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Abstract—Service compositions inherently require multiple 
services each with its domain-specific functionality. Therefore, 
how to mine matching patterns between services in relevant 
domains and compositions becomes crucial to service 
recommendation for composition. Existing methods usually 
overlook domain relevance and domain-specific matching 
patterns, which restrict the quality of recommendations. In this 
paper, a novel approach is proposed to offer domain-aware 
service recommendation. First, a K Nearest Neighbor variant 
(vKNN) based on topic model Latent Dirichlet Allocation 
(LDA) is introduced to cluster services into semantically 
coherent domains. On top of service domain clustering results 
by vKNN, a probabilistic matching model Domain Router (DR) 
based on Extreme Learning Machine (ELM) is developed for 
decomposing a requirement to relevant domains. Finally, a 
comprehensive Domain Topic Matching (DTM) model is built 
to mine relevant domain-specific matching patterns to 
facilitate service recommendation. Experiments on a large-
scale real-world dataset show that DTM not only gains 
significant improvement at precision rate but also enhances the 
diversity of results.

Keywords—Service recommendation, LDA topic model, 
Domain-aware Service Clustering, Extreme Learning Machine, 
Domain-specific matching pattern 

I. INTRODUCTION

Service composition plays a key role in services 
computing and how to facilitate the construction of service 
composition have attracted significant attentions [1, 13]. In 
recent years, service recommendation has been proved to be 
a promising solution to support effective and efficient service 
composition [2, 16]. With the prevailing of RESTful services,
many online repositories allow service providers to describe 
services functionality in plain text (e.g., descriptive text or
tag). When a developer gives a composition requirement also 
in text, many existing methods directly search the entire set 
of services in a repository and recommend services that may 
satisfy the functionality needs of the given requirement [3].
Various non-functional QoS features are also taken into 
account in service recommendation [9].

However, these methods oftentimes overlook the fact that 
some services in a repository have similar functionalities and 
form an implicit but inherent service domain [15]. For 
example, Map services such as Google Map and Bing Map
form a “map” domain, and Facebook, Twitter, etc. form a
“social network” domain. Such domains delimitate 

semantically coherent service groups. Moreover, popular 
services from different domains become popular for different 
and domain-specific reasons. For example, Google Map
becomes popular in domain ‘Map’ for its rich and accurate
map information, while Twitter is popular in domain ‘Social’
because of its attractive user interface. These domain-
specific, non-functional criteria determine the popularity of 
services, and are embedded in historical usage information.
We name them domain-specific matching patterns. Therefore, 
services in each individual domain have similar 
functionalities and enjoy their own matching patterns
regarding composition. A previous study has suggested that 
such domain-specific hidden information may further 
enhance the performance of service recommendation [11].

In many repositories, e.g., ProgrammableWeb1 or PW for 
short, services are organized in categories such as 
advertising, enterprise and file sharing. This categorization is 
helpful in searching for services; however, it is currently 
realized through a manual process and no domain-specific
matching pattern is derived to help service recommendation.
Furthermore, developers are usually not able to explicitly 
express the relevant domains in the given requirements. 
Therefore, without any knowledge about these domains, 
most existing works had to mine the matching patterns
between the entire set of services and compositions, taking 
into no consideration of the domain-specific matching 
patterns. This largely restricts the quality of recommendation 
results.

In this paper, we propose a three-step approach to 
overcome the aforementioned restrictions and offer domain-
aware service recommendation for solution construction.

First, a domain-aware service clustering method based on 
a K Nearest Neighbor variant (vKNN) is introduced to 
extract features of services and further cluster them into 
different domains. vKNN leverages both content (the topic 
model Latent Dirichlet Allocation (LDA) [4]) and popularity 
(services’ historical usage information), which differentiate it
from traditional clustering methods. This step provides a
basis for mining domain relevance and domain-specific
matching patterns in subsequent steps.

Second, on top of vKNN, a probabilistic matching model
- Domain Router (DR) model - is designed to decompose a
textual requirement to relevant domains. Based on LDA and
Extreme Learning Machine (ELM) [5], DR first transforms a

                                                       
1 http://www.programmableweb.com/
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textual requirement description to requirement topic features.
Afterward it analyzes the functional requirements involved 
in the previously derived topic features, and predicts which 
domains are relevant to the requirement.  

Finally, based on the proposed vKNN and DR, a 
comprehensive Domain Topic Matching (DTM) model is 
presented to enable and facilitate domain-aware service 
recommendation. The recommendation results are 
represented in the form of domain relevance ranking order
together with per domain recommendation list, which 
considers both candidate domains’ relevance and favorable 
services in each domain.

Our experiments on PW data set show that DTM gains a 
30% improvement at overall precision rate, compared to 
state-of-the-art functionality or popularity based approaches 
that ignore domain knowledge. Moreover, DTM also 
prevails compared to the recommendation based on the 
original service categorization offered by PW, mainly due to 
the advantage of vKNN over PW’s (manual) categorization.
DTM also achieves a 20% improvement for long tail 
recommendation, i.e., recommending the not-so-popular 
services, which enhances the diversity of recommendation 
results [8]. The superiority of DTM is a result of our mining 
and exploiting of domain-aware knowledge, and our 
consideration of historical usage. The remainder of the paper 
is organized as follows. Section 2 illustrates the overall 
methodology; Section 3 presents the recommendation model 
and algorithms; Section 4 presents the experiments and
results on a real-world dataset; Section 5 discusses the 
related work and Section 6 draws a conclusion.

II. OVERVIEW OF METHODOLOGY

The overview of our proposed methodology is illustrated 
in Figure 1. Aiming to mine domain-specific service 
matching patterns to support service composition, our 
methodology is divided into an offline service clustering 
phase and an online service recommendation phase.

Cluster 
Services Offline

Recommend 
Services Online

. . .

. . .

. . .

. . .

. . .

1 0.5P � 3 0.3P � 2 0.1P �

1 0.5P � 3 0.3P � 2 0.1P � . . .

. . .

. . .

. . .

Fig. 1. Methodology of domain-aware service recommendation for 
composition. 

dP  denotes the relevance probability of domain d. 

The offline phase provides a basis for domain-aware 
recommendation. A Domain Service Clustering method 
takes as input both service topic features (captured from 
services’ textual description by the LDA topic model) and 
service popularity (extracted from service historical usage 
records by composition), and outputs services clustering 
results. Within each resulting domain, services have similar 
functionality and share the same matching pattern.

In the online recommendation phase, when received a 
developer’s textual requirement (in form of description text, 
tag, etc.), the first task is to decompose the requirement into 
relevance domains. The Domain Router takes the textual 
requirement as input, and predicts the relevance probabilities 
of each domain, leading to a domain relevance ranking order. 
Afterwards, a Domain Topic Matching method considers 
both the domain relevance order and domain-specific
matching patterns, and returns “Per domain service ranking 
list.” In this way, the developer is informed “which domains 
are potential relevant to your requirement” and “which 
services may satisfy your needs in each domain.” Such a
user-friendly form of recommendation makes it easier for 
developers to select proper services to satisfy a certain aspect 
of need.

III. MODELING AND ALGORITHMS

As shown in Figure 1, our methodology introduces a
three-step approach to realize domain-aware service 
recommendation for composition: a K Nearest Neighbor
variant (vKNN) method for Domain-aware Service 
Clustering (section A), a Domain Router (DR) model for 
domain relevance ranking (section B), and a Domain Topic 
Matching (DTM) model for “per domain service ranking list”
(section C).

A. Domain-aware Service Clustering 
1) Clustering motivation 
The first step is to automatically cluster services into 

semantically coherent domains. According to our empirical 
study [1, 6] of service usage patterns, from each functionality 
aspect, there may exist one core service that gains the most 
popularity. Most services added later into the repository 
usually follow one of the core services and its functionality. 
Therefore, the traditional KNN that only considers the 
functionality similarity is insufficient for domain service 
clustering. Here we introduce a two-phase clustering strategy, 
named K-Nearest-Neighbor variant (vKNN) to group
services. In vKNN, both functionality and popularity of 
services are taken into account.

2) Information gathering for clustering
A service’s functionality can be extracted from its textual 

material (description text, service tag, etc.). Similar to our 
previous work [15], we use a probabilistic topic model LDA 
[4] to map the service’s functionality to a fixed-length vector 
named ‘topic feature’ vector. Every element in the topic 
feature vector ranges from 0 to 1, which represents the 
probability of whether a service is relevant to a certain 
functionality (or topic). The summation of all the elements of 
a topic feature vector equals 1. We define a STF matrix
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(defined in Table I) to formally represent the topic features
of all services.

A service’s popularity is measured by the number of 
compositions that invoke the service. By analyzing 
compositions in a repository, we can obtain all the services’
popularity information from their historical usage. Similar to
[14], we formalize the historical usage information in a CS
matrix (defined in Table I). The summation of the ith column 
of CS is assigned as the popularity of service i (Algorithm 1,
line 1-3).

3) Two-phase clustering strategy
The proposed vKNN clustering method contains two

phases. In the first phase, we extract core services in the 
repository considering both its topic feature similarity and 
popularity. In the second phase, we firstly rank all the non-
core services by their popularity. Similar to the KNN method, 
we cluster each service to one domain considering its topic 
distribution’s Kullback Leibler (KL) distance [7]. With all
involved notions listed in Table I we describe the pseudo 
code of our vKNN clustering algorithm in Algorithm 1.

TABLE I. NOTIONS IN DOMAIN SERVICE CLUSTERING
N The total # of services

sK The total # of topics on service side

iS Service i in repository

STF
× sN K matrix, STF(i,k) represents the probability of 

topic k given 
iS

iC Composition i
M The total # of composition

CS
×M N matrix, CS(i,j) =1 if 

jS is used by 

iC ,otherwise CS(i,j) =0

D The total # of service domains

dD Servic domain d

diS The ith service clustered in domain d

dN The # of services clustered in domain d

SC 1 D� vector,  ( )SC d represents the core service in 
each domain d

Algorithm 1: variant K Nearest Neighbor clustering
Input: STF matrix, CS matrix
Output: { :1 ,1di dS d D i N� � � � }
1.  For i = 1 to N
2.     iS .populariry = sum(CS(:, i))
3.  End For
4.  d = 1
5.  For r = 1 to N //KLD(a,b) calculates KL Distance of a,b
6.      For j = 1 to d
7.         If KLD(the rth popular service, SC (j) ) � threshold
8.                 distribute rth popular service as SC (d++)
9.                 Break
10.      End If
11.    End For
12.    Break if d � D
13. End For
14. For i = 1 to N

15.      If  iS not in SC
16.      For d = 1 to D
17.            calculate KLD(

iS , 1 ( ,:)
dSi Dd

STF i
N � )

18.      End for
19.      Distribute iS to  dD with minima KLD
20.      dN � �
21. End For       

Lines 1-3 obtain the service popularity based on historical 
usage information. Lines 4-13 identify the core services in 
each domain according to their popularity and topic features.
Afterwards, for each unclustered service, lines 16-18
caculate its average KL distance to the clustered services 
topic distribution in each domain. Finally line 19 assigns it to 
the domain to which it achieves a minima KL distance. After 
the iteration, all the services in the repository are clustered 
into a certain domain.

The main difference between vKNN and existing 
clustering methods is that vKNN considers service usage 
patterns extracted from historical records. vKNN first 
identifies some popular services with different topic features 
and assigns them as core services in different domains, 
before clustering the non-core services. In this way, services 
within each domain not only have relevant functionality but 
also share the same matching patterns regarding
compositions. Thus, mining the domain relevance with 
composition requirement and domain-specific matching 
pattern regarding composition becomes possible.

B. Domain Router Model 
1) Model description
After clustering all the services in domains, when 

receiving a composition textual requirement, the first task is 
to decompose the requirement and predict its relevance with 
each domain. This task is conducted by a Domain Router
(DR) model. 

The workflow in a DR is shown in Figure 2. The input of 
DR is the topic features of requirement captured by LDA; the 
output of DR is the relevance probabilities of each domain. 
The role of DR is to imitate the mapping function from 
requirement to domain relevance. Here, we adopt a machine 
learning method to learn the mapping function.

1T

2T

cKT

1P

2P

DP

1H

2H

'
RH

Fig. 2. Working process of Domain Router. 
Combine historical usage information and results of 

domain-aware service clustering, we obtain historical dataset 
of which compositions use which domain’s services. 
Formally, we define these information as a ID matrix 
(illustrated in Table II). Similar to the STF matrix, we use 
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LDA to capture topic features of composition requirement 
from their textual descriptions (requirement text, 
composition tag, etc.) and formalize them as a CTF matrix 
(illustrated in Table II). Afterwards, the core task is turned to 
learn the implicit mapping relations between matrix CTF
and ID . We adopt the Extreme Learning Machine (ELM)
[5], which provides fast learning speed and powerful 
learning scalability, to establish a ‘Topic-Domain’ hidden 
layer between them. The mapping relation is embedded in 
the input weight matrix RI , the bias vector RB , and the 
output weight matrix RO . To avoid ambiguity, we list the 
notions used in DR in Table II.

TABLE II. ADDITIONAL NOTIONS USED IN DOMAIN ROUTER

ID
×M D matrix indicating whether 

iC used service in a 

certain domain: 
ID (i, d) =1 if 

iC uses at least a 
service in domain d; otherwise, 

ID (i, d) =0

CTF
× cM K matrix, CTF(i,k) represents the probability of 

topic k given composition 
iC

iT Topic i on composition side

cK The total # of topics on composition side

R The total # of hidden units in domain router
'
iH The ith unit of topic-domain hidden layer 

RI × cR K input weight matrix of DR

RB ×1R vector, bias of hidden layer units of DR

RO ×R D output weight matrix of DR

QC 1 cK� topic feature vector of a new requriement 

P 1 D� domain relevance probability vector regarding 
new composition requirement

iP The relevance probability of domain i

2) Model Training 
As aforementioned, the kernel task here is to learn the 

model parameters which include the input weight matrix RI
between composition topics feature vector and hidden layer, 
the bias vector RB  of hidden layer, and the output weight 
matrix RO between hidden layer and the domain relevance 
probabilities result. After obtaining the CTF matrix and 

ID matrix as training dataset, we follow the three training 
steps in [5]. The first step is to randomly assign RI and RB .
Then calculate the hidden layer output HLOutput. Finally, 
calculate the Moore-Penrose inverse matrix of HLOutput
and obtain RO .  

Especially, we resort to the SVD approach for calculating
Moore-penrose inverse matrix of HLOutput (Algorithm 2.
line 15). The SVD result of HLOutput is illustrated as 
follows,

HLOutput HU V� �
where 

1 0
0 0
�	 


� � � �
 �

, 1 1 2( , ... )rdiag � � �� �              (1) 

r� is the single value of matrix HLOutput, r=

rank(HLOutput) satisfying 1 2 1... 0r r� � � ��� � � . Then 
the Moore-penrose inverse matrix of HLOutput can be 
obtained as follows, 

HH V U� �� �
where

1 0
0 0

�
� 	 
�

� � � �
 �

, +
1 1 2(1/ ,1 ...1 )rdiag � � �� �      (2) 

We summarize the details of the model training in 
Algorithm 2.
Algorithm 2: DR paremeters inference
Input: CTF matrix, CS matrix, 

{ :1 ,1di dS d D i N� � � � }
Output: { ,R R RI B O }
1.   For i = 1 to M     
2.        tempdI =zeros(1,D) // initialize tempdI as 1 D

// zero matrix
3.        For d = 1 to D
4.            If iC used service in dD
5.                 tempdI(1,d) = 1
6.            End If
7.        End For
8.        ID (i,:) = tempdI
9.   End For
10. Initialize RI by random value [-1, 1]  
11. Initialize RB by random value [0, 1]
12. BExtend = RB (:,ones(M,1)) // extend RB to a

// ×R M matrix by column
13. tempHLOutput = RI CTF’+ BExtend

14. HLOutput =
2tempHLOutpute�

15. H � = Moore-penrose inverse matrix of HLOutput 
16.  RO = ( )H � ’ ID
17. Return RI matrix,  RB vector, and RO matrix

Lines 1-9 combine historical usage information and 
results of domain-aware service clustering, find which 
domains are involved in compositions and organize the 
information into matrix ID . Lines 10-17 follow the ELM 
training process and use matrix CTF and ID  to learn the 
parameter of DR.

3) Domain Relevance Ranking  
When receiving a new composition requirement, we first 

use LDA to extract topic feature QC  of the requirement. 

After inputting QC into trained DR, we obtain the relevance 
probabilities vector P at its output side. Algorithm 3 shows
the pseudo code of the Domain Relevance Ranking process 
of DR.

Algorithm 3: Domain Relevance Ranking
Input: New Composition requirement
           RI matrix, RB vector, RO matrix
Output: Relevance ranking order of domains 
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1. QC new composition requirement
2. tempHLOutput =

RI QC +
RB

3. HLOutput = 
2tempHLOutpute�

4. P = HLOutput’ RO
5. For d = 1 to D     
6.        Ranking domain d according to iP
7. End For

Line 1 uses LDA to infer new composition requirement’s
topic features. Lines 2-4 use the trained DR model to predict 
the each domain’s relevance probability. Lines 5-7 rank all 
the domains according to their relevance probability.

In contrast to the traditional keyword-based methods, DR
uses LDA to transfer textual requirement to topic features.
Furthermore, DR learns the historical ‘requirement-domain’
mapping relation at the topic level. Even though developers 
may not express the domain explicitly with keywords, DR
can still predict relevant domains, which will facilitate 
service recommendation process.

C. Domain Topic Matching Model 
1) Model description
Through DR, we can obtain the domain relevance ranking 

order. We have further designed a Domain Topic Matching
(DTM) model, aiming to inform developers “which services 
may better satisfy your needs in each domain.”

In DTM, each domain is assigned a uniform probabilistic 
model called Topic Matching (TM), which mines the implicit 
matching patterns of a certain domain regarding composition. 
Figure 3 illustrates how TM of domain d works. The input of 
TM is the topic features of requirement captured by LDA; 
the output of TM is the predicted service topic feature 

d
TS (defined in Table III). Finally, all the services in domain 

d are ranked according to their topic feature’s KL distance 
with d

TS . In this process, TM of domain d imitates the 
matching patterns between topic features of requirement and 
topic features of services in domain d. We have developed a
machine learning method to learn the matching patterns.

1T

2T

cKT

1
dH

2
dH

d

d
LH

1T

2T

sKT

Fig. 3. Procedure for topic matching. 
The core component of TM is an ELM-based “topic-

topic” hidden layer. After learning from the historical usage 
information, the matching patterns of domain d are
embedded in the input weight matrix dI , the bias vector dB ,
and the output weight matrix dO . The notions used in DTM 

are listed in Table III.

TABLE III. ADDITIONAL NOTIONS IN DOMAIN TOPIC MATCHING
'

iT Topic i on service side
d
iH The ith unit in topic-topic hidden layer of domain d

dL The # of units in hidden layer of domain d

dI ×d cL K input weight matrix of domain d

dB ×1dL vector, bias of hidden layer units of domain d

dO ×d sL K output weight matrix of domain d

dM The # of composition using service of domain d

d
TFC ×d cM K matrix of composition topic feature for

training TM of domain d
d
STFM ×d sM K matrix of service topic feature for traning TM 

of domain d
d
TS 1 sK� infered service topic feature vector of domain d

2) Model training 
Using clustering results and the historical usage 

information, we can obtain the training data for TM of 
domain d: d

TFC matrix at input side and d
STFM matrix at output 

side. The parameters are learned following the ELM training 
process whose pseudo code is shown in Algorithm 4.

Algorithm 4: TM parameter inference
Input: STF matrix, CTF matrix, ID matrix

{ :1 ,1di dS d D i N� � � � }
Output: { ,d d dI B O d D� � }
1. For d= 1 to D
2.     dM = sum( ID (:, d))
3.     = ( , )d

STF d sM zeros M K
4.     ( , )d

TF d cC zeros M K�
5. End For
6. For i = 1 to M
7.      For d = 1 to D
8.         If ID (i, d) == 1

9.             ( 1,:)d
TFC end � CTF(i,:)   

10.              Randomly choose djS used in iC
11.             ( 1,:)d

STFM end � STF(j,:)
12.         End If
13.      End For
14. End For
15. For d = 1 to D
16.      Infer { ,d d dI B O } by { ,d d

TF STFC M }
17. End For

Lines 1-14 acquire the training data for TM of each
domain. Lines 15-17 learn the parameters similar to 
Algorithm 2.

3) Domain Topic Matching based Recommendation
Via DR, the new requirement is transferred to QC . In this 

phase, inputting QC to TM of each domain and following the 
TM working process, we can acquire the service ranking 
order of each domain. Combining with domain relevance 
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ranking order, the domain-aware recommendation result is 
obtained in Algorithm 5.

Algorithm 5: DTM service recommendation
Input: QC ,{ ,d d dI B O d D� � }
Output: domain-aware recommendation result
1. For d = 1 to D   
2.       ( , ) d

Q d d d TC TM I B O S
3.        rank all the services in domain d
4. End For
5. Return domain relevance ranking order & service 

ranking order within domain
Lines 1-4 obtain per domain per service ranking list: line 

2 inputs QC to trained TM of domain d and gains d
TS  similar 

to the method in Algorithm 3. Line 3 ranks all the services 
in domain d according to their topic feature’s KL distance 
with d

TS . Line 5 recommends services combining domain
relevance probability and services ranking order inside of 
each domain. For example, if there are 10 domains, DTM
first places the first service in each domain at top 10 
corresponding to the relevance order of their domain. 
Afterwards, DTM places the second service in each domain 
at 11~20 also corresponding to the relevance order of their 
domain, and so on.

IV. EXPERIMENTS

To the best of our knowledge, ProgrammableWeb.com is 
by far the largest online repository of Web APIs (i.e., 
services) and their mashups (i.e., compositions). PW 
organizes Web APIs into different categories according to 
their functionalities. Therefore, we adopt it as our testbed. 
Note that we use the terms ‘service’ and ‘composition’ to 
denote Web APIs and mashups, respectively. 

A. Data Set
We crawled the service and composition data from the 

ProgrammableWeb.com over the last 8-year time period 
(June 2005 to June 2013). In the data set, descriptive text of 
services and compositions consists of their Description File,
Service Tags and Summary. After removing meaningless or 
vacant compositions and services, the data set can be profiled 
in Table IV.

TABLE IV. DATA SET ON PROGRAMMABLEWEB.COM
Total # of services 7,186
Total # of original service categories from PW 62
Total # of compositions 6,813
# of services used in at least one composition 1,155
Average # of services in one composition 2.075
Total # of terms in compostions corpus 205,494
Total # of terms in services corpus 350,101

B. Evaluation Metrics 
1) MAP@N 
Mean Average Precision @ top N services in ranking list 

is defined as follows: 

1
( )

@

N
r

r

used

N I r
rMAP N

N
�

	 

� �
 ��

� 
( )�)I ( 

( )I (
�
��( )I (

                        (3) 

Where rN  denotes the number of actually used services 
in the top r services of the ranking list, I(r) indicates whether 
the service at ranking position r is actually used and usedN
represents the total number of actually used services in 
composition. 

2) NDCG@K 
Normalized Discounted Cumulative Gain @ top K 

services in ranking list is defined as follows: 
( )

1 2

1 (2 1)@
log (1 )

r jK

jK

NDCG K
N j�

�
�

��                   (4)

Where r(j) represents the relevant score {0,1} of the jth 
recommended service on the ranking list and KN  represents 
the ideal maximum score that the cumulative component can 
reach.  

C. Baseline Methods
We chose four types of common recommendation 

methods as baseline methods: TF-IDF and LDA are 
functionality-based methods; PopK is popularity-based 
method; STM considers both functionality and popularity, 
without domain knowledge; OTM recommends services 
based on original service clutsering resultes offered by PW.

1) TF-IDF
For the TF-IDF method, we first obtain the Term 

Frequency-document Matrix (TDM) from the corpus, and
transfer TDM to Tf-idf Weighted-Document Matrix 
(TWDM). Afterwards, services are recommended according 
to their tf-idf weight similarity with composition 
requirements measured by KL divergence as defined below:

1

( , )( || )= ( , ) log
( , )

N

KL
i

TWDM i qD query service TWDM i q
TWDM i s�

�       (5)

Where N denotes the total number of terms, TWDM(i,q) 
denotes the tf-idf weight of the ith term given the query and 
TWDM(i,s) denotes the tf-idf weight of the ith term given a 
service.

2) LDA 
For the LDA method, after training LDA model with the 

corpus, we infer the topic distribution of the composition 
query. Subsequently, we directly calculate the KL
divergence between topic distribution of query and each 
service as follows:

1

( | )( || )= ( | ) log
( | )

K

KL
i

P i queryD query service P i query
P i service�

�       (6)

Where K denotes the total number of topics, P(i|query)
denotes the probability of topic i given the query, P(i|service)
denotes the probability of topic i given a service. Similarly, 
all the services are ranked by their topic distribution KL 
divergence with the query.

3) PopK 
For the PopK method, similar to the approach in [18], we

recommend the most popular services in each relevant
service domain. 

4) Single Topic Matching (STM) 
STM is a special case of the proposed DTM. STM 

considers the entire set of services as a single domain, 
without considering domain-aware influence.
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5) Original Topic Matching (OTM) 
The difference between OTM and DTM is that OTM

recommends services based on the service categorization
offered by PW rather than vKNN.

D. Experiment Results
1) Overall performance comparison
We consider the recommended services to be positive 

only if the services are actually used in the composition; 
otherwise, the recommended services are considered to be 
negative. After 10-fold cross validation, the MAP and 
NDCG of the six methods on varying sizes of 
recommendation list are shown in Figure 4. As illustrated,
the DTM (fix number of domains at 10) method outperforms
on both MAP and NDCG. The TF-IDF and LDA only
calculate the functionality similarity between service and
composition requirements, thus show a relatively poor 
performance. PopK performs relatively well because the 
services on this data set present a strong power-law 
distribution, which means that the popular services gain 
more preference from developers [15]. STM takes both 
functionality and popularity into account; however, without 
considering domain-specific matching patterns restricts its 
performance. The service categorization offered by PW takes 
no consideration of service popularity, which impacts on
OTM. Taking advantage of domain-aware service clustering
by vKNN, our DTM method considers both domain 
relevance and domain-specific matching pattern, thus results
in a superior recommendation ratio.
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Fig. 4. MAP and NDCG of six methods on different sizes of 
recommendation list. 

2) Long tail performance comparison
‘Long tail’ recommendation gains a lot of momentum in 

recent years [8]. According to our earlier empirical study [1, 
6], the service usage pattern on the ProgrammableWeb.com 
shows a significant power-law distribution. By our study, 
nearly 5% popular services ever occurred in 78% 
compositions, and the other 95% services are in long tail. 
Therefore, we cannot ignore the large amount of services in 
long tail for their potential values. We report the 
recommendation performance on long tail services in Figure 
5. In the context of service recommendation, 20 is a 
reasonable length of candidate service list. Thus, we compare
the performance of MAP@20 and NDCG@20 for each 
method and report the results in Table V.

From Table V, it can be seen that PopK sharply decreases 
in the two metrics as it only recommends popular services 
but ignores services in long tail. OTM and STM are also 
subject to the power-law influence and shows poor 

performance in recommending services in long tail. On the 
contrary, TF-IDF does not consider service popularity, which
in turn gets rids of the power-law influence and becomes 
better in long tail recommendation. LDA also decrease in 
both MAP and NDCG. Though DTM suffers a performance 
degradation, it still performs the best for the long tail 
recommendation. We conclude that domain-aware method 
can remedy the influence of power-law and contributes to a 
higher performance in long tail recommendation. 
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Fig. 5. MAP and NDCG of six methods on long tail recommendation. 

TABLE V. THE COMPARISON BETWEEN OVERALL AND LONG TAIL

MAP@20 NDCG@20
Overall LT variation Overall LT variation

DTM 69.73% 53.21% -16.52% 0.7681 0.6042 -0.1639
OTM 64.52% 32.94% -31.58% 0.6807 0.3618 -0.3189
PopK 48.23% 8.59% -39.64% 0.5422 0.1242 -0.418
STM 39.88% 13.89% -25.99% 0.4769 0.215 -0.2619

TFIDF 22.23% 35.67% 13.44% 0.2954 0.4159 0.1205
LDA 5.4% 4.22% -1.18% 0.1034 0.0702 -0.0332

3) Amount of service domains
The proposed DTM method provides a flexible 

mechanism adjustable to the amount of the service domains. 
In this section, we discuss the impact of the amount of 
domains. We examine the MAP@20 and NDCG@20 with 
varying amount of service domains shown in Table VI.

TABLE VI. IMPACT OF AMOUNT OF SERVICE DOMAINS
Amount Of
Domains

MAP@20 NDCG@20
Overall LT Overall LT

1 39.88% 13.89% 0.4769 0.215
5 52.4% 36.42% 0.5933 0.448
10 69.73% 53.21% 0.7681 0.6042
15 65.93% 57.46% 0.7167 0.632
20 63.41% 57.26% 0.6925 0.6212

In some range, DTM shows a general trend of better 
performance with more domains. Especially, DTM can
significantly improve the precision rate in long tail 
recommendation. When there is only one group, the DTM is 
equivalent to STM and shows a relative low MAP (13.89%) 
and NDCG (0.215). When the amount of domains is 10 or 
larger, DTM mines the implicit usage patterns in long tail 
better. Thus, the MAP and NDCG of DTM are over 50% and 
0.6, respectively. However, too many presetting domains 
may weaken too much the status of small number of popular 
services in domains. As a result, it leads to slight decreasing 
in MAP and NDCG when it comes to overall metric. 
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V. RELATED WORK

Service recommendation has gained significant
momentum in recent years. Among them, trace norm 
regularized matrix factorization technique is adopted in [9] to 
predict QoS features to support service recommendation. A 
social-aware service recommendation approach for Mashup 
composition is proposed in [3], comprising a coupled matrix 
model and Latent Dirichlet Allocation (LDA) model. 
However, most existing works overlook domain knowledge
at service recommendation [15], especially when domain 
information is not labeled explicitly by service providers.

Service clustering has been studied in the context of web 
service repository or ecosystem. An ontology-based service 
clustering method is adopted in [10] to improve service 
discovery. In [11], service-oriented categorization is 
addressed with an extended SVM-based text clustering 
technique. Zhou et al. [12] present an approach of leveraging 
and integrating both clustering and ranking methods toward
higher performance.

We go a step further in this paper. Our proposed approach 
first clusters services into different domains, then 
automatically decomposes requirements into domains and 
goes deep into each domain for matching proper services.

VI. CONCLUSIONS

Service compositions inherently contain various domain-
specific functionalities to fulfill complex requirements.
However, due to the lack of explicit service domain 
categorization, most state-of-the-art service recommendation 
methods only mine the matching pattern between services 
and composition requirements without a finer grained 
classification of domains. This significantly restricts the 
accuracy and relevance of recommendation.

In this paper, a novel three-step approach is presented to 
provide domain-aware service recommendation. To 
overcome the absence of explicit service domain 
categorization, we first cluster services into different 
domains using topic features. Then, we mine domain 
relevance and domain-aware matching patterns regarding 
composition. Finally, we give recommendation in the form 
of a list of domains, each with a ranked list of services. The 
experimental results show that our approach gains a 30%
improvement in MAP@20 and achieves a 20% improvement 
for long tail recommendation, which proves the advantages
of domain-aware recommendation over state-of-art methods.

Our current clustering algorithm classifies services into 
individual domains. Future work will extend the approach
and consider services associated with multi-domains. We
also plan to incorporate users’ profile and other information 
for personalized and context-aware recommendation.
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