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Abstract—As one foundational technology of cloud 

computing, services computing is playing a critical 

role to enable provisioning of software as a service 

(SaaS). However, how to effectively and efficiently 

discover proper available services from the cloud of 

resources remains a big challenge. This paper reports 

our continuous efforts on semantic services discovery. 

We extend the Support Vector Machine (SVM)-based 

text clustering technique in the context of service-

oriented categorization in a service repository, and 

propose an iterative process to incrementally enrich 

domain ontology. A popular Web 2.0 mashup 

platform is used as a testbed; and preliminary 

evaluation results are reported. 

 

I. INTRODUCTION 
One key advantage and goal of cloud computing is 

resource pooling, meaning that various types of resources 
can be shared on the cloud [1]. Leveraging existing 
services available in the cloud, users can compose new 
value-added processes and further publish them as 
reusable services. However, as cloud has become an 
unprecedented driving factor to encourage people to 
publish and share resources as services, how to effectively 
and efficiently discover interested services from the cloud 
of resources remains a big challenge. 

One major technique is to establish service registries 
[2] as centralized yellow pages to help users find related 
services. Earlier Universal Description, Discovery, and 
Integration (UDDI) registries are going out of date – one 
major reason is that it is ambitious to manage all kinds of 
Web services. Thus, in recent years, various less formal 
and more domain/usage-specific service registries have 
emerged. For example, the BioCatalogue 
(http://www.biocatalogue.org) site manages over 1,600 
life science-specific services; the programmable web 
(http://www.programmableweb.com, PWeb) site manages 
over 3,500 services for users to design mashups. 

Naturally, such service registries all provide a layer of 
technique to facilitate users in querying and finding 
interested services. However, their current querying 
power is usually preliminary. Taking the PWeb as an 
example, it requires that users select one specific domain 
from a preset list. This requirement may cause confusion. 
First, some user-categorized domains at service 
registration time may not be accurate. Furthermore, some 
services naturally belong to multiple domains, because 

some predefined domains overlap with each other. For 
example, domains “travel,” “shipping,” and “weather” 
share many common concepts. Moreover, the PWeb 
presets a domain named “others” and a significant number 
of services are left in the category. Currently, 158 services 
are listed in the category of “others,” which is the top 5 
category with the most number of services (Other top 4 
categories are: Internet (268), Social (245), Mapping 
(206), Reference (170)). 

As a result, there exist needs for existing service 
repositories to enhance their query and search ability. 
While such ability will attract more service users to visit 
the repository, it will also attract more service providers 
to publish services at the site. 

This paper reports our continuous efforts on semantic 
services discovery, extracting fragmental semantic data to 
support services discovery. Specially, we aim to explore 
an international standard-compatible approach to annotate 
and classify services on the service registry side. Our 
basic hypothesis is that, much knowledge is hidden in the 
service repositories and can be leveraged to enable and 
facilitate services discovery. 

As integral parts of an ISO project, Metamodel 
Framework for Interoperability (MFI, http://metadata-
stds.org/19763/index.html), Role-Goal-Process-Service 
(RGPS) framework [3] aims at providing a language for 
users to describe personalized requirements involving 
domain-related services, toward an ultimate goal of 
enabling on-demand service provisioning. This paper 
reports our first attempt to extend the RGPS concepts 
onto service registry side and describe registered services, 
so that semantic match making can be conducted between 
user requirements and service descriptions through a 
meet-in-the-middle strategy. As a starting point, here we 
focus on describing services to facilitate their 
categorization. 

We extend the Support Vector Machine (SVM) 
technique in this project in the context of service 
categorization on service repositories. While the SVM 
engine being like a black-box, we propose an input 
function and an output function for it to increase its 
categorization accuracy based on incrementally 
constructed domain knowledge. Our extended SVM 
technique has two goals: one is to verify and adjust 
existing author/user-centered service categorization; the 
other one is to enrich domain ontology. 

The remainder of the paper is organized as follows. In 
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Section II, we discuss related work. In Section III, we 
introduce our service semantic model. In Sections IV and 
V, we present our ontology-empowered SVM technique 
and the consequent methodology, respectively. In Section 
VI, we present experimental settings and preliminary 
results and analysis. In Section VII, we draw conclusions. 
 

II. RELATED WORK 
Segev and Zheng [4] propose an ontology 

bootstrapping method that automatically generates 
concepts and their relations in a domain from WSDL files. 
Lee and Kim [5] study how to enable similarity search 
over RESTful services based on syntactic and semantic 
descriptions. In contrast to their work, we focus on 
incrementally build domain concepts and their 
relationships from fragmental semantic data. 

Liu et al. [6] derive semantic relations between 
services based on their associated tags, and consequently 
build a directed service graph to guide potential service 
composition. In contrast, we categorize services based on 
their associated sematic information including 
descriptions, tags, and categorization information. 

Zhou et al. [7] presents an algorithm that automatically 
generates hierarchical concept relationships from social 
annotations. In our research, we leverage the algorithm to 
generate the initial domain ontology hierarchy. 

Semantic Automated Discovery and Integration 
(SADI) [8] framework is able to retrieve SADI services. 
While SADI search only compares the input/output OWL 
class URLs in SADI services, our work considers more 
semantic conditions (e.g., functional profile and tags). 

Zhang and Li introduce the concept of service cluster 
[9] to represent a collection of available services provided 
by multiple service providers to perform a specific 
common function. Here we borrow the concept and 
extend the SVM technique to help verify and justify 
service clusters. 

There have been a lot of efforts on semantic services 
discovery, most of which performing profile-based 
service signature (I/O) matching [10]. OWLS-MX [10] 
and WSMO-MX [11] propose to combine logic-based 
reasoning and syntactic concept similarity computations 
in OWL-S. Sbodio et al. [12] propose to use SPARQL as 
a formal language to describe the pre- and post-conditions 
of services. Junghans et al. [13] propose a practical 
formalism to describe functionalities and service requests. 
In contrast, we focus on enriching domain ontology and 
leveraging it to classify services. 

The Information Retrieval (IR) community has created 
a wealth of clustering algorithms and techniques [14]. In 
contrast to these general-purpose text categorization 
technologies, our work aims at services discovery and 
targeting on service repositories with embedded 
ontological information, which can be exploited to 
facilitate service categorization when the scale of the 
training data set is not large enough. 

III. SERVICE SEMANTICS MODEL 
Extending our previous work on service semantic 

modeling [15], we propose an ISO-standard RGPS-
compatible service semantic model. Such a model will 
serve as a contractual template between service providers 
and service consumers, so that semantic match making 
can be conducted between user requirements and service 
descriptions. 

As shown in Fig. 1 illustrating in a UML class 
diagram, we propose a service semantics model 
comprising static semantics and behavioral semantics, in a 
composition relationship. Static semantics represents 
published information of a service together with its 
associated descriptions contributed by either creators or 
users. It consists of functional profile (describe what a 
service can do), goal (objectives of the service provided 
by service creators) and comment (user comments and 
tags), also in a composition relationship. Behavioral 
semantics describes how a service should be used in the 
best way, comprising a set of aspects including I/O 
parameters, constraint, condition, usage pattern and QoS 
property. 

 

Fig 1. Service semantics model. 
 

We will use an example of payment service to 
illustrate how our service semantics model can be used to 
describe a service. The semantic specifications of the 
example service are summarized in Table I, some being 
extracted from its published description file (WSDL file) 
and some from related documents such as registration 
documents. One integral element of our service semantics 
model is the functional profile of a service. Existing 
studies focus on either service interfaces (i.e., input/output 
signatures) or comprehensive documents (e.g., user 
manual). In contrast, we define the technical functional 
profile of a service as a combination of information that 
can be extracted from the standard descriptions of the 
service (e.g., in WSDL): service name, portType name, 
operation names and data variable names defined in 
service operations. The goal indicates that the service 
aims at providing a payment service. Creator input such 
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as keywords are inserted into the goal category to 
complement service descriptions from published code 
(e.g., free of charge). The comments can be ad hoc 

fragmental documents such as social tags and user 
comments (e.g., good user experience). 

 

Table I. An example of service semantics model. 
Static semantics 

functional profile service_name：PaymentService 
portType_name: PaymentServicePortType 
operation_name: make_payment 
input_message_name: paymentRequest 
output_message_name: paymentResponse 

Goal provide payment service for users 
comment Payment, Free 
Behavioral semantics 

input parameter card_ID, card_PIN, transaction_Amount 
output parameter transaction result(success/failure) 
precondition validated PIN and enough balance  
postcondition the balance of the card is decreased 
Constraint An operation must be received from users in 

every 15 minutes 
usage pattern Usually used with a shipping service 
QoS property High security 

 

The input parameters of the service are card_ID, 
card_PIN, and transaction_Amount, while the output 
parameter is a Boolean variable transaction result. The 
precondition of the service is that the input PIN has to be 
valid and the balance of the card is greater than the value 
of the input transaction_Amount. The postcondition is 
that the payment is charged and the balance of the card is 
decreased after the transaction is completed. The 
constraint of the service is that if no operation is received 
from users for 15 minutes during the execution process of 
the service, the connection will be expired for security 
reasons. The usage pattern indicates that the service is 
usually used followed by a shipping service if a 
merchandize is involved. The QoS property denotes that 
the security of the service is guaranteed. 

Specifically, in this research project, such a model will 
help us compare similarity between services. As the first 
step, we will use the combination of 
{functional_profile} ∪ {goal} ∪ {comment} to guide 
service categorization. Service similarity calculation 
leveraging the entire structure of our service semantics 
model will be our future work. 
 

IV. EXTENDED SVM TECHNIQUE 
Existing service categorization usually adopts 

Information Retrieval (IR) similarity models such as 
vector space models, probabilistic models, and 
information theory-based models [16]. Their underlying 
technique is semantic similarity measurement between 
services, either based on keywords [17] or on ontology 
[18]. The former method uses the Term Frequency – 
Inverse Document Frequency (TF-IDF) [19] technique to 
build a vector space; the latter leverages taxonomy, 
information content (IC), or concept property to calculate 
similarity between services. 

 
A. Applying SVM 

It is known that the Support Vector Machine (SVM) 
method outperforms (accuracy of clustering) other text 
categorization methods [14], especially when the number 
of dimensions of the documents to be considered is 
significant. Verifying and justifying the categorization of 
services may not be a trivial task, since services may have 
many semantic aspects to be considered as shown in our 
service semantics model (Section II). Therefore, it is 
suitable to apply the SVM method for service 
categorization. 

Fig. 2 shows the high-level workflow of how we 
directly apply the SVM approach to conduct service 
categorization. The input of the process is a repository of 
services; the output is the classified services and the 
ranking of the domain keywords (domain ontology). The 
workflow comprises three phases. First, all input services 
are transformed into a vector space based on the TF-IDF 
formula. Second, a SVM classification model is built 
based on a selected training set, and then runs over the 
entire repository (i.e., testing set) to classify each 
comprising service as either domain-relevant or domain-
irrelevant. Third, the mutual information (MI) value of 
each keyword in the testing set is calculated to represent 
the ranking of the keyword in the domain. 

The construction of the SVM classification model can 
be formalized as an optimization problem [20]. Given a 
training set of pairs ��� , ��� , � ∈ 
�	 where �� ∈ 

 
representing each service in the form of a n-dimension 
vector, and �� ∈ �1, �1�  indicating whether a service 
belongs to the domain or not. A SVM model aims to find 
a solution: 

min	��,�,�
12��� � �� ��|
�|

��1
� 

subject to: �����∅���� � b� " 1 � ��, �� " 0 
 

Training vectors xi are mapped into a higher 
dimensional space by the function ∅. SVM finds a linear 
separating hyperplane with the maximal margin in the 
higher dimensional space. � $ 0 is a penalty parameter of 
the error service. 

 
B. Issues and Considerations 

Applying the above approach to service repository 
(e.g., PWeb), we found that the categorization results are 
not satisfactory in a number of domains. Analyzing the 
reasons, we identify several significant issues. Successful 

 
Fig. 2. Directly applying SVM technique. 
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training of the SVM classification model heavily depends 
on the scale and the precision of the training set. A service 
repository, however, usually has an unbalanced 
distribution of services in different domains. Some 
domains contain a smaller number of services. 
Meanwhile, ad hoc service categorization inputted by 
service providers may not always be accurate. 

After carefully examining PWeb, we noticed one 
unique feature. The services registered at the repository 
are organized into 55 separate domains. In other words, 
services registered within the same domain should share 
the same domain ontology. Our hypothesis is that, such 
domain ontology may help build a more instructive vector 
space as the input to the SVM, so as to enhance the 
quality of the training set and in turn enhance 
categorization accuracy. 

In detail, we extended the algorithm used to measure 
keyword-based service similarity, i.e., TF-IDF, which 
does not take into account domain knowledge. When TF-
IDF calculates the significance of a term in a document, it 
does not consider the significance of the term in the 
corresponding domain. 

 
C. Extensions to TF-IDF 

Fig. 3 illustrates our extensions to the traditional TF-
IDF [19]. TF-IDF aims to calculate the weight (wj,i) of 
every term (tj,i) inside of document (di). It indicates the 
importance of the term, against the entire document 
repository. Equation (1) shows that, the more documents 
in which a term appears, the less important the term is. 

 				%&−�'&��(,�� � %&(,� ) �'&( � *+,,∑ ./,,/ ) 012 |�3�|45|�3:7+,,∈3�|				(1) 
 

In contrast to TF-IDF measuring between documents 
and corpus (entire set of documents), we propose to break 
TF-IDF into two parts. As shown in Fig. 3, two concepts 
are introduced: keyword frequency – inverse document 
frequency – domain frequency (KF-IDF-DF) and 
keyword frequency – inverse repository frequency (KF-
IRF). KF-IDF-DF intends to measure between a service 
and its corresponding domain; while KF-IRF intends to 
measure between a domain and the entire service 
repository. Note that keywords here represent terms that 
are significant enough to facilitate service categorization. 
This also explains our rationale of using keywords instead 
of all terms: keywords will decide service categorization. 

Equation (2) shows how to calculate the significance 

of keyword (k) in service (s) for domain (d). rank(k,d) 
represents the rank of the keyword (k) in the domain 
ontology (d). If a keyword highly represents a domain (it 
ranks in the top Ω keywords, e.g., the top 100 keywords), 
its tf-idf value will be amplified. 

 kf−idf−df<,=,>																																																																																						�2�
� ?tf−idf<,= ∙ �1 � �1 � Brank�k, d�√Ω F /√Ω� ∙ β� rank�k, d� I Ω

tf−idf<,= otherwise  

 

Since a domain ontology will keep on evolving, its top 
ranked keywords are divided into sections (i.e., square 
root of Ω) to decide its amplifier scale. For example, if we 
consider the top 100 keywords for a domain, its top 10 
(√100) keywords will be put into one section and will 
amplify their tf-idf value by 1.1 (if the coefficient β 
(β ∈ O0.1Q) is set to be 1). 

Equation (3) shows how to calculate the ranking of 
keyword (k) in domain (d). num(k,d) represents the 
frequency of the keyword (k) in the domain ontology (d). 
It is divided by the number of services in the domain for 
normalization purpose. The frequency of the keyword is 
further adjusted by the distribution of the keyword over 
the corresponding domains in a service repository. α is a 
coefficient that can be adjusted in specific domains. 

 kf−irf<,> � num�k, d�|�s: sϵd�| ∙ �α ∙ �1 � 1log |W|54|�>:<X>�|
� � �1 � α�

∙ num�k, d�∑ num�k, dY�>ZXW �																										�3� 
 

Consider two distribution scenarios as shown below, 
where the frequencies of a keyword in two repositories 
are the same (109). In scenario (a), the frequency of the 
keyword in domain d1 is 100, and its frequency in domain 
d2 is 9. In scenario (b), the keyword counts 100 times in 
domain d1, and counts one time in nine other domains 
(d2~d10). 

 

    d1    d2    d3    d4    d5    d6    d7    d8    d9   d10… 
(a)   100    9 
(b)   100    1     1       1      1      1      1      1      1      1 

 

If a keyword appears in many domains (e.g., scenario 
(b)), it is more likely that it is less important in 
representing any domain. For example, since the PWeb is 
a web service registry, many services in its comprising 
domains possess the same keyword “service” with high 
frequency, which is insignificant in representing any 

domain. Therefore, the fraction �1 � 4\]^ |_|`a|�b:cdb�| ) in 

Equation (3) will lower the ranking of such keywords. 
Meanwhile, in scenario (a), the keyword is likely to 

represent domain d1 (frequency 100) more than to domain 
d2 (frequency 9). In scenario (b), the keyword is likely to 
represent domain d1 (frequency 100) more than to domain  

Fig. 3. Extensions to TF-IDF. 
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Algorithm: Extended SVM 

Input: a collection of annotated services (S) in a domain (d). 
Output: ranked domain keywords. 
1: build_corpus(S) 
1.1:  For each service e� ∈ 
 
1.2:       {f� , &�}←extract_terms(e�) 
1.3:       {f� , &�}←normalize_terms({f� , &�}) 
1.4:       {f(,3 , &(,3}←{f� , &�} 
1.5:       {hi, ji}←{f� , &�} 
1.6:  End For 

2: For each service e� ∈ 
 
3       tf-idf(e� , �h, j�� 
4:      revise(e��; lmn�em��f(,3, &(,3�� 
5: End For 

6: Loop (lmop�qe�rf(,3 , &(,3s�) do 

7:     For each service e� ∈ 
 
8:        build_vector_space(e�� 	←tf-idf-df(e�� 
9:     End For 

10:   SVM(S) 
11:   For each keyword f� ∈ h3 
12:      tf-irf(f�� 
13:      {f(,3, &(,3}←rerank(h3� 
14:   End For 

15:   goto Step 2 
16:End Loop 

d2 (frequency 1). The fraction � tuv�<,>�∑ tuv�<,>Z�bZd_ �	in Equation 

(3) reflects such a consideration. 
 

V. SVM-EXTENDED METHODOLOGY 

Based on our extensions to TF-IDF, we propose an 
ontology-empowered SVM methodology. Fig. 4 
illustrates our overall idea; and Table II lists the detailed 
pseudo-code algorithm. Domain ontology, keyword 
ranking as explained in Equation (2), is used in our KF-
IDF-DF formula to assist in creating the vector space 
(step 8). Generated vector space with all normalized 
service vectors are sent to the SVM machine for 
classification (step 10). Afterwards, our KF-IRF formula 
is used to rank domain-related keywords (steps 11~14). 

 

Table II. Ontology-empowered SVM approach. 

 

Different from the traditional waterfall-like SVM 
methodology, as shown in Fig. 4, our extended SVM 
methodology does not stop at one single round. Instead, 
we adopt an iterative approach to incrementally enhance 
categorization quality. As explained in Equation (2), 

domain-specific keyword ranking can be used to highlight 
the importance of specific keywords (value of the 
attribute in the vector) when building the vector space. 
After one iteration, the ranking of the keywords in a 
domain may be changed. In other words, the domain 
knowledge may be enriched. Therefore, such enhanced 
domain knowledge can be reapplied to the KF-IDF-DF 
and reconstruct the vector space, and rerun the entire 
process for another round (steps 6~16). 

As shown in Table II, the input of the extended SVM 
methodology is a collection of services in one specific 
domain; the output is enriched domain knowledge in the 
form of a list of ranked keywords. As the initialization 
phase, step 1 reads in all services, extracts all terms, 
normalizes them (e.g., applying Porter stemming 
algorithm [21] for prefix and affix removal and Wordnet 
[http://www.wordnet.princeton.edu] for solving the 
synonym issue), and adds them to the domain ontology 
(step 1.4) and repository ontology (step 1.5). The 
repository ontology will be used for the TF-IDF algorithm 
to remove insignificant terms (steps 2~5). 

It is known that acquisition of domain ontologies is 
difficult and costly [22]. In the context of a service 
repository, meanwhile, services are continuously 
registered into domains. Therefore, the corresponding 
domain ontologies have to be incrementally built and 
enriched. 

As shown in Fig. 4, we iteratively extract domain 
ontology (to revise keyword ranking) based on SVM-
based service categorization process. The initial keyword 
ranking is obtained by counting word frequency (step 1.4) 
and then removing insignificant terms through the TF-
IDF algorithm (step 4). Afterwards, each round of SVM-
based categorization process (steps 6~16) will revise the 
keyword ranking; and the resulting list will serve as an 
input for the next iteration of categorization process. The 
termination criteria can be set when the resulting keyword 
ranking remains unchanged (for example, when the top 50 
keywords ranking remains unchanged in new iterations). 

Extracted domain ontology can be further organized 
into an ontology graph. Fig. 5 shows a segment of the 

Fig. 4. SVM-extended methodology. 

Fig. 5. Incrementally built domain ontology. 
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ontology graph in our study. To build a useful domain 
ontology, we will try to keep only high-rank keywords 
(for example, the top 200 keywords in the domain) in the 
domain ontology. The method introduced in [7] can be 
used to automatically build a hierarchical ontology graph. 
An edge between two nodes represents the similarity 
between the two keywords, whose original value can be 
retrieved from the Wordnet. Popularity of a keyword can 
be attached to the corresponding node as an annotation 
(attribute), which can be used for future ontology-based 
services discovery. 

 
VI. EXPERIMENTS AND DISCUSSIONS 

We have conducted a series of experiments to evaluate 
our proposed technique and methodology. 

 
A. Experimental setup 

We use Web 2.0 service/mashup registry 
(http://www.programmableweb.com, PWeb) as our 
testbed, mainly because of its popularity. Currently, 
PWeb has accumulated over 3,500 APIs (data gathered on 
Jul. 25th, 2011). PWeb provides a set of programmable 
APIs to allow users to fetch some descriptive data about 
their registered services: summary, tag, description and 
category information. An APIkey has to be applied and 
granted before using these APIs. Upon request, an XML 
file. called Atom feed document, will be responded 
carrying requested information. However, one Atom feed 
document can carry information for up to 20 services. 
Therefore, to retrieve information for the entire set of over 
3,500 services, we had to send many requests. We found 
that all services can be extracted in this approach. Our 
code continuously stopped at some service pages without 
meaningful error messages. 

Therefore, we tried a more labor-intensive approach, 
using a crawler to go to every service page and extract 
relative data based on embedded tags. The crawler we 
adopted is Heritrix (http://crawler.archive.org/). However, 
crawling all comprising hierarchical pages from such a 
big website is not a trivial task. The crawler kept on 
stopping in the process, even after our many times of 
efforts. As a result, we had to leverage both methods and 
combine the information from both of them to receive a 
more complete picture of the service repository. 

By examining the various services retrieved from the 
PWeb, we selected its three related categories: travel, 
shipping, and weather. The rationale is as follows. First, 
the three categories are closely related to the concept of 
“travel.” Second, combing the services from the three 
categories will provide a relatively larger training set: 
travel (87), shipping (11), and weather (15). 

We implemented an SVM engine leveraging the 
LIBSVM [23], a library with Java APIs for supporting 
SVM-based classification and regression analysis. 

All of our algorithms and experiments are developed in 
Java, and conducted on PCs with Intel Core 2 CPU 

T7300, @2 GHz and 2 GB main memory, running the 
Windows XP operating system. 

 
B. Domain Ontology Construction 

We designed experiments to evaluate the effectiveness 
of building domain ontology using our method. The first 
step is to build a base line. From the three selected 
categories, we wrote code to identify all terms in the 
forms of verb and noun, and then rank all of them by their 
frequency in the domain. Then focusing on the top 100 
terms, three graduate/undergraduate students were asked 
to manually adjust the rankings of the terms and sort them 
by their relevance to the concept of travel. 

Based on the constructed baseline of keyword ranking, 
we ran three techniques (TF-IDF|D, MI, and our approach) 
over the entire PWeb testbed. Particularly, applying TF-
IDF alone requires that we adjust its formula, so that a 
term frequency is counted in the entire domain (including 
all services in the domain) instead of in one document 
(service). Therefore, we use TF-IDF|D to refer to Term 
Frequency – Inverse Domain Frequency. 

 %&−�'&�f, '�|w � qxo�f, '�∑ qxoyf� , '(z{,|} ) 012 |w|1 � |�': f ∈ '�|		 
Each method will result in a ranked keyword list. 

Table III lists the top 10 ranked keywords identified by 
the three approaches, respectively. 

 

Table III. The top 10 ranked keywords. 
MI TF-IDF|D KF-IRF 
travel Travel travel 
booking Flight weather 
hotel Weather booking 
weather Transit flight 
transit Taxi transit 
shipping Booking hotel 
social Airport shipping 
information Traveler Airport 
flight Hotel Forecast 
mapping Trip Trip 

 

To precisely compare the effectiveness of generating 
domain ontology using the three methods, we calculate 
the standard deviation for each method as follows: 

 

'�%me%, �pem� � ~∑ 	��lpqf7��7�%me%�� � lpqf�����%me%���/��
��4 �
q 	�4� 

where base denotes the normalized ranked keyword 
list generated by domain experts; test denotes the ranked 
keyword list generated by a categorization method; � is a 
normalization factor. 

The basic idea is to measure diversity of how much 
variation between the ranking of each keyword in one 
approach from that in the baseline. The standard deviation 
of one method checks the dispersion of all comprising 
keywords. A lower standard deviation indicates that the 
ranking method tends to be more accurate. Because 
domain ontology has to be incrementally built, the 
ranking of a specific keyword in a domain is not absolute. 
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Meanwhile, our baseline ranking is also depended on 
human decisions. Therefore, we use a normalization 
factor to eliminate such random factors. For example, a 
keyword ranked as second or third is considered no 
difference. When setting � � 5 , we obtained the 
effectiveness comparison among the three approaches, by 
considering the top 50 keywords and top 100 keywords, 
respectively (on the left and right). As shown in Fig. 6, 
our method shows the lowest standard deviation. 

As discussed in Section V, our ontology-empowered 
SVM methodology adopts iterations to incrementally 
reach better service categorization accuracy. We thus 
studied the convergence rate of our approach. We set the 
termination criterion as the standard deviation remains 
unchanged in two iterations (without losing much 
accuracy, we consider the top 100 keywords). As shown 
in Fig. 7, using different scales of testing sets including 
80, 200, 500, 1000, 3000 services, the convergence rate 
remains at 3. In other words, at most three iterations are 
needed to get the best categorization results. 

 
C. Accuracy Analysis 

We designed a set of experiments to compare the 
service categorization accuracy between using our 
ontology-empowered SVM methodology and directly 
applying the SVM methodology. We adopted two 
indexes, Precision and Recall, to evaluate the 
performance of service categorization. Precision is the 
fraction of the services that are correctly considered as 
relevant to the target domain; Recall is the fraction of the 
relevant services that has been correctly categorized into 

the target domain. Precision and Recall are formally 
defined as follows: 

�lm��e�1q � |��||�| ; �m�p00 � |��||�|  

where, 
C represents the set of services that are categorized as 

relevant to a domain; |C| denotes the number of 
services in C. 

R represents the set services that should be categorized 
as relevant; |R| indicates the number of services in R. �� represents the set of services as the intersection of 
the sets R and C; | �� | indicates the number of 
services in ��. 

 

We evaluated the Precision/Recall values of using our 
methodology and using the traditional SVM methodology, 
for categorizing travel-related services. The same 
experiments were conducted over difference scales of 
testing sets containing different number of services: 80, 
200, 500, 1000, 3000. As explained in Section V, the 
experiments were repeated until the termination criterion 
is met (the precision rate remains). Table IV summarizes 
our findings. 

 

Table IV. Categorization accuracy comparisons. 
#test 

Test# 80 200 500 1000 3000 

TF-IDF precision 95.65% 85.19% 74.19% 64.86% 40% 
recall 91.67% 95.83% 95.83% 100% 100% 

Iteration 
1 

precision 100% 92.31% 82.76% 68.57% 45.28% 
recall 95.83% 100% 100% 100% 100% 

Iteration 
2 

precision 100% 88.89% 82.76% 64.86% 44.44% 
recall 95.83% 100% 100% 100% 100% 

Iteration 
3 

precision 100% 92.31% 82.76% 66.67% 44.44% 
recall 95.83% 100% 100% 100% 100% 

 

As shown in Table IV, our methodology outperforms 
the traditional SVM in both precision and recall indexes. 
For the Recall index, as long as the scale of the testing set 
becomes large enough (more than 80 services), our 
methodology always reaches 100%, meaning that our 
method is good at identifying all services containing 
significant domain-related keywords. For the Recall index, 
our method outperforms the traditional SVM even from 
the first iteration, and terminates quickly (no more than 3 
times for the test set containing 3,000 services). In general, 
using our method, values of both precision and recall 
indexes become better in newer iterations, until remaining 
unchanged when iterations stop. 

In our experiments, we used the set of services 
originally categorized by the service creators as the 
reference points: only the 87+11+15=113 services are 
considered travel-related. When examining the other 
services that are categorized as travel-related by our 
methodology, we found that their descriptions do contain 
high-rank keywords according to our constructed domain 
ontology. For example, the service named “Yahoo Traffic” 
is categorized as “others” on the PWeb. However, its 
descriptions contain several high-rank travel-related 

 
Fig. 6. Comparison of keyword ranking. 

 
Fig. 7. Comparison between different iterations. 
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keywords including: traffic (7:15), transit (1:5), route 
(1:21). A number pair (X:Y) represents the appearance 
frequency of the keyword in the service descriptions and 
the ranking of the keyword in the domain, respectively. 

Such findings indicate that, our methodology has the 
ability to: 1) justify existing categorization of services; 2) 
identify services that belong to multiple domains; and 3) 
find service that should be categorized into different 
domains. For the second and third types of services, we 
chose to add tags to them, so that such information will 
support further services discovery. 

 
VII. CONCLUSIONS 

The unique structural feature of service repositories 
and their hidden domain knowledge inspire us in 
extending the traditional SVM methodology. Our 
proposed technique is particularly valuable in building 
service search engines oriented to small- to middle-scale 
service repositories. 

We plan to continue our research in the following 
directions. First, we will study the effectiveness and 
efficiency of our approach on every category in the 
PWeb. Second, we will explore SVM techniques that can 
categorize multiple domains. Third, we will use our 
technique to enhance existing service repository-oriented 
service search engine. 
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