
Domain-aware Service Recommendation for Service Composition

Bofei Xia, Yushun Fan*,
ChengWu, Keman Huang

Tsinghua National
Laboratory for Information

Science and Technology,
 Department of Automation,

Tsinghua University
Beijing 100084, China

Wei Tan
IBM Thomas J. Watson

Research Center
Yorktown Heights, NY

10598, USA
wtan@us.ibm.com

Jia Zhang
Carnegie Mellon University

Silicon Valley
jia.zhang@sv.cmu.edu

Bing Bai
Tsinghua National

Laboratory for Information
Science and Technology,

Department of Automation,
Tsinghua University

Beijing 100084, China
bj13@mails.tinghua.edu.cn

Abstract—Service compositions inherently require multiple
services each with its domain-specific functionality. Therefore,
how to mine matching patterns between services in relevant
domains and compositions becomes crucial to service
recommendation for composition. Existing methods usually
overlook domain relevance and domain-specific matching
patterns, which restrict the quality of recommendations. In this
paper, a novel approach is proposed to offer domain-aware
service recommendation. First, a K Nearest Neighbor variant
(vKNN) based on topic model Latent Dirichlet Allocation
(LDA) is introduced to cluster services into semantically
coherent domains. On top of service domain clustering results
by vKNN, a probabilistic matching model Domain Router (DR)
based on Extreme Learning Machine (ELM) is developed for
decomposing a requirement to relevant domains. Finally, a
comprehensive Domain Topic Matching (DTM) model is built
to mine relevant domain-specific matching patterns to
facilitate service recommendation. Experiments on a large-
scale real-world dataset show that DTM not only gains
significant improvement at precision rate but also enhances the
diversity of results.

Keywords—Service recommendation, LDA topic model,
Domain-aware Service Clustering, Extreme Learning Machine,
Domain-specific matching pattern

I. INTRODUCTION

Service composition plays a key role in services
computing and how to facilitate the construction of service
composition have attracted significant attentions [1, 13]. In
recent years, service recommendation has been proved to be
a promising solution to support effective and efficient service
composition [2, 16]. With the prevailing of RESTful services,
many online repositories allow service providers to describe
services functionality in plain text (e.g., descriptive text or
tag). When a developer gives a composition requirement also
in text, many existing methods directly search the entire set
of services in a repository and recommend services that may
satisfy the functionality needs of the given requirement [3].
Various non-functional QoS features are also taken into
account in service recommendation [9].

However, these methods oftentimes overlook the fact that
some services in a repository have similar functionalities and
form an implicit but inherent service domain [15]. For
example, Map services such as Google Map and Bing Map
form a “map” domain, and Facebook, Twitter, etc. form a
“social network” domain. Such domains delimitate

semantically coherent service groups. Moreover, popular
services from different domains become popular for different
and domain-specific reasons. For example, Google Map
becomes popular in domain ‘Map’ for its rich and accurate
map information, while Twitter is popular in domain ‘Social’
because of its attractive user interface. These domain-
specific, non-functional criteria determine the popularity of
services, and are embedded in historical usage information.
We name them domain-specific matching patterns. Therefore,
services in each individual domain have similar
functionalities and enjoy their own matching patterns
regarding composition. A previous study has suggested that
such domain-specific hidden information may further
enhance the performance of service recommendation [11].

In many repositories, e.g., ProgrammableWeb1 or PW for
short, services are organized in categories such as
advertising, enterprise and file sharing. This categorization is
helpful in searching for services; however, it is currently
realized through a manual process and no domain-specific
matching pattern is derived to help service recommendation.
Furthermore, developers are usually not able to explicitly
express the relevant domains in the given requirements.
Therefore, without any knowledge about these domains,
most existing works had to mine the matching patterns
between the entire set of services and compositions, taking
into no consideration of the domain-specific matching
patterns. This largely restricts the quality of recommendation
results.

In this paper, we propose a three-step approach to
overcome the aforementioned restrictions and offer domain-
aware service recommendation for solution construction.

First, a domain-aware service clustering method based on
a K Nearest Neighbor variant (vKNN) is introduced to
extract features of services and further cluster them into
different domains. vKNN leverages both content (the topic
model Latent Dirichlet Allocation (LDA) [4]) and popularity
(services’ historical usage information), which differentiate it
from traditional clustering methods. This step provides a
basis for mining domain relevance and domain-specific
matching patterns in subsequent steps.

Second, on top of vKNN, a probabilistic matching model
- Domain Router (DR) model - is designed to decompose a
textual requirement to relevant domains. Based on LDA and
Extreme Learning Machine (ELM) [5], DR first transforms a

1 http://www.programmableweb.com/
*Yushun Fan is the Communication Author : fanyus@tsinghua.edu.cn

2014 IEEE International Conference on Web Services

978-1-4799-5054-6/14 $31.00 © 2014 IEEE

DOI 10.1109/ICWS.2014.69

439

2014 IEEE International Conference on Web Services

978-1-4799-5054-6/14 $31.00 © 2014 IEEE

DOI 10.1109/ICWS.2014.69

439

textual requirement description to requirement topic features.
Afterward it analyzes the functional requirements involved
in the previously derived topic features, and predicts which
domains are relevant to the requirement.

Finally, based on the proposed vKNN and DR, a
comprehensive Domain Topic Matching (DTM) model is
presented to enable and facilitate domain-aware service
recommendation. The recommendation results are
represented in the form of domain relevance ranking order
together with per domain recommendation list, which
considers both candidate domains’ relevance and favorable
services in each domain.

Our experiments on PW data set show that DTM gains a
30% improvement at overall precision rate, compared to
state-of-the-art functionality or popularity based approaches
that ignore domain knowledge. Moreover, DTM also
prevails compared to the recommendation based on the
original service categorization offered by PW, mainly due to
the advantage of vKNN over PW’s (manual) categorization.
DTM also achieves a 20% improvement for long tail
recommendation, i.e., recommending the not-so-popular
services, which enhances the diversity of recommendation
results [8]. The superiority of DTM is a result of our mining
and exploiting of domain-aware knowledge, and our
consideration of historical usage. The remainder of the paper
is organized as follows. Section 2 illustrates the overall
methodology; Section 3 presents the recommendation model
and algorithms; Section 4 presents the experiments and
results on a real-world dataset; Section 5 discusses the
related work and Section 6 draws a conclusion.

II. OVERVIEW OF METHODOLOGY

The overview of our proposed methodology is illustrated
in Figure 1. Aiming to mine domain-specific service
matching patterns to support service composition, our
methodology is divided into an offline service clustering
phase and an online service recommendation phase.

Cluster
Services Offline

Recommend
Services Online

. . .

. . .

. . .

. . .

. . .

1 0.5P � 3 0.3P � 2 0.1P �

1 0.5P � 3 0.3P � 2 0.1P � . . .

. . .

. . .

. . .

Fig. 1. Methodology of domain-aware service recommendation for
composition.

dP denotes the relevance probability of domain d.

The offline phase provides a basis for domain-aware
recommendation. A Domain Service Clustering method
takes as input both service topic features (captured from
services’ textual description by the LDA topic model) and
service popularity (extracted from service historical usage
records by composition), and outputs services clustering
results. Within each resulting domain, services have similar
functionality and share the same matching pattern.

In the online recommendation phase, when received a
developer’s textual requirement (in form of description text,
tag, etc.), the first task is to decompose the requirement into
relevance domains. The Domain Router takes the textual
requirement as input, and predicts the relevance probabilities
of each domain, leading to a domain relevance ranking order.
Afterwards, a Domain Topic Matching method considers
both the domain relevance order and domain-specific
matching patterns, and returns “Per domain service ranking
list.” In this way, the developer is informed “which domains
are potential relevant to your requirement” and “which
services may satisfy your needs in each domain.” Such a
user-friendly form of recommendation makes it easier for
developers to select proper services to satisfy a certain aspect
of need.

III. MODELING AND ALGORITHMS

As shown in Figure 1, our methodology introduces a
three-step approach to realize domain-aware service
recommendation for composition: a K Nearest Neighbor
variant (vKNN) method for Domain-aware Service
Clustering (section A), a Domain Router (DR) model for
domain relevance ranking (section B), and a Domain Topic
Matching (DTM) model for “per domain service ranking list”
(section C).

A. Domain-aware Service Clustering
1) Clustering motivation
The first step is to automatically cluster services into

semantically coherent domains. According to our empirical
study [1, 6] of service usage patterns, from each functionality
aspect, there may exist one core service that gains the most
popularity. Most services added later into the repository
usually follow one of the core services and its functionality.
Therefore, the traditional KNN that only considers the
functionality similarity is insufficient for domain service
clustering. Here we introduce a two-phase clustering strategy,
named K-Nearest-Neighbor variant (vKNN) to group
services. In vKNN, both functionality and popularity of
services are taken into account.

2) Information gathering for clustering
A service’s functionality can be extracted from its textual

material (description text, service tag, etc.). Similar to our
previous work [15], we use a probabilistic topic model LDA
[4] to map the service’s functionality to a fixed-length vector
named ‘topic feature’ vector. Every element in the topic
feature vector ranges from 0 to 1, which represents the
probability of whether a service is relevant to a certain
functionality (or topic). The summation of all the elements of
a topic feature vector equals 1. We define a STF matrix

440440

(defined in Table I) to formally represent the topic features
of all services.

A service’s popularity is measured by the number of
compositions that invoke the service. By analyzing
compositions in a repository, we can obtain all the services’
popularity information from their historical usage. Similar to
[14], we formalize the historical usage information in a CS
matrix (defined in Table I). The summation of the ith column
of CS is assigned as the popularity of service i (Algorithm 1,
line 1-3).

3) Two-phase clustering strategy
The proposed vKNN clustering method contains two

phases. In the first phase, we extract core services in the
repository considering both its topic feature similarity and
popularity. In the second phase, we firstly rank all the non-
core services by their popularity. Similar to the KNN method,
we cluster each service to one domain considering its topic
distribution’s Kullback Leibler (KL) distance [7]. With all
involved notions listed in Table I we describe the pseudo
code of our vKNN clustering algorithm in Algorithm 1.

TABLE I. NOTIONS IN DOMAIN SERVICE CLUSTERING
N The total # of services

sK The total # of topics on service side

iS Service i in repository

STF
× sN K matrix, STF(i,k) represents the probability of

topic k given
iS

iC Composition i
M The total # of composition

CS
×M N matrix, CS(i,j) =1 if

jS is used by

iC ,otherwise CS(i,j) =0

D The total # of service domains

dD Servic domain d

diS The ith service clustered in domain d

dN The # of services clustered in domain d

SC 1 D� vector, ()SC d represents the core service in
each domain d

Algorithm 1: variant K Nearest Neighbor clustering
Input: STF matrix, CS matrix
Output: { :1 ,1di dS d D i N� � � � }
1. For i = 1 to N
2. iS .populariry = sum(CS(:, i))
3. End For
4. d = 1
5. For r = 1 to N //KLD(a,b) calculates KL Distance of a,b
6. For j = 1 to d
7. If KLD(the rth popular service, SC (j)) � threshold
8. distribute rth popular service as SC (d++)
9. Break
10. End If
11. End For
12. Break if d � D
13. End For
14. For i = 1 to N

15. If iS not in SC
16. For d = 1 to D
17. calculate KLD(

iS , 1 (,:)
dSi Dd

STF i
N �)

18. End for
19. Distribute iS to dD with minima KLD
20. dN � �
21. End For

Lines 1-3 obtain the service popularity based on historical
usage information. Lines 4-13 identify the core services in
each domain according to their popularity and topic features.
Afterwards, for each unclustered service, lines 16-18
caculate its average KL distance to the clustered services
topic distribution in each domain. Finally line 19 assigns it to
the domain to which it achieves a minima KL distance. After
the iteration, all the services in the repository are clustered
into a certain domain.

The main difference between vKNN and existing
clustering methods is that vKNN considers service usage
patterns extracted from historical records. vKNN first
identifies some popular services with different topic features
and assigns them as core services in different domains,
before clustering the non-core services. In this way, services
within each domain not only have relevant functionality but
also share the same matching patterns regarding
compositions. Thus, mining the domain relevance with
composition requirement and domain-specific matching
pattern regarding composition becomes possible.

B. Domain Router Model
1) Model description
After clustering all the services in domains, when

receiving a composition textual requirement, the first task is
to decompose the requirement and predict its relevance with
each domain. This task is conducted by a Domain Router
(DR) model.

The workflow in a DR is shown in Figure 2. The input of
DR is the topic features of requirement captured by LDA; the
output of DR is the relevance probabilities of each domain.
The role of DR is to imitate the mapping function from
requirement to domain relevance. Here, we adopt a machine
learning method to learn the mapping function.

1T

2T

cKT

1P

2P

DP

1H

2H

'
RH

Fig. 2. Working process of Domain Router.
Combine historical usage information and results of

domain-aware service clustering, we obtain historical dataset
of which compositions use which domain’s services.
Formally, we define these information as a ID matrix
(illustrated in Table II). Similar to the STF matrix, we use

441441

LDA to capture topic features of composition requirement
from their textual descriptions (requirement text,
composition tag, etc.) and formalize them as a CTF matrix
(illustrated in Table II). Afterwards, the core task is turned to
learn the implicit mapping relations between matrix CTF
and ID . We adopt the Extreme Learning Machine (ELM)
[5], which provides fast learning speed and powerful
learning scalability, to establish a ‘Topic-Domain’ hidden
layer between them. The mapping relation is embedded in
the input weight matrix RI , the bias vector RB , and the
output weight matrix RO . To avoid ambiguity, we list the
notions used in DR in Table II.

TABLE II. ADDITIONAL NOTIONS USED IN DOMAIN ROUTER

ID
×M D matrix indicating whether

iC used service in a

certain domain:
ID (i, d) =1 if

iC uses at least a
service in domain d; otherwise,

ID (i, d) =0

CTF
× cM K matrix, CTF(i,k) represents the probability of

topic k given composition
iC

iT Topic i on composition side

cK The total # of topics on composition side

R The total # of hidden units in domain router
'
iH The ith unit of topic-domain hidden layer

RI × cR K input weight matrix of DR

RB ×1R vector, bias of hidden layer units of DR

RO ×R D output weight matrix of DR

QC 1 cK� topic feature vector of a new requriement

P 1 D� domain relevance probability vector regarding
new composition requirement

iP The relevance probability of domain i

2) Model Training
As aforementioned, the kernel task here is to learn the

model parameters which include the input weight matrix RI
between composition topics feature vector and hidden layer,
the bias vector RB of hidden layer, and the output weight
matrix RO between hidden layer and the domain relevance
probabilities result. After obtaining the CTF matrix and

ID matrix as training dataset, we follow the three training
steps in [5]. The first step is to randomly assign RI and RB .
Then calculate the hidden layer output HLOutput. Finally,
calculate the Moore-Penrose inverse matrix of HLOutput
and obtain RO .

Especially, we resort to the SVD approach for calculating
Moore-penrose inverse matrix of HLOutput (Algorithm 2.
line 15). The SVD result of HLOutput is illustrated as
follows,

HLOutput HU V� �
where

1 0
0 0
�	

� � � �
 �

, 1 1 2(, ...)rdiag � � �� � (1)

r� is the single value of matrix HLOutput, r=

rank(HLOutput) satisfying 1 2 1... 0r r� � � ��� � � . Then
the Moore-penrose inverse matrix of HLOutput can be
obtained as follows,

HH V U� �� �
where

1 0
0 0

�
� 	
�

� � � �
 �

, +
1 1 2(1/ ,1 ...1)rdiag � � �� � (2)

We summarize the details of the model training in
Algorithm 2.
Algorithm 2: DR paremeters inference
Input: CTF matrix, CS matrix,

{ :1 ,1di dS d D i N� � � � }
Output: { ,R R RI B O }
1. For i = 1 to M
2. tempdI =zeros(1,D) // initialize tempdI as 1 D

// zero matrix
3. For d = 1 to D
4. If iC used service in dD
5. tempdI(1,d) = 1
6. End If
7. End For
8. ID (i,:) = tempdI
9. End For
10. Initialize RI by random value [-1, 1]
11. Initialize RB by random value [0, 1]
12. BExtend = RB (:,ones(M,1)) // extend RB to a

// ×R M matrix by column
13. tempHLOutput = RI CTF’+ BExtend

14. HLOutput =
2tempHLOutpute�

15. H � = Moore-penrose inverse matrix of HLOutput
16. RO = ()H � ’ ID
17. Return RI matrix, RB vector, and RO matrix

Lines 1-9 combine historical usage information and
results of domain-aware service clustering, find which
domains are involved in compositions and organize the
information into matrix ID . Lines 10-17 follow the ELM
training process and use matrix CTF and ID to learn the
parameter of DR.

3) Domain Relevance Ranking
When receiving a new composition requirement, we first

use LDA to extract topic feature QC of the requirement.

After inputting QC into trained DR, we obtain the relevance
probabilities vector P at its output side. Algorithm 3 shows
the pseudo code of the Domain Relevance Ranking process
of DR.

Algorithm 3: Domain Relevance Ranking
Input: New Composition requirement
 RI matrix, RB vector, RO matrix
Output: Relevance ranking order of domains

442442

1. QC new composition requirement
2. tempHLOutput =

RI QC +
RB

3. HLOutput =
2tempHLOutpute�

4. P = HLOutput’ RO
5. For d = 1 to D
6. Ranking domain d according to iP
7. End For

Line 1 uses LDA to infer new composition requirement’s
topic features. Lines 2-4 use the trained DR model to predict
the each domain’s relevance probability. Lines 5-7 rank all
the domains according to their relevance probability.

In contrast to the traditional keyword-based methods, DR
uses LDA to transfer textual requirement to topic features.
Furthermore, DR learns the historical ‘requirement-domain’
mapping relation at the topic level. Even though developers
may not express the domain explicitly with keywords, DR
can still predict relevant domains, which will facilitate
service recommendation process.

C. Domain Topic Matching Model
1) Model description
Through DR, we can obtain the domain relevance ranking

order. We have further designed a Domain Topic Matching
(DTM) model, aiming to inform developers “which services
may better satisfy your needs in each domain.”

In DTM, each domain is assigned a uniform probabilistic
model called Topic Matching (TM), which mines the implicit
matching patterns of a certain domain regarding composition.
Figure 3 illustrates how TM of domain d works. The input of
TM is the topic features of requirement captured by LDA;
the output of TM is the predicted service topic feature

d
TS (defined in Table III). Finally, all the services in domain

d are ranked according to their topic feature’s KL distance
with d

TS . In this process, TM of domain d imitates the
matching patterns between topic features of requirement and
topic features of services in domain d. We have developed a
machine learning method to learn the matching patterns.

1T

2T

cKT

1
dH

2
dH

d

d
LH

1T

2T

sKT

Fig. 3. Procedure for topic matching.
The core component of TM is an ELM-based “topic-

topic” hidden layer. After learning from the historical usage
information, the matching patterns of domain d are
embedded in the input weight matrix dI , the bias vector dB ,
and the output weight matrix dO . The notions used in DTM

are listed in Table III.

TABLE III. ADDITIONAL NOTIONS IN DOMAIN TOPIC MATCHING
'

iT Topic i on service side
d
iH The ith unit in topic-topic hidden layer of domain d

dL The # of units in hidden layer of domain d

dI ×d cL K input weight matrix of domain d

dB ×1dL vector, bias of hidden layer units of domain d

dO ×d sL K output weight matrix of domain d

dM The # of composition using service of domain d

d
TFC ×d cM K matrix of composition topic feature for

training TM of domain d
d
STFM ×d sM K matrix of service topic feature for traning TM

of domain d
d
TS 1 sK� infered service topic feature vector of domain d

2) Model training
Using clustering results and the historical usage

information, we can obtain the training data for TM of
domain d: d

TFC matrix at input side and d
STFM matrix at output

side. The parameters are learned following the ELM training
process whose pseudo code is shown in Algorithm 4.

Algorithm 4: TM parameter inference
Input: STF matrix, CTF matrix, ID matrix

{ :1 ,1di dS d D i N� � � � }
Output: { ,d d dI B O d D� � }
1. For d= 1 to D
2. dM = sum(ID (:, d))
3. = (,)d

STF d sM zeros M K
4. (,)d

TF d cC zeros M K�
5. End For
6. For i = 1 to M
7. For d = 1 to D
8. If ID (i, d) == 1

9. (1,:)d
TFC end � CTF(i,:)

10. Randomly choose djS used in iC
11. (1,:)d

STFM end � STF(j,:)
12. End If
13. End For
14. End For
15. For d = 1 to D
16. Infer { ,d d dI B O } by { ,d d

TF STFC M }
17. End For

Lines 1-14 acquire the training data for TM of each
domain. Lines 15-17 learn the parameters similar to
Algorithm 2.

3) Domain Topic Matching based Recommendation
Via DR, the new requirement is transferred to QC . In this

phase, inputting QC to TM of each domain and following the
TM working process, we can acquire the service ranking
order of each domain. Combining with domain relevance

443443

ranking order, the domain-aware recommendation result is
obtained in Algorithm 5.

Algorithm 5: DTM service recommendation
Input: QC ,{ ,d d dI B O d D� � }
Output: domain-aware recommendation result
1. For d = 1 to D
2. (,) d

Q d d d TC TM I B O S
3. rank all the services in domain d
4. End For
5. Return domain relevance ranking order & service

ranking order within domain
Lines 1-4 obtain per domain per service ranking list: line

2 inputs QC to trained TM of domain d and gains d
TS similar

to the method in Algorithm 3. Line 3 ranks all the services
in domain d according to their topic feature’s KL distance
with d

TS . Line 5 recommends services combining domain
relevance probability and services ranking order inside of
each domain. For example, if there are 10 domains, DTM
first places the first service in each domain at top 10
corresponding to the relevance order of their domain.
Afterwards, DTM places the second service in each domain
at 11~20 also corresponding to the relevance order of their
domain, and so on.

IV. EXPERIMENTS

To the best of our knowledge, ProgrammableWeb.com is
by far the largest online repository of Web APIs (i.e.,
services) and their mashups (i.e., compositions). PW
organizes Web APIs into different categories according to
their functionalities. Therefore, we adopt it as our testbed.
Note that we use the terms ‘service’ and ‘composition’ to
denote Web APIs and mashups, respectively.

A. Data Set
We crawled the service and composition data from the

ProgrammableWeb.com over the last 8-year time period
(June 2005 to June 2013). In the data set, descriptive text of
services and compositions consists of their Description File,
Service Tags and Summary. After removing meaningless or
vacant compositions and services, the data set can be profiled
in Table IV.

TABLE IV. DATA SET ON PROGRAMMABLEWEB.COM
Total # of services 7,186
Total # of original service categories from PW 62
Total # of compositions 6,813
of services used in at least one composition 1,155
Average # of services in one composition 2.075
Total # of terms in compostions corpus 205,494
Total # of terms in services corpus 350,101

B. Evaluation Metrics
1) MAP@N
Mean Average Precision @ top N services in ranking list

is defined as follows:

1
()

@

N
r

r

used

N I r
rMAP N

N
�

	

� �
 ��

�
()�)I (

()I (
�
��()I (

 (3)

Where rN denotes the number of actually used services
in the top r services of the ranking list, I(r) indicates whether
the service at ranking position r is actually used and usedN
represents the total number of actually used services in
composition.

2) NDCG@K
Normalized Discounted Cumulative Gain @ top K

services in ranking list is defined as follows:
()

1 2

1 (2 1)@
log (1)

r jK

jK

NDCG K
N j�

�
�

�� (4)

Where r(j) represents the relevant score {0,1} of the jth
recommended service on the ranking list and KN represents
the ideal maximum score that the cumulative component can
reach.

C. Baseline Methods
We chose four types of common recommendation

methods as baseline methods: TF-IDF and LDA are
functionality-based methods; PopK is popularity-based
method; STM considers both functionality and popularity,
without domain knowledge; OTM recommends services
based on original service clutsering resultes offered by PW.

1) TF-IDF
For the TF-IDF method, we first obtain the Term

Frequency-document Matrix (TDM) from the corpus, and
transfer TDM to Tf-idf Weighted-Document Matrix
(TWDM). Afterwards, services are recommended according
to their tf-idf weight similarity with composition
requirements measured by KL divergence as defined below:

1

(,)(||)= (,) log
(,)

N

KL
i

TWDM i qD query service TWDM i q
TWDM i s�

� (5)

Where N denotes the total number of terms, TWDM(i,q)
denotes the tf-idf weight of the ith term given the query and
TWDM(i,s) denotes the tf-idf weight of the ith term given a
service.

2) LDA
For the LDA method, after training LDA model with the

corpus, we infer the topic distribution of the composition
query. Subsequently, we directly calculate the KL
divergence between topic distribution of query and each
service as follows:

1

(|)(||)= (|) log
(|)

K

KL
i

P i queryD query service P i query
P i service�

� (6)

Where K denotes the total number of topics, P(i|query)
denotes the probability of topic i given the query, P(i|service)
denotes the probability of topic i given a service. Similarly,
all the services are ranked by their topic distribution KL
divergence with the query.

3) PopK
For the PopK method, similar to the approach in [18], we

recommend the most popular services in each relevant
service domain.

4) Single Topic Matching (STM)
STM is a special case of the proposed DTM. STM

considers the entire set of services as a single domain,
without considering domain-aware influence.

444444

5) Original Topic Matching (OTM)
The difference between OTM and DTM is that OTM

recommends services based on the service categorization
offered by PW rather than vKNN.

D. Experiment Results
1) Overall performance comparison
We consider the recommended services to be positive

only if the services are actually used in the composition;
otherwise, the recommended services are considered to be
negative. After 10-fold cross validation, the MAP and
NDCG of the six methods on varying sizes of
recommendation list are shown in Figure 4. As illustrated,
the DTM (fix number of domains at 10) method outperforms
on both MAP and NDCG. The TF-IDF and LDA only
calculate the functionality similarity between service and
composition requirements, thus show a relatively poor
performance. PopK performs relatively well because the
services on this data set present a strong power-law
distribution, which means that the popular services gain
more preference from developers [15]. STM takes both
functionality and popularity into account; however, without
considering domain-specific matching patterns restricts its
performance. The service categorization offered by PW takes
no consideration of service popularity, which impacts on
OTM. Taking advantage of domain-aware service clustering
by vKNN, our DTM method considers both domain
relevance and domain-specific matching pattern, thus results
in a superior recommendation ratio.

0 1 5 20 40 80
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

Top N

M
A

P@
N

0 1 5 20 40 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Top K

N
D

C
G

@
K

DTM
OTM
PopK
STM
TF-IDF
LDA

DTM
OTM
PopK
STM
TF-IDF
LDA

Fig. 4. MAP and NDCG of six methods on different sizes of
recommendation list.

2) Long tail performance comparison
‘Long tail’ recommendation gains a lot of momentum in

recent years [8]. According to our earlier empirical study [1,
6], the service usage pattern on the ProgrammableWeb.com
shows a significant power-law distribution. By our study,
nearly 5% popular services ever occurred in 78%
compositions, and the other 95% services are in long tail.
Therefore, we cannot ignore the large amount of services in
long tail for their potential values. We report the
recommendation performance on long tail services in Figure
5. In the context of service recommendation, 20 is a
reasonable length of candidate service list. Thus, we compare
the performance of MAP@20 and NDCG@20 for each
method and report the results in Table V.

From Table V, it can be seen that PopK sharply decreases
in the two metrics as it only recommends popular services
but ignores services in long tail. OTM and STM are also
subject to the power-law influence and shows poor

performance in recommending services in long tail. On the
contrary, TF-IDF does not consider service popularity, which
in turn gets rids of the power-law influence and becomes
better in long tail recommendation. LDA also decrease in
both MAP and NDCG. Though DTM suffers a performance
degradation, it still performs the best for the long tail
recommendation. We conclude that domain-aware method
can remedy the influence of power-law and contributes to a
higher performance in long tail recommendation.

0 1 5 20 40 80
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

Top N

M
A

P@
N

0 1 5 20 40 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Top K

N
D

C
G

@
K

DTM
OTM
PopK
STM
TF-IDF
LDA

DTM
OTM
PopK
STM
TF-IDF
LDA

Fig. 5. MAP and NDCG of six methods on long tail recommendation.

TABLE V. THE COMPARISON BETWEEN OVERALL AND LONG TAIL

MAP@20 NDCG@20
Overall LT variation Overall LT variation

DTM 69.73% 53.21% -16.52% 0.7681 0.6042 -0.1639
OTM 64.52% 32.94% -31.58% 0.6807 0.3618 -0.3189
PopK 48.23% 8.59% -39.64% 0.5422 0.1242 -0.418
STM 39.88% 13.89% -25.99% 0.4769 0.215 -0.2619

TFIDF 22.23% 35.67% 13.44% 0.2954 0.4159 0.1205
LDA 5.4% 4.22% -1.18% 0.1034 0.0702 -0.0332

3) Amount of service domains
The proposed DTM method provides a flexible

mechanism adjustable to the amount of the service domains.
In this section, we discuss the impact of the amount of
domains. We examine the MAP@20 and NDCG@20 with
varying amount of service domains shown in Table VI.

TABLE VI. IMPACT OF AMOUNT OF SERVICE DOMAINS
Amount Of
Domains

MAP@20 NDCG@20
Overall LT Overall LT

1 39.88% 13.89% 0.4769 0.215
5 52.4% 36.42% 0.5933 0.448
10 69.73% 53.21% 0.7681 0.6042
15 65.93% 57.46% 0.7167 0.632
20 63.41% 57.26% 0.6925 0.6212

In some range, DTM shows a general trend of better
performance with more domains. Especially, DTM can
significantly improve the precision rate in long tail
recommendation. When there is only one group, the DTM is
equivalent to STM and shows a relative low MAP (13.89%)
and NDCG (0.215). When the amount of domains is 10 or
larger, DTM mines the implicit usage patterns in long tail
better. Thus, the MAP and NDCG of DTM are over 50% and
0.6, respectively. However, too many presetting domains
may weaken too much the status of small number of popular
services in domains. As a result, it leads to slight decreasing
in MAP and NDCG when it comes to overall metric.

445445

V. RELATED WORK

Service recommendation has gained significant
momentum in recent years. Among them, trace norm
regularized matrix factorization technique is adopted in [9] to
predict QoS features to support service recommendation. A
social-aware service recommendation approach for Mashup
composition is proposed in [3], comprising a coupled matrix
model and Latent Dirichlet Allocation (LDA) model.
However, most existing works overlook domain knowledge
at service recommendation [15], especially when domain
information is not labeled explicitly by service providers.

Service clustering has been studied in the context of web
service repository or ecosystem. An ontology-based service
clustering method is adopted in [10] to improve service
discovery. In [11], service-oriented categorization is
addressed with an extended SVM-based text clustering
technique. Zhou et al. [12] present an approach of leveraging
and integrating both clustering and ranking methods toward
higher performance.

We go a step further in this paper. Our proposed approach
first clusters services into different domains, then
automatically decomposes requirements into domains and
goes deep into each domain for matching proper services.

VI. CONCLUSIONS

Service compositions inherently contain various domain-
specific functionalities to fulfill complex requirements.
However, due to the lack of explicit service domain
categorization, most state-of-the-art service recommendation
methods only mine the matching pattern between services
and composition requirements without a finer grained
classification of domains. This significantly restricts the
accuracy and relevance of recommendation.

In this paper, a novel three-step approach is presented to
provide domain-aware service recommendation. To
overcome the absence of explicit service domain
categorization, we first cluster services into different
domains using topic features. Then, we mine domain
relevance and domain-aware matching patterns regarding
composition. Finally, we give recommendation in the form
of a list of domains, each with a ranked list of services. The
experimental results show that our approach gains a 30%
improvement in MAP@20 and achieves a 20% improvement
for long tail recommendation, which proves the advantages
of domain-aware recommendation over state-of-art methods.

Our current clustering algorithm classifies services into
individual domains. Future work will extend the approach
and consider services associated with multi-domains. We
also plan to incorporate users’ profile and other information
for personalized and context-aware recommendation.

ACKNOWLEDGMENT

This work is partially supported by the National Natural
Science Foundation of China (No.61033005, No.61174169)

and the Independent Research Fund of Tsinghua University
(No. 20111080998) and the Specialized Research Fund for
the Doctoral Program of Higher Education (No.
20120002110034).

REFERENCES

[1] K. Huang, Y. Fan, W. Tan, and X. Li, "Service Recommendation in an
Evolving Ecosystem: A Link Prediction Approach", In Proceedings of
IEEE International Conference on Web Services (ICWS), pp. 507-514,
2013.

[2] X. Chen, Z. Zheng, X. Liu, Z Huang, and H. Sun, "Personalized QoS-
Aware Web Service Recommendation and Visualization", IEEE
Transactions on Services Computing, 1(6): 35-47, 2013.

[3] W. Xu, J. Cao, L. Hu, J. Wang, and M. Li, "A Social-Aware Service
Recommendation Approach for Mashup Creation" In Proceedings of
IEEE International Conference on Web Services (ICWS), pp. 107-114,
2013.

[4] D. M. Blei, A. Y. Ng and M. I. Jordan, "Latent Dirichlet Allocation",
The Journal of Machine Learning Research, 3: 993-1022, 2003.

[5] G. Huang, Q. Zhu and C. Siew, "Extreme Learning Machine: Theory
and Applications", Neurocomputing, 1(70): 489-501, 2006.

[6] K. Huang, Y. Fan and W. Tan, "An Empirical Study of Programmable
Web: A Network Analysis on a Service-Mashup System", In
Proceedings of IEEE International Conference on Web Services
(ICWS), pp. 552-559, 2012.

[7] M. N. Do and M. Vetterli, "Wavelet-based Texture Retrieval using
Generalized Gaussian Density and Kullback-Leibler Distance", IEEE
Transactions on Image Processing, 1(11):146-158, 2002.

[8] H. Yin, B. Cui, J. Li, J. Yao, and C. Chen, "Challenging the Long Tail
Recommendation", In VLDB, pp. 896-907, 2012.

[9] Q. Yu, Z. Zheng and H. Wang, "Trace Norm Regularized Matrix
Factorization for Service Recommendation", In Proceedings of IEEE
International Conference on Web Services (ICWS), pp. 34-41, 2013.

[10] D. Bianchini, V. De Antonellis, B. Pernici, and P. Plebani. "Ontology-
based Methodology for e-Service Discovery", Information Systems,
4(31): 361-380, 2006.

[11] J. Zhang, J. Wang, P.C.K. Hung, Z. Li, J. Liu, and K. He, "Leveraging
Incrementally Enriched Domain Knowledge to Enhance Service
Categorization", International Journal of Web Services Research
(JWSR), 9(3): pp. 43-66, 2012.

[12] Y. Zhou, L. Liu, C. Perng, A. Sailer, I. Silva-Lepe, and Z. Su,
"Ranking Services by Service Network Structure and Service", In
Proceedings of IEEE International Conference on Web Services
(ICWS), pp. 26-33, 2013.

[13] W. Tan, M. Zhou, Business and Scientific Workflows: A Web Service-
Oriented Approach, Wiley-IEEE Press, 2013.

[14] W. Tan, J. Zhang, and I. Foster, “Network Analysis of Scientific
Workflows: a Gateway to Reuse”, IEEE Computer, 43(9): 54-61, 2010.

[15] K. Huang, J. Yao, Y. Fan, W. Tan, S. Nepal, Y. Ni, and S. Chen,
“Mirror, Mirror, on the Web, Which is the Most Reputable Service of
them All? - A Domain-Aware and Reputation-Aware Method for
Service Recommendation”, In Proceedings of International
Conference on Service Oriented Computing (ICSOC), pp. 343-357,
2013.

[16] J. Zhang, W. Tan, J. Alexander, I. Foster, and R. Madduri,
“Recommend-As-You-Go: A Novel Approach Supporting Services-
Oriented Scientific Workflow Reuse”, In Proceedings of IEEE
International Conference on Services Computing (SCC), 2011, pp. 48-
55.

[17] K. Huang, Y. Fan, and W. Tan, “Recommendation in an Evolving
Service Ecosystem Based on Network Prediction”, IEEE Transactions
on Automation Science and Engineering. Accepted in 2014 and
available online.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6717050.

446446

