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Confucius: A Tool Supporting Collaborative 
Scientific Workflow Composition 

Jia Zhang, Daniel Kuc, and Shiyong Lu 

Abstract—Modern scientific data management and analysis usually rely on multiple scientists with diverse expertise. In recent 

years, such a collaborative effort is often structured and automated by a dataflow-oriented process called scientific workflow. 

However, such workflows may have to be designed and revised among multiple scientists over a long time period. Existing tools 

are single user-oriented and do not support workflow development in a “collaborative fashion.” In this paper, we report our 

research on the enabling techniques in the aspects of collaboration provenance management and reproduciability. Based on a 

scientific collaboration ontology, we propose a service-oriented collaboration model supported by a set of composable 

collaboration primitives and patterns. The collaboration protocols are then applied to support effective concurrency control in the 

process of collaborative workflow composition. We also report the design and development of Confucius, a service-oriented 

collaborative scientific workflow composition tool that extends an open-source, single-user environment. 

Index Terms— H.4.1.g Workflow management, M.4 Service-Oriented Architecture, H.5.3.c Computer-supported cooperative 

work 

——————————   �   —————————— 

1 INTRODUCTION

he advancement of modern science has created sheer 
volume of data with increasing complexity. Pro-
cessing and managing such large-scale scientific data 

sets is usually beyond the realms of individual scientists 
to solve [1]; instead, it has to rely on multiple domain sci-
entists with diverse expertise. For example, the Large 
Synoptic Survey Telescope (LSST) experiment [2], which 
aims to repeatedly image half of the sky over a planned 
10-year survey, produces data at a rate of 300 MB/s and 
will result in catalogs of about 130 TB of roughly 3×109 
sources times 10 years worth of data. Analyzing such data 
sets demands a collaboration of a number of organiza-
tions with over 1,800 scientists and engineers engaged. 

Such scientific data analysis and processing is usually 
structured and automated by a dataflow-oriented process 
called scientific workflow. In contrast to business processes 
that are control-flow oriented and orchestrate a collection 
of well-defined business tasks to achieve a business goal, 
scientific workflows are often dataflow-oriented and 
streamline a collection of scientific tasks to enable and ac-
celerate scientific discovery [3, 4]. Researchers use scien-
tific workflows to integrate and structure local and remote 
heterogeneous computational and data resources to per-
form in silico experiments [1, 5-7]. The increasingly im-
portant role of scientific workflows in modern science was 
emphasized in an article titled “Beyond the Data Deluge” 
published in Science [8]: “the rapidity with which any giv-
en discipline advances is likely to depend on how well the 
community acquires the necessary expertise in database, 

workflow management, visualization, and cloud computing 
technologies.” 

In short, scientific workflow and scientific collaboration 
are two key techniques to support scientific data analysis 
and management. The convergence of the two trends nat-
urally leads to a concept that we coined as collaborative 
scientific workflow [9], meaning that multiple scientists are 
involved and collaborate in the entire lifecycle of a work-
flow: its design, revision, execution, monitoring, and man-
agement. As the first step, we focus on design-time collab-
oration, aiming to build techniques and a tool to support 
collaborative scientific workflow design, both synchro-
nously and asynchronously. 

Collaborative workflow design is usually critical for the 
success of a comprehensive workflow composition. A very 
simplified LSST experiment [2] represents a three-step 
workflow: data retrieval, pre-processing, and data 
modeling. Designing each step requires different exper-
tise. Meanwhile, the serial relationship among the steps 
implies that the accuracy of the entire process is deter-
mined by the design of each step and the error propaga-
tion between them. While involving scientists with differ-
ent capabilities focus on finding a local optimal design of a 
particular step, collaboration between them will find a 
global optimal design for the entire workflow. 

Existing scientific workflow tools do not particularly 
support collaborative composition. In our earlier article 
[9], we studied a number of representative scientific work-
flow management systems (SWFMSs) [10-15], including 
Kepler [10], Taverna [11], Triana [12], VisTrails [13], Pega-
sus [4], Swift [14], and VIEW [15, 16]. Our investigation 
found that they are all single user oriented, focusing on 
helping individual scientists construct workflows from 
available applications and services. Facilities that support 
scientists in collaboratively designing workflows are lim-
ited. Individual work artifacts (scientific workflows) are 
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manually sent to collaborators (e.g., via emails) or upload-
ed to some shared social space (e.g., MyExperiment [17]) 
to enable collaborative design and discussion. For exam-
ple, a collaborator can download a published workflow 
(e.g., in the description language provided by Taverna 
[11], a popular scientific workflow tool) from MyExperi-
ment, load it into a local Taverna workbench, update it, 
and upload the revised workflow back to MyExperiment. 
Afterwards, other collaborators can continue to perform 
further changes and thus realize a collaborative design. 

Such a discrete collaboration style obviously does not 
support real-time discussion and collaboration, which are 
usually critical to scientific exploration. In addition, prov-
enance data (workflow design history) is not maintained 
sufficiently, which is critical for workflow reproducibility. 
Therefore, we have been developing a design environ-
ment, equipped with system-level support for collabora-
tive scientific workflow composition. To memorize a fa-
mous ancient Chinese philosopher and educator, we name 
our system after his name as Confucius. Without reinvent-
ing the wheel, we examined a widely used single-user 
scientific workflow tool, Taverna [11], and extended it into 
a multi-user version. 

To our best knowledge, this is the first effort of success-
fully realizing a collaborative scientific workflow composi-
tion workbench. In this paper, we focus on reporting our 
design and development of one key enabling technique, 
collaboration protocol. We propose a scientific collabora-
tion provenance ontology, and based on it, we have de-
veloped a service-oriented collaboration model that is 
supported by a set of composable collaboration primitives 
and patterns. The collaboration protocols are then applied 
to support effective concurrency control in the process of 
workflow co-design. 

The core idea of Service Oriented Architecture (SOA) is 
to position services as the primary means (components) 
that encapsulate solution logic [18] as reusable assets. In 
this project, we have leveraged the concept of SOA to 
build our system for higher interoperability, reusability, 
and productivity. Since we focus on scientific workflows, 
throughout this paper, we use the terms scientific workflows 
and workflows interchangeably. 

The remainder of the paper is organized as follows. In 
Section 2, we present related work. In Sections 3, 4, and 5, 
we introduce collaboration models, collaboration proto-
cols, and composition concurrency control mechanisms. 
In Section 6, we discuss system implementation and ex-
perimental study. In Section 7, we draw conclusions. 

2 RELATED WORK 

In this section, we compare our approach with related 
work in three categories: scientific workflow management 
systems, business workflow coordination, and collabora-
tive workflow composition. Note that we focus on the 
workflow design phase. 

2.1 Scientific Workflow Management Systems 

To date, several scientific workflow management systems 
(SWFMSs) have been developed as single-user environ-

ments that help individual scientists construct workflows 
from available scientific resources. Representative 
SWFMSs include Kepler [10], Taverna [11], Triana [12], 
VisTrails [13], Pegasus [4], Swift [14], Trident [19], and 
VIEW [15, 16]. Each system shows unique features. 

Kepler [10] models a workflow as a composition of 

components called actors, controlled by a director. Taverna 

[11] uses an XML-based workflow language called 

SCUFL/XSCUFL for workflow representation, with each 

component being either a Web service or a processor de-

veloped using Java Beanshell script. Triana [12] provides a 

sophisticated graphical user interface for workflow com-

position and modification, including grouping, editing, 

and zooming functions. VisTrails [13] focuses on work-

flow visualization supporting provenance tracking of 

workflow evolution and data product derivation. Pegasus 

[4] provides a framework that leverages artificial intelli-

gence planning techniques to map complex scientific 

workflows onto distributed Grid resources. Swift [14] uses 

a scripting language called SwiftScript to support specifica-

tion of large-scale computations over a Grid. Trident is a 

scientific workflow workbench built on top of a commer-

cial workflow system, Windows Workflow Foundation 

(WF) included in the Windows operating system. VIEW 

[15, 16] system features efficient provenance management 

based on RDFProv [20, 21] that combines advantages of 

Semantic Web technologies with relational databases [21, 

22]. 
Each of the SWFMSs provides a platform to support 

individual scientists in composing. Some systems show 
some collaboration features, in the sense that they allow a 
scientist to compose a workflow from shared resources 
and services. However, they provide limited support for 
multiple scientists to collaboratively compose a shared 
workflow [23]. For example, Taverna [11] users can pub-
lish their composed workflows in a dedicated social work-
flow space (e.g., MyExperiment [17]); others can down-
load the workflows and load them using the same 
SWFMS, make changes, and upload the new versions into 
MyExperiment to initiate further interactions. However, 
such SWFMSs do not support real-time workflow co-
design. 

In contrast to the existing SWFMSs, we study how to 
establish a system that enables multiple scientists to col-
laboratively compose workflows with system-level sup-
port. 

2.2 Business Process Coordination 

For business workflows, the term "collaborative work-
flows” is interchangeable with the term “coordinated work-
flows” [24-26]. They emphasize coordination between 
workflows. In contrast, we use the term to emphasize the 
involvement of multiple scientists with a workflow. 

A number of work has been conducted to help model 
and compose business workflows [27]. Huang et al. [28] 
and Dang et al. [29] employ agents technology to reason 
about the composition of coordinated workflows. Bal-
asooriya et al. [30] propose a decentralized services-
oriented middleware architecture to compose workflows 
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and specify their dependencies. Balasooriya et al. [31] pro-
pose a two-layer framework, where Web services are mod-
eled as self-coordinating entities, and a workflow intercon-
nects such entities into a network of objects. Business Pro-
cess Models (BPM) [32] enables Web form-style asynchro-
nous collaborative business process modeling. 

Some researchers particularly study modeling of work-
flow coordination in a Grid environment. Miller et al. [33] 
propose a language to specify workflow composition, com-
prising both reactive tasks (Web services) and proactive 
tasks (autonomous agents) in a Grid environment. Based on 
γ-calculus, Nemeth et al. [34] model workflow coordination 
as molecules and reactions to enable autonomous evolution 
in a changing Grid environment. 

In contrast to business process modeling where compris-
ing components are directly connected through control 
links, tasks in scientific workflow modeling are connected 
through data links, which have to be considered when 
locks are assigned to tasks during collaborative workflow 
design. We thus introduce a concept of synchronization 
area (defined in Section 5.1). 

Lu and Sadiq [27] consider pre- or post-conditions for 
each comprising task, and use event-condition-action 
(ECA) rules to specify some runtime behavior at design 
time. Compared to their approach, we define human col-
laboration relationships at design time. 

The Computer Supported Cooperative Work (CSCW) 
community has studied the general-purpose concurrent 
design problem, where collaborators with different own-
erships possess different controls over the shared work 
product [35, 36]. To name a few, OntoEdit [37] supports a 
collaborative software engineering process; Yen et al. pre-
sent a collaborative design tool that allows privileged 
collaborators to change the process [35]; OPCATeam [36] 
integrates the object-oriented and process-oriented para-
digms into one single framework to enable the co-
existence of structured processes and human interaction 
behaviors in one business process modeling system. In 
contrast, our work focuses on dataflow-oriented collabo-
ration, where semantic relationships and constraints be-
tween different comprising components (e.g., tasks and 
data links) need to be carefully considered during concur-
rent composition. 

2.3 Collaborative Workflow Composition 

The business community recently recognized the need of 
involving humans into business workflows and has de-
veloped a preliminary model [38]. Ayachitula et al. [39] 
divide workflows into human-centric workflows and au-
tomated process-based workflows. Russell et al. [40] pro-
pose to establish a separate team access control layer, 
which combines role and organization, to manage access 
in a collaborative workflow environment. The 
BPEL4People [38] workflow model is proposed to extend 
the de facto industry standard business workflow language 
BPEL [41] to standardize the interaction between automat-
ed and human workflows. 

However, these business workflow-oriented models are 
not suitable to be used for supporting collaborative scien-
tific workflows because, business workflows are con-

trolflow-oriented and hence lack dataflow constructs for 
interaction, movement, and processing of large datasets. 
Furthermore, provenance data management for the repro-
ducibility of scientific results is essential for scientific 
workflows but not for business workflows. Hence, scien-
tific workflows pose a different set of requirements [5]. For 
BPEL4People specifically, every computational compo-
nent in BPEL must be a Web service, thus, it lacks the 
support of modeling user interaction and visualization 
intensive tasks. 

Sayah and Zhang [42] present their annotated business 
hyperchain technology that enables on-demand business 
collaboration with the Web services technology. They 
propose a set of business collaboration primitives to serve 
business scenarios. In contrast, our collaboration primi-
tives serve scientific collaboration scenarios. In addition, 
our work emphasizes design-time collaboration prove-
nance capturing for credit acknowledgement as well as 
guiding future collaborative workflow composition. 

We surveyed the state of the art of the field of scientific 

workflows toward the support of collaborative scientific 

workflows [9]. Our observations directly motivated the 

research work reported in this paper. We also have sur-

veyed the literature of workflow control mechanisms in a 

collaborative environment in [43]. Our study helped us 

build a linkage between scientific workflow and collabora-

tive work. 
Our “collaboration provenance” is different from the 

term “collaborative provenance” used by Dr. Altintas et al. 
[44]. Their “collaborative provenance” means, “inferring 
dependencies across multiple workflow runs and under-
standing user collaborations based on scientific workflow 
runs”[44]. In contrast, our term “collaboration prove-
nance” aims to capture how scientists collaboratively de-
sign a common scientific workflow, e.g., who has designed 
which part. 

3 COLLABORATIVE SCIENTIFIC WORKFLOW 

COMPOSITION MODEL 

Provenance has been widely considered critical to the re-
producibility of scientific workflows [45, 46]. Compared to 
existing significant amount of work focusing on prove-
nance for run-time workflow execution, our work focuses 
on collaboration provenance that tracks human interac-
tions and efforts in the process of scientific workflow 
composition. Our method is to record all collaborative 
activities that contribute to a composed workflow. 

3.1 Provenance Ontology 

We have developed a provenance ontology to support the 
modeling of various provenance data recording scientific 
workflow design and user interactions during the process 
of a collaborative workflow design. As shown in Fig. 1, 
our ontology is centered upon the concept of “workflow.” 
Each scientific workflow comprises organized processors 
(tasks) and data links (aka. data channels), sub-workflows, 
as well as predefined requirements and annotations 
(comments). Each workflow maintains one or more floors 
that are tokens to ensure concurrency control. Long-term 
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collaboration on a scientific workflow forms a meeting. A 
short-term synchronous collaboration is called a session. 

Each scientific workflow belongs to a project. Each pro-
ject belongs to a scientific group (could be a virtual group). 
Each group may comprise multiple focuses, each involv-
ing multiple projects. A group contains a set of members, 
each may belong to different organizations. 

Collaborative composition on a scientific workflow is 
conducted by members serving in different roles. The ini-
tiator (creator) of a scientific workflow is called a modera-
tor. Scientists who cooperate on the lifecycle of a workflow 
are called collaborators. They have read and write privileg-
es. A collaboration may also involve visitors, who are 
granted with read privilege only. 

Our ontology, which is extensible, serves as a founda-
tion for managing collaborative workflow design prove-
nance. Each scientific collaboration project may define 
customized ontology and add additional concepts into 
the basic ontology for special purposes. For example, a 
research project may introduce project-wise particular 
roles in their collaboration. 

3.2 Collaborative Composition Model 

We designed models to regulate how collaborators can 
collaboratively design and update mutual workflows. 
Instead of reinventing the wheel, we chose to explore 
how to extend the single user-oriented Taverna tool. 

3.2.1 Basic collaboration model 

We carefully studied the latest Taverna code (version 2.0), 
focusing on exploring the feasibility of extending it into a 
collaborative version. As a starting point, we examined 
the communication paths between Taverna instances. In 
other word, we aim to find a way to allow two Taverna 
running instances to communicate with each other. We 
found that Taverna is built on top of an event-based 
mechanism, meaning that any user event (e.g., clicking a 
button) triggers a backend action. When a user chooses to 
save a workflow, Taverna will serialize the workflow as a 
file in XScufl [47] that is an XML-based workflow specifi-
cation language. Fig. 2 shows a segment of XScufl code 
that contains one workflow with one to many dataflows, 
each comprising a sequence of elements including: name, 
a set of input ports, a set of output ports, a list of proces-
sors (tasks), some conditions, a set of data links (edges), 

and annotations. When a user selects to open such an 
XML file, the stored workflow will be loaded into the Ta-
verna workbench and rendered on the screen. 

Therefore, we utilized a file system-based workflow 
storage mechanism to enable communication between two 
Taverna versions. When a collaborator with write privi-
lege saves a workflow, its serialized XML document can 
be propagated to another site where another collaborator 
has read privilege. An automatic file open action will ren-
der the same workflow on the reader’s screen. 

We adopted the observer design pattern [48] to build a 
preliminary infrastructure to enable collaboration between 
multiple Taverna versions. The observer pattern is a sub-
set of the asynchronous publish/subscribe design pattern. 
A special subject is used to maintain a list of its depend-
ents (observers) and automatically notify them of any state 
changes. Fig. 3 shows such a client/server-based infra-
structure. A central server is established as the subject and 
maintains all collaborators’ information, and all collabora-
tors act as observers. As shown in Fig. 3, the central server 
also stores and manages all provenance data, so that late 
comers can view shared workflows. 

Fig. 3 shows several possible flow scenarios. Client 1 
registers a collaboration Group 1 on the central server 
(Step 1). Upon approval (Step 2), Client 1 shares a port to 
his/her potential collaborators (Step 3). Users from the 
invitation list (e.g., Client 2) may subscribe (Step 4) to the 
registered collaboration group (i.e., Group 1) and start to 
update the shared workflows within the group (Step 5). 
Any updated version will be stored in the central server 
and automatically distributed to all collaborators in the 
collaboration group (Step 6). 

Any action in the original Taverna workbench (i.e., 
adding/deleting/updating an element, and saving a work-
flow) will trigger an automatic “save” action. The server 
will deliver the up-to-date workflow file to all participat-
ing collaborators. 

3.2.2 Advanced collaboration model 

Scientific collaborations usually last for a long period of 
time, e.g., months and years. In addition, temporary dis-
cussion groups and sessions may be formed in the lifecy-

 

    Fig. 1. Collaborative workflow composition provenance ontology. 

Fig. 2. A segment of XScufl code. 
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Algorithm 1: Floor Granting Algorithm 

Input: A collaborator releases a floor 

Requirements: Release a floor. 

1: check(waiting_list) 

2: if (waiting_list ≠ Ø) then 

3:     requestor ← get_top_requestor(waiting_list) 

4:     floor_owner ← requestor 

5:     notify(members) 

6:     remove(requestor, waiting_list) 

7: else if (waiting_list = Ø) then 

8:     floor flag ← unoccupied 

9:     notify(members) 

10:endif 
 

Algorithm 2: Floor Releasing Algorithm 
Input: A requestor requests a floor 
Requirements: Decide whether a floor should be granted. 

1: check( floor) 
2: if (floor ≠ taken), then 
3:     floor flag ← occupied 
4:     floor owner ← requestor 
5:     notify(members) 
6:     return true 
7: else if (floor = taken) then 
8:     insert(requestor, waiting_list) 
9:     return false 
10: endif 

cle of a long-term scientific collaboration process. There-
fore, we constructed a hierarchical structure for the central 
server. It may host multiple collaboration groups, which 
may or may not have nesting relationships between them. 
The central server maintains all collaboration group in-
formation and acts as the subject for all registered groups. 
All observers (collaborators) are organized into corre-
sponding collaboration groups. The central server also 
stores and manages all provenance data, so that it be-
comes a repository of workflow products and enables 
scalability. In other words, we realize a multi-tenancy in-
frastructure. 

Within a collaboration group, a straightforward way is 
to allow everyone to do anything on a workflow at any 
time, and distribute the results to everyone in the same 
group. In the real life, however, typically only one person 
is allowed to speak at a certain moment in a group [49]. 
Thus, we grant access control policies so that only one 
person at a time can modify the shared workflow products 
and distribute the changes in the group. 

We adopted the floor control technique from an exten-
sively tested and well proved human communication pro-
tocol, Robert’s Rules of Order (RRO) [49], where a single 
floor is maintained in a shared meeting environment. Each 
member requests and competes for the floor, and only the 
person who obtains the floor can talk in the meeting. Ap-
plying RRO to our collaboration environment, each mem-
ber in a collaboration group must request a floor to gain 
the write privilege of the shared workflow products in the 
group. Otherwise, the changes will be kept locally and will 
not be distributed to other collaborators. A simple role-
based model is adopted. The person who registers a col-
laboration group at the central server becomes the moder-
ator of the group, and will automatically have the control 
over the floor. In this section, we discuss single-floor pro-
tocol. Multiple floor-based access control facility, with 
finer-grained locking mechanisms for higher concurrency, 
will be discussed in Section 5. As shown in Fig. 3, Client 3 
in Group 2 requests the floor (Step a). Upon approval, Cli-
ent 3 may update the workflow (Step b) and the changes 
will be distributed to other collaborators in the same 
group (e.g., Client 4) instantaneously. 

The pseudo code, presented in algorithm 1, realizes a 
floor granting process. If the floor is not occupied, the re-
questor will be granted the floor exclusively; otherwise, 
the requestor will be put into the corresponding waiting 
list and wait for the floor. Upon releasing a floor, the re-

questor at the top of the waiting list will be automatically 
informed and granted the floor. If there is no one in the 
waiting list, then nothing will happen. The pseudo code 
(algorithm 2) shows a floor releasing process. A moderator 
may deprive the floor from a collaborator under certain 
circumstances, for example, if the collaborator loses her 
Internet connection. 

3.2.3 Light-weight collaboration model 

The aforementioned client/server model represents a for-
mal collaboration mode, as all communications are stored 
in a centralized server with permanent provenance stor-
age. In contrast, sometimes researchers may prefer a more 
informal collaboration mode. Backdoor communications 
may occur among some team members in a free and pri-
vate manner. In addition to free text conversations that can 
be supported by applications like instant messengers (IMs, 
which we have integrated into Taverna), here we focus on 
discussing how to share temporary workflow changes 
among a subset of collaborators. 

To realize the backdoor collaboration, a straightforward 
way is to adopt the traditional peer-to-peer (P2P) mode, 
where each peer (i.e., Taverna instance) is equally 
weighted and is enabled to communicate with each other. 
This implies that each SWFMS instance becomes heavy-
weight, meaning that we have to physically embed P2P 
communication code into each SWFMS instance. Recall 
that our centralized client/server model intentionally 
keeps each SWFMS client light weighted. This heavy-
weight SWFMS client requirement will constrain the reus-
ability and flexibility of the code of the SWFMS instance. 
In addition, our server-based communication mode is not 
reusable in this option. 

To overcome these limitations, we propose a light-
weight server model. A light-weight server is established 

 

Fig. 3. Collaborative composition model. 
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to temporarily store the latest version of the workflow 
product and broadcast it to all participating clients (i.e., 
SWFMS instances). We modularize the light server as a 
pluggable component to the original SWFMS instance 
code. This implies that such a server can run on every cli-
ent side, in addition to the light-weight client. Between 
two peers who intend to communicate, only one peer has 
to initiate a light-weight server. 

Fig. 4 illustrates the light-weight communication proto-
col between two collaborators using a UML sequence dia-
gram. When one user (Collaborator1) wants to start a 
back-door channel, she sends an invitation (to Collabora-
tor2). Upon receiving an agreement, the user (Collabora-
tor1) implicitly instantiates and starts a light-weight server 
at the user side. A signal is sent to the other party as well. 
It is in a light-weight mode, in the sense that it does not 
permanently store workflow products. As shown in Fig. 4, 
when Collaborator1 makes some changes to the shared 
workflow, the changes will be submitted to the light-
weight server. The light-weight server will in turn propa-
gate the changes to the participating Collaborator2. Simi-
larly, when Collaborator2 makes changes, they will be 
propagated to Collaborator1 through the light-weight 
server. Finally, when the initiator (Collaborator1) decides 
to finish the backdoor communication, the final version of 
the changes can be sent to the central server to store, if so 
desired. 

4 COLLABORATION PROTOCOLS 

Business process modeling techniques [27] use rules to 

specify runtime behavior of workflows at design time. 

Similarly, we model run-time collaboration specifications 

(e.g., rules, patterns, and primitives) at design time. We 

focus on how to enable recording such collaboration de-

sign and their changes. 

4.1 Collaboration Rules 

The granularity of a collaboration happens at either da-
taset or task level. Different research projects may adopt 
different collaboration rules; thus, a collaboration model 
must be configurable. We propose a 4-tuple collaboration 
rule container as shown in Fig. 5: 

>=<− ValidatorMonitorOperatorOwnerRuleC ,,,  
 

The collaboration container comprises four basic plug-
in roles: owner, operator, monitor, and validator. Plug-in 
roles mean that they represent role types, and zero to 
multiple role instances may be created at run-time. An 

owner role represents a group of scientists who have 
ownerships over a dataset or a task. An operator role rep-
resents a group of scientists who have the privilege to 
operate on a dataset or a task. A monitor role represents a 
group of scientists who have the privilege to monitor the 
operation process of a task or over a dataset. A validator 
role represents a group of scientists who have the privi-
lege to validate an operation over a dataset or a task and 
claim the success/failure of such an operation. Note that 
what operators, monitors, and validators have to do is 
project-specific. One scientist may act in multiple roles 
simultaneously in a workflow composition process. 

A collaboration rule specifies an instance of a rule con-
tainer, with the participating collaborators at run time. 
Because of the exploratory nature of scientific workflow 
design, such a run-time collaboration rule is a design-time 
expectation, and will be recorded in the format of annota-
tions attached to particular parts of workflows, as illus-
trated in Fig. 1. 

4.2 Collaboration Patterns 

Different from business processes, a scientific workflow is 
exploratory, thus requiring constant human interaction 
and intervention. For example, a task run may require 
validation before its subsequent tasks can continue. Such a 
requirement should be recorded as part of the workflow 
design. 

We studied a number of known scientific collaboration 
projects documented in [1] to identify data-centric collabo-
ration patterns. As a starting point, we summarized a set 
of six collaboration patterns: (1) dataset request, (2) analy-
sis request, (3) validation request, (4) discussion request, 
(5) co-run, and (6) co-approve. We first introduced the six 
patterns for two-way collaboration, where two scientists are 
involved in a collaborative activity [50]. Our preliminary 
experiences show that these patterns satisfy basic collabo-
ration requirements. Then, we extended the patterns to 
multi-way collaboration. In the near future, when our sys-
tem is applied to the real-world collaborative projects, we 
plan to study and elicit more collaboration patterns. 

The dataset request pattern reflects a scenario when 
some specific data is required, during the execution of a 
scientific experiment, while the dataset belongs to an ex-
ternal scientist group. Given a workflow W, scientist A 
asks for dataset D from scientist B before continuing. 

The analysis request pattern reflects a scenario when 
some particular data obtained has to be analyzed by a spe-
cific tool or process that is owned by an external scientist 
group. Given a workflow W, scientist A asks scientist B to 
analyze dataset D. 

The validation request pattern reflects a scenario when 
an interesting discovery is reached that requires verifica-
tion and validation by a group of scientists with specific 
expertise. In the context of a workflow W, scientist A asks 
scientist B to validate a specific task T or dataset D. The 

 

Fig. 5. Collaboration rule container. 

   Fig. 4. Light-weight collaborative composition model. 
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TABLE I. COLLABORATION PRIMITIVES 

Type Primitive Name 

Collaboration 

preparation 

primitives 

Request for Dataset (RFD) 

Request for Data Analysis (RFA)  

Request for Validation (RFV) 

Request for Discussion (RFC) 

Request for Co-run (RFCR) 

Request for Co-approval (RFCA) 

Collaboration 

conduction 

primitives 

Accept or Reject Request (A/R) 

Command Submission (CS) 

Data Submission (DS) 

Update Submission (US) 

 

result will be either positive or negative. 
The discussion request pattern reflects a scenario when 

discussion is needed over some specific topics, and the 
results of the discussion will decide the direction (or steps) 
of the following actions. In the context of a workflow W, 
scientist A identifies a group of scientists to discuss over a 
task T or a dataset D. 

The co-run pattern reflects a scenario when scientists 
individually run proprietary data analysis processes over 
the same dataset simultaneously. Given one dataset D, 
scientists A, B, …, N perform workflows W1, W2, … Wn con-
currently and respectively, and then compare the results 
obtained from their workflow runs. 

The co-approve pattern reflects a scenario when scien-
tists have to reach an agreement on an experimental result. 

These collaboration patterns can be represented using 
our rule container to realize a fine-grained collaboration 
control. For example, the data analysis pattern can be rep-
resented by a rule with owner A and operator B. 

4.3 Collaboration Primitives 

Based on the collaboration patterns, we designed a set of 
semi-structured collaboration primitives, as summarized 
in Table I. The primitives are divided into two categories: 
collaboration preparation primitives and collaboration 
conduction primitives. Since scientific collaboration may 
last for a long period of time, we adopt an asynchronous 
communication mode, meaning that each collaboration 
primitive is associated with an instant acknowledgement. 

Six collaboration preparation primitives are construct-
ed: (1) Request for Dataset (RFD), when a dataset is need-
ed during a workflow; (2) Request for Data Analysis 
(RFA), when a data analysis process is needed during a 
workflow; (3) Request for Validation (RFV), when a data 
validation process is required; (4) Request for Discussion 
(RFC), when a discussion is required; (5) Request for Co-
run (RFCR), when concurrent sub-workflows are re-
quired; and (6) Request for Co-approval (RFCA), when an 
approval has to be made by multiple parties. 

Four collaboration conduction primitives are identi-
fied: (1) Accept or Reject Request (A/R), when a request 
(e.g., RFD) is accepted or rejected by a collaborator; (2) 
Command Submission (CS), when a specific computa-
tional command is provided; (3) Data Submission (DS), 
when a specific data set is transferred; and (4) Update 
Submission (US), when a collaborator updates collabora-
tion status in response to a request. 

In addition to be used individually, these collaboration 
primitives can be used as building blocks for collabora-
tors to model more comprehensive collaboration patterns. 

4.4 Collaboration Mini-Workflow 

Based on the established collaboration primitives, we 
apply the SOA concept to implement the collaboration 
patterns. Each collaboration pattern is accomplished by a 
mini-workflow comprising a set of configured 
collaboration primitives. Through different combinations 
of the set of collaboration primitives, different collabora-
tion patterns can be realized. 

We have constructed six example mini-workflows to 
realize the six collaboration patterns described in Section 
4.2. (1) dataset request: comprising the RFD, A/R, and DS 
primitives; (2) analysis request: comprising the RFA, A/R, 
and CS primitives; (3) validation request: comprising the 
RFV, A/R, and CS primitives; (4) discussion request: 
comprising the RFC primitive and a collection of US 
primitives; (5) co-run: comprising the RFCR, A/R, and US 
primitives; and (6) co-approve: comprising the RFCA, 
A/R, and US primitives. 

Such a mini-workflow can be formalized using the 
Business Process Execution Language (BPEL). Since BPEL 
is based on Pi-calculus, modeling mini-workflows in 
BPEL will allow us to formally reason about the 

<process name"RFDmicroflow" 
    targetNamespace="urn:CollaborationConstructs" 
    xmlns:tns="urn:samples:CollaborationConstructs" 
    xmlns="http://confucius.org/constructs/"> 

 

    <sequence> 

      <invoke name="invokeRFD" 
          partner="CollaboratorA" portType="tns:RFDoriginatorPT" 
          operation="sendRFD" outputVariable="RFD">  
      </invoke> 

 

      <invoke name="ackRFD" 
          partner="CollaboratorB" portType="tns:RFDreceiverPT" 
          operation="ackRFD" outputVariable="RFD_Receipt_Ack"> 

       </invoke> 

 

      <invoke name="acceptRFD" 
          partner="CollaboratorB" portType="tns:RFDreceiverPT" 
          operation="acceptRFD " outputVariable="A"> 

      </invoke> 

 

      <invoke name="ackAcceptRFD" 
          partner="CollaboratorA" portType="tns:RFDoriginatorPT" 
          operation="ackAcceptRFD" outputVaria-
ble="A_Receipt_Ack"> 

      </invoke> 

 

      <invoke name="invokeDS" 
          partner="CollaboratorB" portType="tns:RFDreceiverPT" 
          operation="submitDS" outputVariable="DS"> 

      </invoke> 

 

      <invoke name="ackDS" 
          partner="CollaboratorA" portType="tns:RFDoriginatorPT" 
          operation="receiveDS" outputVariable="DS_Receipt_Ack"> 

      </invoke> 

    </sequence> 

</process> 

Fig. 6. Service-oriented mini-workflow. 
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construction of a new collaboration pattern. Such a 
validation allows for design-time static checking. 

Taking the first collaboration pattern (dataset request) 
as an example, Fig. 6 shows a section of its BPEL 
specification. For simplicity, we skipped the section 
defining messages (collaboration messages), partners 
(collaborators A and B), and variables (messages), and 
links (expressing synchronization dependencies). As 
shown in Fig. 6, each collaboration primitive is wrapped 
as a Web service. Two parties (Collaborators A and B) act 
as service providers and service requestors, respectively. 
Each collaboration primitive is realized by a service call, 
associated with the corresponding messages. Once 
represented by BPEL, multiple collaboration constructs 
may be combined to form a comprehensive collaboration 
scenario. Such a service-oriented model enables platform-
neutral and language-neutral collaboration. 

4.5 Service-Oriented Collaboration Provenance 

We decided to adopt the Web services technology [18] to 
realize collaboration. As the best enabling technology of 
SOA to date, it allows us to design collaborations among 
participating scientists with platform independence and 
language independence. Collaboration primitives are en-
capsulated in Simple Object Access Protocol (SOAP) mes-
sages and communicated between collaborators. To ena-
ble validation and analysis, we adopted the XML Schema 
to uniform the format of collaboration messages. Fig. 7 
shows a section of the specification of a collaboration 
message. 

Messages are divided into request messages and re-
sponse messages. Each message contains one or more 
primitives that form a transaction, meaning that they 
form an atomic unit of work in a scientific workflow. 
Each transaction aims to serve for a task in a workflow, 

which belongs to a scientific project. A message may also 
contain optional data such as comments. 

Such collaboration designs are recorded as provenance 
in the format of annotations (as shown in Fig. 1) attached 
to the workflow under construction. 

5 WORKFLOW COMPOSITION CONCURRENCY 

CONTROL 

At composition time, multiple scientists collaborate to 
develop a scientific workflow. Thus, concurrency control 
deserves consideration to ensure design productivity. 

5.1 Locking Granularity 

Adopting the instrument from an extensively tested and 
well proved human communication protocol, RRO [49], 
we originally established a workflow-level floor control 
mechanism as described in Section 3.2.2. Each collabora-
tor competes for the shared floor before making any 
changes. 

Such a workflow-level floor control may not be effi-
cient to support large-scale scientific workflow composi-
tion, though. Since scientific research is an exploratory 
process, the development of a workflow may undergo 
many rounds of discussions and changes and may last for 
a long period of time. Meanwhile, a collaboration group 
nowadays usually comprises scientists from different or-
ganizations at distributed locations. They may possess 
different schedules and may even reside in different time 
zones; thus, their collaboration may adopt both synchro-
nous and asynchronous modes. Furthermore, a large-
scale scientific workflow may involve many comprising 
components. It is neither efficient nor practical, if one sci-
entist working on one component locks the entire work-
flow and prevents other scientists from working on unre-
lated components. 

To increase composition concurrency, we investigated 
the option of locking the smallest building blocks. A sci-
entific workflow allows multiple non-overlapped locks, 
so that multiple scientists may work on the corresponding 
locked components simultaneously. 

According to the existing SWFMS tools, the smallest 
building blocks in a workflow are tasks and data chan-
nels. For example, in Taverna, a task is called a processor; a 
data channel linking between processors is called a data 
link. Fig. 8 is a highly simplified scientific workflow 
drawn in Taverna, which illustrates a word count exam-
ple using the MapReduce programming model [51]. Two 
processors Mappers repeatedly process a list of word lines, 
by breaking each line into individual words and generat-
ing a list of <word, 1> pairs over all the words found. All 
the intermediate <word, 1> pairs are transferred, through 
the data links, to the processor Reducer that aggregates the 
pairs according to the words. The results are a list of 
<word, value> pairs that show the number of appearances 
of each word. 

<xsd:schema 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
                     targetNamespace="http://confucius.org/class" 
                     xmlns:tns="http://confucius.org/class"> 
    <xsd:element name="Name" type="xsd:string"/> 
    <xsd:element name="task" type="xsd:anyURI" de-
fault="http://confucius.org/class#Task"/> 
    <xsd:element name="workflow" type="xsd:anyURI" de-
fault="http://confucius.org/class#Workflow"/> 
    <xsd:element name="project" type="xsd:anyURI" de-
fault="http://confucius.org/class#Project"/> 
    <xsd:element name="Construct"> 
        <xsd:annotation> 
            <xsd:documentation> A construct is the atomic unit of 
collaborative work in a scientific workflow. 
</xsd:documentation> 
        </xsd:annotation> 
        <xsd:complexType> 
            <xsd:sequence> 
                <xsd:element ref="tns:Name"/> 
                <xsd:element ref="tns:task"/> 
                <xsd:element ref="tns:workflow"/> 
                <xsd:element ref="tns:project"/> 
            </xsd:sequence> 
        </xsd:complexType> 
    </xsd:element> 
</xsd:schema> 

Fig. 7. Schema for a transaction. 
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If we set up the locks on individual processors and da-
ta links only, two collaborators may concurrently update 
one processor Mapper1 and its output data links, respec-
tively. This situation may not be desirable, because the 
data link directly depends on the processor. In other 
words, connected processors and data links may have 
close semantic relationships, which need to be preserved 
by requiring that adjacent entities cannot be updated by 
different collaborators at the same time. 

Furthermore, continuous processors in a workflow 
may also possess semantic relationships between them. 
For example, as shown in Fig. 8 where triangles represent 
workflow inputs and outputs, the Mapper1 processor and 
the Reducer processor are neighbors in the workflow, and 
a data link connects them together. The Reducer processor 
stays at the downstream of Mapper1; meaning that the 
output of the Mapper1 processor serves as the input of the 
Reducer processor. Assume that two collaborators are 
working on the two processors simultaneously, and col-
laborator A changes some business logic at the Mapper1 
processor. Even if these changes may not change the in-
put format of the Reducer processor, the collaborator 
working on the Reducer processor should be aware that 
someone is working on the upstream processor. 

Therefore, we introduce a concept of synchronization ar-
ea that represents a conceptual area in a shared scientific 
workflow, which allows only one collaborator to work on 
it at a given time. Such an area represents a semantic area. 
In the context of a Taverna workflow, if a user tries to 
lock a data link, the synchronization area is the data link 
itself. If a user tries to lock a processor, the synchroniza-
tion area will be dynamically delimited and include all of 
the fan-out data links of the processor. In Fig. 8, the man-
ually drawn red circle around the Mapper1 processor and 
its fan-out data link represents such a synchronization 
area. 

5.2 Locking Algorithms 

Based on the concept of synchronization area, we devel-
oped four algorithms (3-6), on locking/releasing a proces-
sor and locking/releasing a data link. 

If a user selects a processor to lock it, we first check 
whether it has been locked by another collaborator. If 
nobody locks it, then an uninterruptable transaction 
starts. First, we set the lock flag of the processor, and fill 
the name of the owner of the processor. For each outgoing 

data link of the processor, we check whether there is an 
active lock on it. If any outgoing data link is currently 
locked by other collaborators, the entire locking attempt 
will be aborted. Otherwise, we call the corresponding 
algorithm (i.e., 5) to lock the data link. After all outgoing 
data links are locked, the transaction succeeds. In sum-
mary, the lock action will automatically lock all down-
stream data links, in addition to the processor. 

To release a processor, we will first check whether the 
user has the privilege, i.e., whether she is the owner of the 
processor. If the answer is positive, in addition to the pro-
cessor itself, the action will call the corresponding algo-
rithm (i.e., 6) to release all of its downstream data links. 

To lock a data link, we first check whether the data 
link has been uploaded into the database (here we adopt 
a lazy instantiation pattern for a higher performance). 
After ensuring that the data link is in the locked link list, 
we check whether it has already been locked. If not, the 
data link will be marked as being locked. Otherwise, a 
notification will be sent. To release a data link, we first 
check whether the user has the privilege, i.e., whether she 
is the owner of the data link. If the answer is positive, the 
flag of the data link will be set as unlocked. 

 

                     Fig. 8. Word count workflow. 
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Algorithm: RC_fcw scheme part 1. 

Input: A transaction t(x) intends to work on an item x. 

Requirements: Place an intentional lock. 

1: add an intentional lock � x 

2: collaborators[list] ← t(x) 

2: return vn(x) 

 
Algorithm: RC_fcw scheme part 2. 

Input: A transaction t(x) intends to submit changes on item x. 

Requirements: RC_fcw. 

1: begin transaction 

2:   get vn(x new) 

3:   if (vn(x new) > vn(x)) 

4:     abort t(x) 

5:   else 

6:     vn(x) ← vn(x) + 1 

7:     commit t(x) 

8:     notify (collaborators[list]) 

9:   endif 

Fig. 9. RC_fcw scheme algorithm. 

5.3 Collaboration Transactions 

Our locking algorithms facilitate concurrent workflow 
composition. Actions by each user are modeled as trans-
actions to ensure concurrency control. We further define 
four basic actions (in the Taverna context): 1) insert a data 
link, 2) delete a data link, 3) insert a processor, and 4) de-
lete a processor. An update action can be modeled as a 
delete followed by an insert action. Thus, all collaborative 
composition actions can be mapped to database update 
operations. As a result, we can exploit the concurrency 
control facility of database management systems to en-
sure the serializability of all executions. Bad transactions 
will be automatically aborted. We are also working on an 
exception handling facility; which is out of the scope of 
this paper. After a user update is successfully committed, 
all collaborators will be notified, so that each collaborator 
can have the most up-to-date workflow. 

We studied various concurrency control schemes at the 
database level, aiming to better support collaborative 
workflow composition. Specifically, we have observed 
that scientists tend to adopt a “long-thinking” pattern, 
meaning that they take a long time to think before they 
actually make changes that take much less amount of 
time. As a result, the traditional read and write locks may 
lower the parallelism in such a working style. 

Therefore, instead of placing a traditional exclusive 
write lock on a task, we realized a Read Committed with 
first-committer-win (RC_fcw) scheme, which is an extension 
of READ COMMITTED with the first-committer-win fea-
ture at the SNAPSHOT isolation level. Correctness proofs 
of RC_fcw can be found in our previous report [52]. Here 
we discuss how we apply RC_fcw to facilitate collabora-
tive scientific workflow composition. 

Definition 1: A provenance log is a tuple L = <D, T, ∑, 

S, ∏), where D is data item set, T is transaction set, ∑ is 

atomic operation set, S is the access function that returns 

the set of items accessed by an atomic operation, and ∏ is 

the permutation function that assigns a sequence number 

to an operation. 

Definition 2: L is RC_fcw iff it can be generated by a 

locking sequence where: 1) a transaction must obtain a 

write lock on an item before writing it and the write lock 

is released when the transaction terminates (long-term 

write lock); 2) a transaction must obtain a read lock on an 

item before reading it and the read lock is released right 

after the read operation completes (i.e., a transaction can 

read only committed values); 3) when a transaction at-

tempts to acquire a lock on an item on which a conflicting 

lock is held, the transaction will be put into a waiting 

queue; and 4) after a transaction T1 reads a data item and 

before T1 attempts to write the item, if another transaction 

T2 writes the item and commits, T1 will be aborted (first 

committer win). 

Only the scientist who submits the changes first will 
get through. As shown in the pseudo code in Fig. 9, 
RC_fcw is implemented by attaching a version number 
vn(x) to an object x, which is a synchronization area as in-
troduced in Section 5.1. vn(x) is incremented by one 

whenever x is updated, i.e., some actions are performed 
over area x. If a transaction T1 attempts to update x, T1 
will first read the item associated with its contemporary 
vn(x) to the local drive and work locally. When time 
comes and T1 tries to submit the changes to x, a version 
comparison is triggered to check whether any other 
transaction has updated x in between. If changes have 
been submitted since T1 read x, T1’s submission will be 
aborted. Otherwise, the commitment will become perma-
nent and the vn(x) will be incremented and updated to 
item x. The check and the update together are performed 
atomically. 

6 SYSTEM IMPLEMENTATION AND EXPERIMENTS 

6.1 System Implementation 

We have constructed a collaboration pattern template li-
brary. The basic building blocks are collaboration primi-
tives. Users can build new collaboration patterns using 
existing collaboration primitives. Identified collaboration 
patterns are stored as provenance data to support the 
tracking, storing, and querying of interactions and coordi-
nation among scientists. 

Without reinventing the wheel, we extended the single 
user-version Taverna into a collaborative version [50]. The 
reason why we chose Taverna is mainly based on its 
popularity and large user base [11]. Another reason is that 
Taverna is an open-source tool developed in Java. Thus 
we can explore its code base. 

We built a central server supporting all workflow col-
laborations. Workflow evolution provenance and collabo-
ration provenance are stored in a shared database on the 
server. Each collaborator may store an intermediate ver-
sion of the workflow at a local machine, but all committed 
activities are stored at the server, to support asynchronous 
collaboration where collaborators may work on the shared 
workflow at preferable time. We consider four options for 
selecting database systems: native XML, relational, XML-
relational, and RDF. Currently we use a relational data-
base because it is a preferable choice of Taverna, upon 
which our Confucius is built. 

Fig. 10 shows a snapshot of our Confucius system sup-
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porting concurrent workflow composition. To ease illus-
tration, we show two screens (left and right) representing 
two scientists running two client versions of Confucius on 
two distributed machines. Here we use the remote desk-
top feature of Windows to show the two screens together. 
Any change (adding or removal of components) in the 
shared workflow made by one scientist will be instantane-
ously shown on all collaborators’ screens. Shared work-
flow product is stored at the server, so other collaborators 
may join the collaboration at any time and review the cur-
rent workflow if proprietary access control allows. When a 
scientist applies a write lock on a task on the shared work-
flow, the other scientist cannot update the task due to our 
concurrency control policy. 

Fig. 11 shows portions of our demo, where role-based 
P2P collaboration is realized using the centralized server 
mode, as discussed in Section 3.2. As shown in the upper 
part of Fig. 11, we added a menu item group “Collabora-
tion” in the menu bar, which supports five actions regard-
ing P2P collaboration: (1) share workflow (a coordinator 
initiates a shared scientific workflow document), (2) con-
nect (the coordinator allows identified participants to 
join), (3) disconnect (the coordinator removes a participant 
from the collaboration), (4) request token (request a floor 
to have write access), and (5) release token (release the 
write access of the shared workflow). 

The left screen in Fig. 11 shows a scientist who starts a 
collaboration session. Once the scientist clicks the “Share 

Workflow” menu item, the collaboration will begin. As 
highlighted in Fig. 11, the initiator of the collaboration 
automatically obtains the token (floor), shown in green. 
She can also click “Release Token” to release the token; 
and her status will turn back into red by doing so. After a 
collaboration session is started, other scientists (upon invi-
tations) will be able to select the “Connect” menu item to 
join the collaboration, and will instantaneously view the 
same workflow shown on the token holder’s screen. As 
shown in Fig. 11, any collaborator can click “Request To-
ken” to ask for the write privilege. If available, the token 
will be granted to the requestor. 

Fig. 12 shows a portion of a screen shot illustrating that 
a backdoor communication is initiated between two Con-
fucius instances. A user identifies a specific IP address 
(i.e., 127.0.0.1) to invite a team member to start a backdoor 
communication. Our current version offers six functions 
supporting backdoor communication, as shown in the 
drop down menu at the upper right corner of Fig. 12: (1) 
backdoor connection (initiate a backdoor communication 
session), (2) share workflow (manually enable workflow 
sharing between backdoor communication participants), 
(3) connect (invite an additional participant to the back-
door communication), (4) disconnect (remove a partici-
pant from the backdoor communication), (5) request token 
(a participant asks for the mutual exclusive floor for writ-
ing access to the shared workflow), and (6) release token 
(a participant releases the floor to allow other participants 
to request the floor). 

6.2 Experiments 

We have designed and conducted a series of experiments 
to evaluate the performance of our concurrency control 
scheme (the RC_fcw algorithm) implemented in the Con-
fucius system, in supporting collaborative (i.e., concur-
rent) workflow composition among a group of scientists. 
We compared our algorithm with two popular concur-
rency control schemes: strict two-phase locking (2PL_wait0 
or 2PL in short) and strict two-phase locking with update lock 
(2PL_update) [53]. Both schemes are extensions of the 
standard strict two-phase locking scheme to handle dead-
locks, while 2PL resolves deadlocks and 2PL_update pre-
 

  Fig. 11. P2P collaboration. 

 

  Fig. 10. Screen shots of concurrent workflow updates. 
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vents deadlocks. 
Definition 3: L is 2PL_wait0 iff it can be generated by a 

locking sequence where: 1) a transaction must hold a read 
lock (respectively a write lock) on an item before reading 
(respectively writing) the item; 2) if a transaction T tries to 
put a lock on an item on which a conflicting lock is held, 
T will be aborted immediately (wait 0); and 3) a transac-
tion T holds all obtained locks until it terminates, at that 
time all locks that T has acquired will be released (strict). 

Definition 4: L is 2PL_update iff it can be generated by 
a locking sequence where: 1) a transaction must hold a 
read lock (respectively a write lock) on an item before 
reading (respectively writing) the item; 2) if a transaction 
T attempts to read an item and then possibly modify it 
later, then T has to acquire an update lock first and 
then upgrade the update lock to a write lock right be-
fore the write operation; 3) if a transaction attempts to 
obtain an update lock on an item with update locks, it 
will be put into a waiting queue. 

6.2.1 Experimental setup 

We simulated a collaborative workflow composition envi-
ronment, where a group of scientists collaboratively (con-
currently) compose (update) different parts of a mutual 
workflow during a time period. We developed a work-
flow generator, which can produce a randomly generated 
scientific workflow comprising a configurable number of 
tasks. For simplicity, we made the following two assump-
tions. (1) A workflow under test contains a configurable 
number of individual tasks, meaning that they do not 
depend on each other. (2) The concurrency control granu-
larity was set at the task level. 

Each collaborator was simulated by an independent 
(Java) thread, which iteratively reads a random task of the 
workflow, waits for a predefined time period (e.g., 0.05 
seconds for thinking), and then performs an update on 
the task. The time interval between iterations was set to 
zero at the moment, but could be configured to other val-
ues. To simulate the long-thinking, short-read pattern, the 
reading and writing time for each thread are neglected. 
While each collaborator infinitely performed such itera-
tive random updates, we recorded the total numbers of 
both successful and unsuccessful task updates (due to 
abort), respectively, within a predefined time window. 
All experiments were conducted on a PC with Intel Core 
2 Duo CPU P8800 (@2.66 GHz & 2.76GHz) and 3 GB main 
memory, running the Windows 7 Professional Edition 

operating system. The database system used is Apache 
Derby 10.5.3.0. The database was installed in an embed-
ded fashion for this experiment, so that data transporta-
tion time could be neglected. 

Our first set of experiments focused on testing the 
throughput of the three schemes by varying the number 
of collaborators. The throughput (collaboration produc-
tivity) is defined as the number of successful task updates 
by all collaborators per minute. The average throughput 
is calculated for each collaboration group of size N (1, 5, 
10, 20, 30, …, 100). To avoid coincidence, for each group 
size, the experiment was repeated 3 times with the aver-
age value calculated. We also monitored the number of 
failed task updates performed per minute to examine the 
trend of update conflicts as the number of collaborators 
increased. Table II summarized the parameters of our 
experiments. 

 

Table II. Experimental settings. 

Number of tasks 20 

Number of collaborators 1 to 150 

Experiment time 60 seconds 

Thinking time 0.05 seconds 

6.2.2 Experimental results and discussions 

6.2.2.1 Throughput study. Fig. 13 shows the comparison 
of throughput by varying the number of collaborators for 
the three schemes. All three schemes show similar 
productivity when the group size is smaller than 10. 
However, when the group size grows, their throughputs 
become significantly different. This phenomenon is 
caused by the increase of possibility of conflict when the 
group size grows. 

For the RC_fcw scheme, the collaboration productivity 
steadily increases as the number of collaborators increas-
es, reaching a maximum rate of 11,882 updates per mi-
nute at a group size of 40. Afterwards, the throughput 
starts to decline due to the increase of the number of con-
flicts that lead to abortion. For the 2PL scheme, the 
throughput is increased until the group size reaches 20 
with the maximum rate of 6,721. Afterwards, the 
throughput keeps on declining until reaching a very low 
level, mainly due to the increasing numbers of deadlocks 
caused by the strict two-phase locking algorithm. For the 
2PL_update scheme, the throughput increases monoton-
ically. Especially, the group productivity grows rapidly to 
reach a throughput of 16,000 at the group size of 60. Af-
terwards, the group productivity keeps on growing but 
with a much lower increase rate. Since collaborators lock 

 

  Fig. 12. Backdoor collaboration setting. 

Fig. 13. Comparison of successful update rates. 
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the tasks before reading them in the 2PL_update scheme, 
more and more collaborators have to wait in queues when 
the group size increases. 

For the 2PL_update scheme, every collaborator will 
put an update lock on the task that she is reading, which 
means other people will not be able to update the task 
until the lock is released. As the group size grows, the 
ratio of time for reading and updating of a single task will 
increase, because the maximum number of tasks that can 
be simultaneously updated is predefined (e.g., 20). There-
fore, eventually productivity will stop increasing. 

 
6.2.2.2 Occupancy study. We monitored the efficiency for 
each scheme, which is counted as the ratio of a task being 
occupied on average in the process of a testing time peri-
od. The formula is as follows: 
 

� =
�ℎ����ℎ��� ∗ �
��_��
�

∑ �
��_��
� ∗ ����_
�����_��
���

 

where throughput is the total number of successful up-
dates, unit_time is the execution time for each collabora-
tor, task_no is the total number of tasks in the workflow. 

As an example in Fig. 13, the efficiency of 2PL when 
the number of collaborators is 20 can be calculated as fol-
lows: 

7566 * 0.05 / (60 * 20) = 31.5% 
When the group size is 40, the efficiency of 

2PL_update is 61.9%. When the group size reaches 100, its 
value goes up to 71%. This means that as the number of 
collaborators increases, more and more tasks will be used 
at the same time in 2PL_update, which is why its 
throughput increases monotonically. However, it is also 
noticeable that the curve of 2PL_update becomes flatter as 
the number of conflicts increases, since every collaborator 
will need more time to find an available task to update. 

For the RC_fcw scheme, in the beginning, the number 
of collaborators is less than the number of tasks, so more 
collaborators will contribute to a higher productivity. As 
the group size increases, the possibility of multiple col-
laborators accessing the same task will increase. More 
users will read the same task, make some changes, and 
then submit the request. If one collaborator commits, all 
other collaborators will have to abort their work. On the 
other hand, in the 2PL_update scheme, a task will be 
queued when someone is trying to update it. That is why 
the 2PL_update scheme can show a higher productivity 
than RC_fcw as the group size increases. 

For 2PL, since it uses the SERIALIZABLE isolation lev-
el, SELECT statement will get a shared lock on a range of 
rows; it is highly possible to create a deadlock if two col-
laborators update tasks at the same time. That’s why the 
throughput of 2PL drops significantly as the group size 
increases. 

 
6.2.2.3 Failed update rate study. Fig. 14 shows the failed 
task update rates by varying the number of collaborators 
for the three schemes. 

For the RC_fcw scheme, as the number of collaborators 
increases, the number of conflicts and hence the number 
of failed task updates also increase. Note that RC_fcw 

also has an increasing collaboration productivity before 
reaching 40 collaborators. This means that an increasing 
number of failed task updates is more than compensated 
by the increased number of successful task updates. 

However, when the group size exceeds 40, the number of 
conflicts decreases the productivity of every collaborator. 
One reason may be a scientist may find that another col-
laborator has already updated the task, which forces her 
to abort the task. 

For the 2PL scheme, the number of abortions signifi-
cantly increases as the number of collaborators increases. 
Because of its strict two-phase locks, more conflicts cause 
more deadlocks that lead to more abortions. 

For the 2PL_update scheme, because of the use of up-
date locks, no collaborator could get the resource if there 
is any conflict, so no abortion will occur. 

 
6.2.2.4 Analysis. From this comparison, it can be observed 
that RC_fcw shows similar throughput to 2PL_update for 
a smaller group size (less than 20 collaborators). 

Although the 2PL_update scheme yields the highest 
throughput for a larger group of collaborators, one issue 
is significant. Collaborators cannot access a task even 
though the person who is reading the task does not in-
tend to update it. It is possible that many collaborators 
want to read a task, but only a few of them want to modi-
fy it. Under such a circumstance, RC_fcw remains a good 
option because it allows multiple users to read a common 
task at the same time. 

 
6.2.2.5 Scalability study. We further studied the scalabil-
ity of RC_fcw in the Confucius system under different 
numbers of tasks and collaborators. We chose three fixed 
numbers for collaborators (2, 10 and 50) to represent 
small, medium, and large collaborator groups, respective-
ly. The total number of tasks was set from 10 to 100, with 
10 as the incremental step. For each testing number of 
tasks, the experiment was repeatedly performed three 
times with the average value calculated. Table III summa-
rizes the setting parameters of our experiments. 
 

Table III. Experimental Settings. 
Number of collaborators 2, 10, 50 

Number of tasks 10 to 100  

Experiment time period 60 seconds 

Thinking time 0.05 second 
 

 

Fig. 14. Failed task update rates under numbers of collaborators. 
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Fig. 15 shows our experimental results: (a)~(c) show 
successful task updates; (d)~(f) show failed task updates. 

In Fig. 15(a), two collaborators keep updating tasks, so 
the possibility that they intend to update the same task 
drops as the number of tasks increases. In the beginning, 
2PL_update has more successful updates than the other 
two when conflicts exist. The RC_fcw curve stays slightly 
below the other two curves, indicating that its perfor-
mance is lower when the conflict level is low. The reason 
might be the overhead inherent in the RC_fcw scheme, as 
it has to keep on identifying the first committer. 

In Fig. 15(b), 10 collaborators work together. With a 
higher conflict rate, the rank of throughput is: 2PL < 
RC_fcw < 2PL_update. After 40 tasks, the 2PL curve 
gradually exceeds the RC_fcw curve, because the number 
of conflicts drops as the number of tasks increases and the 
overhead of RC_fcw gradually dominates. All three 
curves become flat when the number of tasks exceeds 50, 
since the conflict level becomes very low. 

In Fig. 15(c), 50 collaborators work together. Under a 
medium to high level of conflict, the rank of throughput 
is: 2PL_update > RC_fcw > 2PL. The collaboration 
productivity in all three schemes increases monotonically 
when the workflow comprises less than 100 tasks. 

Fig. 15(a)~(c) indicate that 2PL and 2PL_update show 
similar performance at the low conflict level, because 
their locks behave similarly when there is no conflict. 

Fig 15(d)~(f) show failed update rates with the same 
experimental settings. RC_fcw constantly show lower 
failure rates than 2PL. 

In summary, our scalability experiments proved that 
our RC_fcw scheme provides decent throughout and fail-
ure rates for different sizes of collaboration groups. 

7 CONCLUSIONS 

In this paper, we presented our ongoing work on estab-
lishing collaboration protocols to support collaborative 
scientific workflow composition. Our service-oriented 
infrastructure includes a collaboration ontology associat-
ed with a set of collaboration patterns, primitives, and 
constructs, as well as concurrent control mechanisms to 
support concurrent collaborative workflow composition. 

We plan to continue our research in the following di-

rections. First, we will design and conduct an evaluation 
study and use the feedback to enhance the system. Se-
cond, based on the collaboration ontology, we plan to 
enhance collaboration provenance management perfor-
mance. Third, we plan to conduct more experiments to 
study the effects of tuning various parameters (e.g., the 
number of concurrent collaborators, the productivity of 
individual members, the number of tasks comprised in 
the shared scientific workflow) on concurrent productivi-
ty. Fourth, we plan to explore conducting collaborative 
scientific workflow composition in the Cloud infrastruc-
ture. 
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