% 82.76% 66.67% 44.44%
recall 95.83% 100% 100% 100% 100%

As shown in Table IV, our methodology outperforms
the traditional SVM in both precision and recall indexes.
For the Recall index, as long as the scale of the testing set
becomes large enough (more than 80 services), our
methodology always reaches 100%, meaning that our
method is good at identifying all services containing
significant domain-related keywords. For the Recall index,
our method outperforms the traditional SVM even from
the first iteration, and terminates quickly (no more than 3
times for the test set containing 3,000 services). In general,
using our method, values of both precision and recall
indexes become better in newer iterations, until remaining
unchanged when iterations stop.

In our experiments, we used the set of services
originally categorized by the service creators as the
reference points: only the 87+11+15=113 services are
considered travel-related. When examining the other
services that are categorized as travel-related by our
methodology, we found that their descriptions do contain
high-rank keywords according to our constructed domain
ontology. For example, the service named “Yahoo Traffic”
is categorized as “others” on the PWeb. However, its
descriptions contain several high-rank travel-related

Fig. 6. Comparison of keyword ranking.

Fig. 7. Comparison between different iterations.

693

keywords including: traffic (7:15), transit (1:5), route
(1:21). A number pair (X:Y) represents the appearance
frequency of the keyword in the service descriptions and
the ranking of the keyword in the domain, respectively.

Such findings indicate that, our methodology has the
ability to: 1) justify existing categorization of services; 2)
identify services that belong to multiple domains; and 3)
find service that should be categorized into different
domains. For the second and third types of services, we
chose to add tags to them, so that such information will
support further services discovery.

VII. CONCLUSIONS

The unique structural feature of service repositories
and their hidden domain knowledge inspire us in
extending the traditional SVM methodology. Our
proposed technique is particularly valuable in building
service search engines oriented to small- to middle-scale
service repositories.

We plan to continue our research in the following
directions. First, we will study the effectiveness and
efficiency of our approach on every category in the
PWeb. Second, we will explore SVM techniques that can
categorize multiple domains. Third, we will use our
technique to enhance existing service repository-oriented
service search engine.

ACKNOWLEDGEMENT
The authors thank Yijie Shen, Yueting Yang, and Ran Chen

for their coding help in the project. The work described in this
paper is partially supported by the National Basic Research
Program of China (973) under Grant No. 2007CB310801, the
National Natural Science Foundation of China under Grant No.
60970017, the Fundamental Research Funds for the Central
Universities No. 3101034, and the National Science Foundation
of USA under grant IIS-0959215.

REFERENCES

[1] NIST, "Cloud Computing Definition", 2011, Available from:
csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-
definition.pdf.
[2] L.-J. Zhang, J. Zhang, and H. Cai, Services Computing, 2007:
Springer.
[3] K. He, J. Wang, and P. Liang, "Towards Semantic Interoperability
Aggregation in Service Requirements Refinement", Journal of

Computer Science and Technology, 2010, 25(6): pp. 1103-1117.
[4] A. Segev and Q.Z. Sheng, "Bootstrapping Ontologies for Web
Services", IEEE Transactions on Services Computing (TSC), Dec. 2010,
2010: pp. Preprints.
[5] Y.-J. Lee and C.-S. Kim, "A Learning Ontology Method for RESTful
Semantic Web Services", in Proceedings of IEEE International

Conference on Web Services (ICWS), 2011, Washington, DC, USA, pp.
251-258.
[6] X. Liu, Q. Zhao, G. Huang, H. Mei, and T. Teng, "Composing Data-
Driven Service Mashups with Tag-based Semantic Annotations", in
Proceedings of IEEE International Conference on Web Services (ICWS),
2011, Washington, DC, USA, pp. 243-250.
[7] M. Zhou, S. Bao, X. Wu, and Y. Yu, "An Unsupervised Model for

Exploring Hierarchical Semantics from Social Annotations", in
Proceedings of 6th International Semantic Web and 2nd Asian Semantic

Web Conference (ICSW/ASWC), 2007, pp. 680-693.
[8] M.D. Wilkinson, L. McCarthy, B. Vandervalk, D. Withers, E. Kawas,
and S. Samadian, "SADI, SHARE, and the in silico Scientific Method".
2010, BMC Bioinformatics 11(suppl 12):S7.
[9] L. Zhang and B. Li, "Requirements Driven Dynamic Business
Process Composition for Web Services Solutions", Journal of Grid

Computing, 2004, 2: pp. 121-140.
[10] M. Klusch, B. Fries, and K. Sycara, "Automated Semantic Web
Service Discovery with OWLS-MX", in Proceedings of ACM

International Conference on Autonomous Agents, 2006, Hakodate, Japan,
May 8-12, pp. 915-922.
[11] M. Klusch and F. Kaufer, "WSMO-MX: A Hybrid Semantic Web
Service Matchmaker", Web Intelligence and Agent Systems, Jan., 2009,
7(1): pp. 23-42.
[12] M.L. Sbodio, D. Martin, and C. Moulin, "Discovering Semantic
Web Services using SPARQL and Intelligent Agents", Web Semantics:

Science, Services and Agents on the World Wide Web, Nov., 2010, 8(4):
pp. 310-328.
[13] M. Junghans, S. Agarwal, and R. Studer, "Towards Practical
Semantic Web Service Discovery", Lecture Notes in Computer Science

(The Semantic Web: Research and Applications), 2010, 6089/2010: pp.
15-29.
[14] Y. Yang and X. Liu, "A Re-Examination of Text Categorization
Methods", in Proceedings of The 22nd Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval,
1999, pp. 42-49.
[15] J. Zhang, R. Madduri, W. Tan, K. Deichl, J. Alexander, and I. Foster,
"Toward Semantics Empowered Biomedical Web Services", in
Proceedings of IEEE International Conference on Web Services (ICWS),
2011, Washington DC, USA, Jul. 4-9, pp. 371-378.
[16] S. Dasgupta, S. Bhat, and Y. Lee, "Taxonomic Clustering and Query
Matching for Efficient Service Discovery", in Proceedings of IEEE

International Conference on Web Services (ICWS), 2011, Washington,
DC, USA, pp. 363-370.
[17] M.Á. Corella and P. Castells, "A Heuristic Approach to Semantic
Web Services Classification", in Proceedings of 10th International

Conference on Knowledge-Based & Intelligent Information &

Engineering Systems (KES), 2006, pp. 598-605.
[18] D. Bianchini, V. Antonellis, B. Pernici, and P. Plebani, "Ontology-
Based Methodology for e-Service Discovery", Information Systems,
Jun.-Jul., 2006, 31(4-5): pp. 361-380.
[19] K.S. Jones, "A Statistical Interpretation of Term Specificity and Its
Application in Retrieval", Journal of Documentation, 1972, 28(1): pp.
11-21.
[20] B.E. Boser, I. Guyon, and V. Vapnik, "A Training Algorithm for
Optimal Margin Classiers", in Proceedings of the 5th ACM Annual

Workshop on Computational Learning Theory, 1992, pp. 144-152.
[21] M. Porter, "An Algorithm for Suffix Stripping Program",
Automated Library and Information Systems, 1980, 14(3): pp. 130-137.
[22] M. Sabou, C. Wroe, C. Goble, and G. Mishne, "Learning Domain
Ontologies for Web Service Descriptions: An Experiment in
Bioinformatics", in Proceedings of The 14th ACM International

Conference on World Wide Web (WWW), 2005, pp. 190-198.
[23] C.-C. Chang and C.-J. Lin, "LIBSVM: a Library for Support Vector
Machines", 2011, Available from:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

694

