
IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID 1

Confucius: A Tool Supporting Collaborative
Scientific Workflow Composition

Jia Zhang, Daniel Kuc, and Shiyong Lu

Abstract—Modern scientific data management and analysis usually rely on multiple scientists with diverse expertise. In recent

years, such a collaborative effort is often structured and automated by a dataflow-oriented process called scientific workflow.

However, such workflows may have to be designed and revised among multiple scientists over a long time period. Existing tools

are single user-oriented and do not support workflow development in a “collaborative fashion.” In this paper, we report our

research on the enabling techniques in the aspects of collaboration provenance management and reproduciability. Based on a

scientific collaboration ontology, we propose a service-oriented collaboration model supported by a set of composable

collaboration primitives and patterns. The collaboration protocols are then applied to support effective concurrency control in the

process of collaborative workflow composition. We also report the design and development of Confucius, a service-oriented

collaborative scientific workflow composition tool that extends an open-source, single-user environment.

Index Terms— H.4.1.g Workflow management, M.4 Service-Oriented Architecture, H.5.3.c Computer-supported cooperative

work

—————————— � ——————————

1 INTRODUCTION

he advancement of modern science has created sheer
volume of data with increasing complexity. Pro-
cessing and managing such large-scale scientific data

sets is usually beyond the realms of individual scientists
to solve [1]; instead, it has to rely on multiple domain sci-
entists with diverse expertise. For example, the Large
Synoptic Survey Telescope (LSST) experiment [2], which
aims to repeatedly image half of the sky over a planned
10-year survey, produces data at a rate of 300 MB/s and
will result in catalogs of about 130 TB of roughly 3×109
sources times 10 years worth of data. Analyzing such data
sets demands a collaboration of a number of organiza-
tions with over 1,800 scientists and engineers engaged.

Such scientific data analysis and processing is usually
structured and automated by a dataflow-oriented process
called scientific workflow. In contrast to business processes
that are control-flow oriented and orchestrate a collection
of well-defined business tasks to achieve a business goal,
scientific workflows are often dataflow-oriented and
streamline a collection of scientific tasks to enable and ac-
celerate scientific discovery [3, 4]. Researchers use scien-
tific workflows to integrate and structure local and remote
heterogeneous computational and data resources to per-
form in silico experiments [1, 5-7]. The increasingly im-
portant role of scientific workflows in modern science was
emphasized in an article titled “Beyond the Data Deluge”
published in Science [8]: “the rapidity with which any giv-
en discipline advances is likely to depend on how well the
community acquires the necessary expertise in database,

workflow management, visualization, and cloud computing
technologies.”

In short, scientific workflow and scientific collaboration
are two key techniques to support scientific data analysis
and management. The convergence of the two trends nat-
urally leads to a concept that we coined as collaborative
scientific workflow [9], meaning that multiple scientists are
involved and collaborate in the entire lifecycle of a work-
flow: its design, revision, execution, monitoring, and man-
agement. As the first step, we focus on design-time collab-
oration, aiming to build techniques and a tool to support
collaborative scientific workflow design, both synchro-
nously and asynchronously.

Collaborative workflow design is usually critical for the
success of a comprehensive workflow composition. A very
simplified LSST experiment [2] represents a three-step
workflow: data retrieval, pre-processing, and data
modeling. Designing each step requires different exper-
tise. Meanwhile, the serial relationship among the steps
implies that the accuracy of the entire process is deter-
mined by the design of each step and the error propaga-
tion between them. While involving scientists with differ-
ent capabilities focus on finding a local optimal design of a
particular step, collaboration between them will find a
global optimal design for the entire workflow.

Existing scientific workflow tools do not particularly
support collaborative composition. In our earlier article
[9], we studied a number of representative scientific work-
flow management systems (SWFMSs) [10-15], including
Kepler [10], Taverna [11], Triana [12], VisTrails [13], Pega-
sus [4], Swift [14], and VIEW [15, 16]. Our investigation
found that they are all single user oriented, focusing on
helping individual scientists construct workflows from
available applications and services. Facilities that support
scientists in collaboratively designing workflows are lim-
ited. Individual work artifacts (scientific workflows) are

xxxx-xxxx/0x/$xx.00 © 2012 IEEE

————————————————

• Jia Zhang is with the Department of Computer Science, Northern Illinois
University, DeKalb, IL 60115. E-mail: jiazhang@cs.niu.edu.

• Daniel Kuc is with the Department of Computer Science, Northern Illinois
University, DeKalb, IL 60115.

• Shiyong Lu is with the Department of Computer Science, Wayne State
University, Detroit, MI. E-mail: shiyong@wayne.edu.

Manuscript originally received on 11/6/2010; revision received on 9/16/2011.

T

2 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

manually sent to collaborators (e.g., via emails) or upload-
ed to some shared social space (e.g., MyExperiment [17])
to enable collaborative design and discussion. For exam-
ple, a collaborator can download a published workflow
(e.g., in the description language provided by Taverna
[11], a popular scientific workflow tool) from MyExperi-
ment, load it into a local Taverna workbench, update it,
and upload the revised workflow back to MyExperiment.
Afterwards, other collaborators can continue to perform
further changes and thus realize a collaborative design.

Such a discrete collaboration style obviously does not
support real-time discussion and collaboration, which are
usually critical to scientific exploration. In addition, prov-
enance data (workflow design history) is not maintained
sufficiently, which is critical for workflow reproducibility.
Therefore, we have been developing a design environ-
ment, equipped with system-level support for collabora-
tive scientific workflow composition. To memorize a fa-
mous ancient Chinese philosopher and educator, we name
our system after his name as Confucius. Without reinvent-
ing the wheel, we examined a widely used single-user
scientific workflow tool, Taverna [11], and extended it into
a multi-user version.

To our best knowledge, this is the first effort of success-
fully realizing a collaborative scientific workflow composi-
tion workbench. In this paper, we focus on reporting our
design and development of one key enabling technique,
collaboration protocol. We propose a scientific collabora-
tion provenance ontology, and based on it, we have de-
veloped a service-oriented collaboration model that is
supported by a set of composable collaboration primitives
and patterns. The collaboration protocols are then applied
to support effective concurrency control in the process of
workflow co-design.

The core idea of Service Oriented Architecture (SOA) is
to position services as the primary means (components)
that encapsulate solution logic [18] as reusable assets. In
this project, we have leveraged the concept of SOA to
build our system for higher interoperability, reusability,
and productivity. Since we focus on scientific workflows,
throughout this paper, we use the terms scientific workflows
and workflows interchangeably.

The remainder of the paper is organized as follows. In
Section 2, we present related work. In Sections 3, 4, and 5,
we introduce collaboration models, collaboration proto-
cols, and composition concurrency control mechanisms.
In Section 6, we discuss system implementation and ex-
perimental study. In Section 7, we draw conclusions.

2 RELATED WORK

In this section, we compare our approach with related
work in three categories: scientific workflow management
systems, business workflow coordination, and collabora-
tive workflow composition. Note that we focus on the
workflow design phase.

2.1 Scientific Workflow Management Systems

To date, several scientific workflow management systems
(SWFMSs) have been developed as single-user environ-

ments that help individual scientists construct workflows
from available scientific resources. Representative
SWFMSs include Kepler [10], Taverna [11], Triana [12],
VisTrails [13], Pegasus [4], Swift [14], Trident [19], and
VIEW [15, 16]. Each system shows unique features.

Kepler [10] models a workflow as a composition of

components called actors, controlled by a director. Taverna

[11] uses an XML-based workflow language called

SCUFL/XSCUFL for workflow representation, with each

component being either a Web service or a processor de-

veloped using Java Beanshell script. Triana [12] provides a

sophisticated graphical user interface for workflow com-

position and modification, including grouping, editing,

and zooming functions. VisTrails [13] focuses on work-

flow visualization supporting provenance tracking of

workflow evolution and data product derivation. Pegasus

[4] provides a framework that leverages artificial intelli-

gence planning techniques to map complex scientific

workflows onto distributed Grid resources. Swift [14] uses

a scripting language called SwiftScript to support specifica-

tion of large-scale computations over a Grid. Trident is a

scientific workflow workbench built on top of a commer-

cial workflow system, Windows Workflow Foundation

(WF) included in the Windows operating system. VIEW

[15, 16] system features efficient provenance management

based on RDFProv [20, 21] that combines advantages of

Semantic Web technologies with relational databases [21,

22].
Each of the SWFMSs provides a platform to support

individual scientists in composing. Some systems show
some collaboration features, in the sense that they allow a
scientist to compose a workflow from shared resources
and services. However, they provide limited support for
multiple scientists to collaboratively compose a shared
workflow [23]. For example, Taverna [11] users can pub-
lish their composed workflows in a dedicated social work-
flow space (e.g., MyExperiment [17]); others can down-
load the workflows and load them using the same
SWFMS, make changes, and upload the new versions into
MyExperiment to initiate further interactions. However,
such SWFMSs do not support real-time workflow co-
design.

In contrast to the existing SWFMSs, we study how to
establish a system that enables multiple scientists to col-
laboratively compose workflows with system-level sup-
port.

2.2 Business Process Coordination

For business workflows, the term "collaborative work-
flows” is interchangeable with the term “coordinated work-
flows” [24-26]. They emphasize coordination between
workflows. In contrast, we use the term to emphasize the
involvement of multiple scientists with a workflow.

A number of work has been conducted to help model
and compose business workflows [27]. Huang et al. [28]
and Dang et al. [29] employ agents technology to reason
about the composition of coordinated workflows. Bal-
asooriya et al. [30] propose a decentralized services-
oriented middleware architecture to compose workflows

J. ZHNAG, D. KUC, AND S. LU: CONFUCIUS: A TOOL SUPPORTING COLLABORATIVE SCIENTIFIC WORKFLOW COMPOSITION 3

and specify their dependencies. Balasooriya et al. [31] pro-
pose a two-layer framework, where Web services are mod-
eled as self-coordinating entities, and a workflow intercon-
nects such entities into a network of objects. Business Pro-
cess Models (BPM) [32] enables Web form-style asynchro-
nous collaborative business process modeling.

Some researchers particularly study modeling of work-
flow coordination in a Grid environment. Miller et al. [33]
propose a language to specify workflow composition, com-
prising both reactive tasks (Web services) and proactive
tasks (autonomous agents) in a Grid environment. Based on
γ-calculus, Nemeth et al. [34] model workflow coordination
as molecules and reactions to enable autonomous evolution
in a changing Grid environment.

In contrast to business process modeling where compris-
ing components are directly connected through control
links, tasks in scientific workflow modeling are connected
through data links, which have to be considered when
locks are assigned to tasks during collaborative workflow
design. We thus introduce a concept of synchronization
area (defined in Section 5.1).

Lu and Sadiq [27] consider pre- or post-conditions for
each comprising task, and use event-condition-action
(ECA) rules to specify some runtime behavior at design
time. Compared to their approach, we define human col-
laboration relationships at design time.

The Computer Supported Cooperative Work (CSCW)
community has studied the general-purpose concurrent
design problem, where collaborators with different own-
erships possess different controls over the shared work
product [35, 36]. To name a few, OntoEdit [37] supports a
collaborative software engineering process; Yen et al. pre-
sent a collaborative design tool that allows privileged
collaborators to change the process [35]; OPCATeam [36]
integrates the object-oriented and process-oriented para-
digms into one single framework to enable the co-
existence of structured processes and human interaction
behaviors in one business process modeling system. In
contrast, our work focuses on dataflow-oriented collabo-
ration, where semantic relationships and constraints be-
tween different comprising components (e.g., tasks and
data links) need to be carefully considered during concur-
rent composition.

2.3 Collaborative Workflow Composition

The business community recently recognized the need of
involving humans into business workflows and has de-
veloped a preliminary model [38]. Ayachitula et al. [39]
divide workflows into human-centric workflows and au-
tomated process-based workflows. Russell et al. [40] pro-
pose to establish a separate team access control layer,
which combines role and organization, to manage access
in a collaborative workflow environment. The
BPEL4People [38] workflow model is proposed to extend
the de facto industry standard business workflow language
BPEL [41] to standardize the interaction between automat-
ed and human workflows.

However, these business workflow-oriented models are
not suitable to be used for supporting collaborative scien-
tific workflows because, business workflows are con-

trolflow-oriented and hence lack dataflow constructs for
interaction, movement, and processing of large datasets.
Furthermore, provenance data management for the repro-
ducibility of scientific results is essential for scientific
workflows but not for business workflows. Hence, scien-
tific workflows pose a different set of requirements [5]. For
BPEL4People specifically, every computational compo-
nent in BPEL must be a Web service, thus, it lacks the
support of modeling user interaction and visualization
intensive tasks.

Sayah and Zhang [42] present their annotated business
hyperchain technology that enables on-demand business
collaboration with the Web services technology. They
propose a set of business collaboration primitives to serve
business scenarios. In contrast, our collaboration primi-
tives serve scientific collaboration scenarios. In addition,
our work emphasizes design-time collaboration prove-
nance capturing for credit acknowledgement as well as
guiding future collaborative workflow composition.

We surveyed the state of the art of the field of scientific

workflows toward the support of collaborative scientific

workflows [9]. Our observations directly motivated the

research work reported in this paper. We also have sur-

veyed the literature of workflow control mechanisms in a

collaborative environment in [43]. Our study helped us

build a linkage between scientific workflow and collabora-

tive work.
Our “collaboration provenance” is different from the

term “collaborative provenance” used by Dr. Altintas et al.
[44]. Their “collaborative provenance” means, “inferring
dependencies across multiple workflow runs and under-
standing user collaborations based on scientific workflow
runs”[44]. In contrast, our term “collaboration prove-
nance” aims to capture how scientists collaboratively de-
sign a common scientific workflow, e.g., who has designed
which part.

3 COLLABORATIVE SCIENTIFIC WORKFLOW

COMPOSITION MODEL

Provenance has been widely considered critical to the re-
producibility of scientific workflows [45, 46]. Compared to
existing significant amount of work focusing on prove-
nance for run-time workflow execution, our work focuses
on collaboration provenance that tracks human interac-
tions and efforts in the process of scientific workflow
composition. Our method is to record all collaborative
activities that contribute to a composed workflow.

3.1 Provenance Ontology

We have developed a provenance ontology to support the
modeling of various provenance data recording scientific
workflow design and user interactions during the process
of a collaborative workflow design. As shown in Fig. 1,
our ontology is centered upon the concept of “workflow.”
Each scientific workflow comprises organized processors
(tasks) and data links (aka. data channels), sub-workflows,
as well as predefined requirements and annotations
(comments). Each workflow maintains one or more floors
that are tokens to ensure concurrency control. Long-term

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

collaboration on a scientific workflow forms a meeting. A
short-term synchronous collaboration is called a session.

Each scientific workflow belongs to a project. Each pro-
ject belongs to a scientific group (could be a virtual group).
Each group may comprise multiple focuses, each involv-
ing multiple projects. A group contains a set of members,
each may belong to different organizations.

Collaborative composition on a scientific workflow is
conducted by members serving in different roles. The ini-
tiator (creator) of a scientific workflow is called a modera-
tor. Scientists who cooperate on the lifecycle of a workflow
are called collaborators. They have read and write privileg-
es. A collaboration may also involve visitors, who are
granted with read privilege only.

Our ontology, which is extensible, serves as a founda-
tion for managing collaborative workflow design prove-
nance. Each scientific collaboration project may define
customized ontology and add additional concepts into
the basic ontology for special purposes. For example, a
research project may introduce project-wise particular
roles in their collaboration.

3.2 Collaborative Composition Model

We designed models to regulate how collaborators can
collaboratively design and update mutual workflows.
Instead of reinventing the wheel, we chose to explore
how to extend the single user-oriented Taverna tool.

3.2.1 Basic collaboration model

We carefully studied the latest Taverna code (version 2.0),
focusing on exploring the feasibility of extending it into a
collaborative version. As a starting point, we examined
the communication paths between Taverna instances. In
other word, we aim to find a way to allow two Taverna
running instances to communicate with each other. We
found that Taverna is built on top of an event-based
mechanism, meaning that any user event (e.g., clicking a
button) triggers a backend action. When a user chooses to
save a workflow, Taverna will serialize the workflow as a
file in XScufl [47] that is an XML-based workflow specifi-
cation language. Fig. 2 shows a segment of XScufl code
that contains one workflow with one to many dataflows,
each comprising a sequence of elements including: name,
a set of input ports, a set of output ports, a list of proces-
sors (tasks), some conditions, a set of data links (edges),

and annotations. When a user selects to open such an
XML file, the stored workflow will be loaded into the Ta-
verna workbench and rendered on the screen.

Therefore, we utilized a file system-based workflow
storage mechanism to enable communication between two
Taverna versions. When a collaborator with write privi-
lege saves a workflow, its serialized XML document can
be propagated to another site where another collaborator
has read privilege. An automatic file open action will ren-
der the same workflow on the reader’s screen.

We adopted the observer design pattern [48] to build a
preliminary infrastructure to enable collaboration between
multiple Taverna versions. The observer pattern is a sub-
set of the asynchronous publish/subscribe design pattern.
A special subject is used to maintain a list of its depend-
ents (observers) and automatically notify them of any state
changes. Fig. 3 shows such a client/server-based infra-
structure. A central server is established as the subject and
maintains all collaborators’ information, and all collabora-
tors act as observers. As shown in Fig. 3, the central server
also stores and manages all provenance data, so that late
comers can view shared workflows.

Fig. 3 shows several possible flow scenarios. Client 1
registers a collaboration Group 1 on the central server
(Step 1). Upon approval (Step 2), Client 1 shares a port to
his/her potential collaborators (Step 3). Users from the
invitation list (e.g., Client 2) may subscribe (Step 4) to the
registered collaboration group (i.e., Group 1) and start to
update the shared workflows within the group (Step 5).
Any updated version will be stored in the central server
and automatically distributed to all collaborators in the
collaboration group (Step 6).

Any action in the original Taverna workbench (i.e.,
adding/deleting/updating an element, and saving a work-
flow) will trigger an automatic “save” action. The server
will deliver the up-to-date workflow file to all participat-
ing collaborators.

3.2.2 Advanced collaboration model

Scientific collaborations usually last for a long period of
time, e.g., months and years. In addition, temporary dis-
cussion groups and sessions may be formed in the lifecy-

 Fig. 1. Collaborative workflow composition provenance ontology.

Fig. 2. A segment of XScufl code.

J. ZHNAG, D. KUC, AND S. LU: CONFUCIUS: A TOOL SUPPORTING COLLABORATIVE SCIENTIFIC WORKFLOW COMPOSITION 5

Algorithm 1: Floor Granting Algorithm

Input: A collaborator releases a floor

Requirements: Release a floor.

1: check(waiting_list)

2: if (waiting_list ≠ Ø) then

3: requestor ← get_top_requestor(waiting_list)

4: floor_owner ← requestor

5: notify(members)

6: remove(requestor, waiting_list)

7: else if (waiting_list = Ø) then

8: floor flag ← unoccupied

9: notify(members)

10:endif

Algorithm 2: Floor Releasing Algorithm
Input: A requestor requests a floor
Requirements: Decide whether a floor should be granted.

1: check(floor)
2: if (floor ≠ taken), then
3: floor flag ← occupied
4: floor owner ← requestor
5: notify(members)
6: return true
7: else if (floor = taken) then
8: insert(requestor, waiting_list)
9: return false
10: endif

cle of a long-term scientific collaboration process. There-
fore, we constructed a hierarchical structure for the central
server. It may host multiple collaboration groups, which
may or may not have nesting relationships between them.
The central server maintains all collaboration group in-
formation and acts as the subject for all registered groups.
All observers (collaborators) are organized into corre-
sponding collaboration groups. The central server also
stores and manages all provenance data, so that it be-
comes a repository of workflow products and enables
scalability. In other words, we realize a multi-tenancy in-
frastructure.

Within a collaboration group, a straightforward way is
to allow everyone to do anything on a workflow at any
time, and distribute the results to everyone in the same
group. In the real life, however, typically only one person
is allowed to speak at a certain moment in a group [49].
Thus, we grant access control policies so that only one
person at a time can modify the shared workflow products
and distribute the changes in the group.

We adopted the floor control technique from an exten-
sively tested and well proved human communication pro-
tocol, Robert’s Rules of Order (RRO) [49], where a single
floor is maintained in a shared meeting environment. Each
member requests and competes for the floor, and only the
person who obtains the floor can talk in the meeting. Ap-
plying RRO to our collaboration environment, each mem-
ber in a collaboration group must request a floor to gain
the write privilege of the shared workflow products in the
group. Otherwise, the changes will be kept locally and will
not be distributed to other collaborators. A simple role-
based model is adopted. The person who registers a col-
laboration group at the central server becomes the moder-
ator of the group, and will automatically have the control
over the floor. In this section, we discuss single-floor pro-
tocol. Multiple floor-based access control facility, with
finer-grained locking mechanisms for higher concurrency,
will be discussed in Section 5. As shown in Fig. 3, Client 3
in Group 2 requests the floor (Step a). Upon approval, Cli-
ent 3 may update the workflow (Step b) and the changes
will be distributed to other collaborators in the same
group (e.g., Client 4) instantaneously.

The pseudo code, presented in algorithm 1, realizes a
floor granting process. If the floor is not occupied, the re-
questor will be granted the floor exclusively; otherwise,
the requestor will be put into the corresponding waiting
list and wait for the floor. Upon releasing a floor, the re-

questor at the top of the waiting list will be automatically
informed and granted the floor. If there is no one in the
waiting list, then nothing will happen. The pseudo code
(algorithm 2) shows a floor releasing process. A moderator
may deprive the floor from a collaborator under certain
circumstances, for example, if the collaborator loses her
Internet connection.

3.2.3 Light-weight collaboration model

The aforementioned client/server model represents a for-
mal collaboration mode, as all communications are stored
in a centralized server with permanent provenance stor-
age. In contrast, sometimes researchers may prefer a more
informal collaboration mode. Backdoor communications
may occur among some team members in a free and pri-
vate manner. In addition to free text conversations that can
be supported by applications like instant messengers (IMs,
which we have integrated into Taverna), here we focus on
discussing how to share temporary workflow changes
among a subset of collaborators.

To realize the backdoor collaboration, a straightforward
way is to adopt the traditional peer-to-peer (P2P) mode,
where each peer (i.e., Taverna instance) is equally
weighted and is enabled to communicate with each other.
This implies that each SWFMS instance becomes heavy-
weight, meaning that we have to physically embed P2P
communication code into each SWFMS instance. Recall
that our centralized client/server model intentionally
keeps each SWFMS client light weighted. This heavy-
weight SWFMS client requirement will constrain the reus-
ability and flexibility of the code of the SWFMS instance.
In addition, our server-based communication mode is not
reusable in this option.

To overcome these limitations, we propose a light-
weight server model. A light-weight server is established

Fig. 3. Collaborative composition model.

6 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

to temporarily store the latest version of the workflow
product and broadcast it to all participating clients (i.e.,
SWFMS instances). We modularize the light server as a
pluggable component to the original SWFMS instance
code. This implies that such a server can run on every cli-
ent side, in addition to the light-weight client. Between
two peers who intend to communicate, only one peer has
to initiate a light-weight server.

Fig. 4 illustrates the light-weight communication proto-
col between two collaborators using a UML sequence dia-
gram. When one user (Collaborator1) wants to start a
back-door channel, she sends an invitation (to Collabora-
tor2). Upon receiving an agreement, the user (Collabora-
tor1) implicitly instantiates and starts a light-weight server
at the user side. A signal is sent to the other party as well.
It is in a light-weight mode, in the sense that it does not
permanently store workflow products. As shown in Fig. 4,
when Collaborator1 makes some changes to the shared
workflow, the changes will be submitted to the light-
weight server. The light-weight server will in turn propa-
gate the changes to the participating Collaborator2. Simi-
larly, when Collaborator2 makes changes, they will be
propagated to Collaborator1 through the light-weight
server. Finally, when the initiator (Collaborator1) decides
to finish the backdoor communication, the final version of
the changes can be sent to the central server to store, if so
desired.

4 COLLABORATION PROTOCOLS

Business process modeling techniques [27] use rules to

specify runtime behavior of workflows at design time.

Similarly, we model run-time collaboration specifications

(e.g., rules, patterns, and primitives) at design time. We

focus on how to enable recording such collaboration de-

sign and their changes.

4.1 Collaboration Rules

The granularity of a collaboration happens at either da-
taset or task level. Different research projects may adopt
different collaboration rules; thus, a collaboration model
must be configurable. We propose a 4-tuple collaboration
rule container as shown in Fig. 5:

>=<− ValidatorMonitorOperatorOwnerRuleC ,,,

The collaboration container comprises four basic plug-
in roles: owner, operator, monitor, and validator. Plug-in
roles mean that they represent role types, and zero to
multiple role instances may be created at run-time. An

owner role represents a group of scientists who have
ownerships over a dataset or a task. An operator role rep-
resents a group of scientists who have the privilege to
operate on a dataset or a task. A monitor role represents a
group of scientists who have the privilege to monitor the
operation process of a task or over a dataset. A validator
role represents a group of scientists who have the privi-
lege to validate an operation over a dataset or a task and
claim the success/failure of such an operation. Note that
what operators, monitors, and validators have to do is
project-specific. One scientist may act in multiple roles
simultaneously in a workflow composition process.

A collaboration rule specifies an instance of a rule con-
tainer, with the participating collaborators at run time.
Because of the exploratory nature of scientific workflow
design, such a run-time collaboration rule is a design-time
expectation, and will be recorded in the format of annota-
tions attached to particular parts of workflows, as illus-
trated in Fig. 1.

4.2 Collaboration Patterns

Different from business processes, a scientific workflow is
exploratory, thus requiring constant human interaction
and intervention. For example, a task run may require
validation before its subsequent tasks can continue. Such a
requirement should be recorded as part of the workflow
design.

We studied a number of known scientific collaboration
projects documented in [1] to identify data-centric collabo-
ration patterns. As a starting point, we summarized a set
of six collaboration patterns: (1) dataset request, (2) analy-
sis request, (3) validation request, (4) discussion request,
(5) co-run, and (6) co-approve. We first introduced the six
patterns for two-way collaboration, where two scientists are
involved in a collaborative activity [50]. Our preliminary
experiences show that these patterns satisfy basic collabo-
ration requirements. Then, we extended the patterns to
multi-way collaboration. In the near future, when our sys-
tem is applied to the real-world collaborative projects, we
plan to study and elicit more collaboration patterns.

The dataset request pattern reflects a scenario when
some specific data is required, during the execution of a
scientific experiment, while the dataset belongs to an ex-
ternal scientist group. Given a workflow W, scientist A
asks for dataset D from scientist B before continuing.

The analysis request pattern reflects a scenario when
some particular data obtained has to be analyzed by a spe-
cific tool or process that is owned by an external scientist
group. Given a workflow W, scientist A asks scientist B to
analyze dataset D.

The validation request pattern reflects a scenario when
an interesting discovery is reached that requires verifica-
tion and validation by a group of scientists with specific
expertise. In the context of a workflow W, scientist A asks
scientist B to validate a specific task T or dataset D. The

Fig. 5. Collaboration rule container.

 Fig. 4. Light-weight collaborative composition model.

J. ZHNAG, D. KUC, AND S. LU: CONFUCIUS: A TOOL SUPPORTING COLLABORATIVE SCIENTIFIC WORKFLOW COMPOSITION 7

TABLE I. COLLABORATION PRIMITIVES

Type Primitive Name

Collaboration

preparation

primitives

Request for Dataset (RFD)

Request for Data Analysis (RFA)

Request for Validation (RFV)

Request for Discussion (RFC)

Request for Co-run (RFCR)

Request for Co-approval (RFCA)

Collaboration

conduction

primitives

Accept or Reject Request (A/R)

Command Submission (CS)

Data Submission (DS)

Update Submission (US)

result will be either positive or negative.
The discussion request pattern reflects a scenario when

discussion is needed over some specific topics, and the
results of the discussion will decide the direction (or steps)
of the following actions. In the context of a workflow W,
scientist A identifies a group of scientists to discuss over a
task T or a dataset D.

The co-run pattern reflects a scenario when scientists
individually run proprietary data analysis processes over
the same dataset simultaneously. Given one dataset D,
scientists A, B, …, N perform workflows W1, W2, … Wn con-
currently and respectively, and then compare the results
obtained from their workflow runs.

The co-approve pattern reflects a scenario when scien-
tists have to reach an agreement on an experimental result.

These collaboration patterns can be represented using
our rule container to realize a fine-grained collaboration
control. For example, the data analysis pattern can be rep-
resented by a rule with owner A and operator B.

4.3 Collaboration Primitives

Based on the collaboration patterns, we designed a set of
semi-structured collaboration primitives, as summarized
in Table I. The primitives are divided into two categories:
collaboration preparation primitives and collaboration
conduction primitives. Since scientific collaboration may
last for a long period of time, we adopt an asynchronous
communication mode, meaning that each collaboration
primitive is associated with an instant acknowledgement.

Six collaboration preparation primitives are construct-
ed: (1) Request for Dataset (RFD), when a dataset is need-
ed during a workflow; (2) Request for Data Analysis
(RFA), when a data analysis process is needed during a
workflow; (3) Request for Validation (RFV), when a data
validation process is required; (4) Request for Discussion
(RFC), when a discussion is required; (5) Request for Co-
run (RFCR), when concurrent sub-workflows are re-
quired; and (6) Request for Co-approval (RFCA), when an
approval has to be made by multiple parties.

Four collaboration conduction primitives are identi-
fied: (1) Accept or Reject Request (A/R), when a request
(e.g., RFD) is accepted or rejected by a collaborator; (2)
Command Submission (CS), when a specific computa-
tional command is provided; (3) Data Submission (DS),
when a specific data set is transferred; and (4) Update
Submission (US), when a collaborator updates collabora-
tion status in response to a request.

In addition to be used individually, these collaboration
primitives can be used as building blocks for collabora-
tors to model more comprehensive collaboration patterns.

4.4 Collaboration Mini-Workflow

Based on the established collaboration primitives, we
apply the SOA concept to implement the collaboration
patterns. Each collaboration pattern is accomplished by a
mini-workflow comprising a set of configured
collaboration primitives. Through different combinations
of the set of collaboration primitives, different collabora-
tion patterns can be realized.

We have constructed six example mini-workflows to
realize the six collaboration patterns described in Section
4.2. (1) dataset request: comprising the RFD, A/R, and DS
primitives; (2) analysis request: comprising the RFA, A/R,
and CS primitives; (3) validation request: comprising the
RFV, A/R, and CS primitives; (4) discussion request:
comprising the RFC primitive and a collection of US
primitives; (5) co-run: comprising the RFCR, A/R, and US
primitives; and (6) co-approve: comprising the RFCA,
A/R, and US primitives.

Such a mini-workflow can be formalized using the
Business Process Execution Language (BPEL). Since BPEL
is based on Pi-calculus, modeling mini-workflows in
BPEL will allow us to formally reason about the

<process name"RFDmicroflow"
 targetNamespace="urn:CollaborationConstructs"
 xmlns:tns="urn:samples:CollaborationConstructs"
 xmlns="http://confucius.org/constructs/">

 <sequence>

 <invoke name="invokeRFD"
 partner="CollaboratorA" portType="tns:RFDoriginatorPT"
 operation="sendRFD" outputVariable="RFD">
 </invoke>

 <invoke name="ackRFD"
 partner="CollaboratorB" portType="tns:RFDreceiverPT"
 operation="ackRFD" outputVariable="RFD_Receipt_Ack">

 </invoke>

 <invoke name="acceptRFD"
 partner="CollaboratorB" portType="tns:RFDreceiverPT"
 operation="acceptRFD " outputVariable="A">

 </invoke>

 <invoke name="ackAcceptRFD"
 partner="CollaboratorA" portType="tns:RFDoriginatorPT"
 operation="ackAcceptRFD" outputVaria-
ble="A_Receipt_Ack">

 </invoke>

 <invoke name="invokeDS"
 partner="CollaboratorB" portType="tns:RFDreceiverPT"
 operation="submitDS" outputVariable="DS">

 </invoke>

 <invoke name="ackDS"
 partner="CollaboratorA" portType="tns:RFDoriginatorPT"
 operation="receiveDS" outputVariable="DS_Receipt_Ack">

 </invoke>

 </sequence>

</process>

Fig. 6. Service-oriented mini-workflow.

8 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

construction of a new collaboration pattern. Such a
validation allows for design-time static checking.

Taking the first collaboration pattern (dataset request)
as an example, Fig. 6 shows a section of its BPEL
specification. For simplicity, we skipped the section
defining messages (collaboration messages), partners
(collaborators A and B), and variables (messages), and
links (expressing synchronization dependencies). As
shown in Fig. 6, each collaboration primitive is wrapped
as a Web service. Two parties (Collaborators A and B) act
as service providers and service requestors, respectively.
Each collaboration primitive is realized by a service call,
associated with the corresponding messages. Once
represented by BPEL, multiple collaboration constructs
may be combined to form a comprehensive collaboration
scenario. Such a service-oriented model enables platform-
neutral and language-neutral collaboration.

4.5 Service-Oriented Collaboration Provenance

We decided to adopt the Web services technology [18] to
realize collaboration. As the best enabling technology of
SOA to date, it allows us to design collaborations among
participating scientists with platform independence and
language independence. Collaboration primitives are en-
capsulated in Simple Object Access Protocol (SOAP) mes-
sages and communicated between collaborators. To ena-
ble validation and analysis, we adopted the XML Schema
to uniform the format of collaboration messages. Fig. 7
shows a section of the specification of a collaboration
message.

Messages are divided into request messages and re-
sponse messages. Each message contains one or more
primitives that form a transaction, meaning that they
form an atomic unit of work in a scientific workflow.
Each transaction aims to serve for a task in a workflow,

which belongs to a scientific project. A message may also
contain optional data such as comments.

Such collaboration designs are recorded as provenance
in the format of annotations (as shown in Fig. 1) attached
to the workflow under construction.

5 WORKFLOW COMPOSITION CONCURRENCY

CONTROL

At composition time, multiple scientists collaborate to
develop a scientific workflow. Thus, concurrency control
deserves consideration to ensure design productivity.

5.1 Locking Granularity

Adopting the instrument from an extensively tested and
well proved human communication protocol, RRO [49],
we originally established a workflow-level floor control
mechanism as described in Section 3.2.2. Each collabora-
tor competes for the shared floor before making any
changes.

Such a workflow-level floor control may not be effi-
cient to support large-scale scientific workflow composi-
tion, though. Since scientific research is an exploratory
process, the development of a workflow may undergo
many rounds of discussions and changes and may last for
a long period of time. Meanwhile, a collaboration group
nowadays usually comprises scientists from different or-
ganizations at distributed locations. They may possess
different schedules and may even reside in different time
zones; thus, their collaboration may adopt both synchro-
nous and asynchronous modes. Furthermore, a large-
scale scientific workflow may involve many comprising
components. It is neither efficient nor practical, if one sci-
entist working on one component locks the entire work-
flow and prevents other scientists from working on unre-
lated components.

To increase composition concurrency, we investigated
the option of locking the smallest building blocks. A sci-
entific workflow allows multiple non-overlapped locks,
so that multiple scientists may work on the corresponding
locked components simultaneously.

According to the existing SWFMS tools, the smallest
building blocks in a workflow are tasks and data chan-
nels. For example, in Taverna, a task is called a processor; a
data channel linking between processors is called a data
link. Fig. 8 is a highly simplified scientific workflow
drawn in Taverna, which illustrates a word count exam-
ple using the MapReduce programming model [51]. Two
processors Mappers repeatedly process a list of word lines,
by breaking each line into individual words and generat-
ing a list of <word, 1> pairs over all the words found. All
the intermediate <word, 1> pairs are transferred, through
the data links, to the processor Reducer that aggregates the
pairs according to the words. The results are a list of
<word, value> pairs that show the number of appearances
of each word.

<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://confucius.org/class"
 xmlns:tns="http://confucius.org/class">
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="task" type="xsd:anyURI" de-
fault="http://confucius.org/class#Task"/>
 <xsd:element name="workflow" type="xsd:anyURI" de-
fault="http://confucius.org/class#Workflow"/>
 <xsd:element name="project" type="xsd:anyURI" de-
fault="http://confucius.org/class#Project"/>
 <xsd:element name="Construct">
 <xsd:annotation>
 <xsd:documentation> A construct is the atomic unit of
collaborative work in a scientific workflow.
</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="tns:Name"/>
 <xsd:element ref="tns:task"/>
 <xsd:element ref="tns:workflow"/>
 <xsd:element ref="tns:project"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Fig. 7. Schema for a transaction.

J. ZHNAG, D. KUC, AND S. LU: CONFUCIUS: A TOOL SUPPORTING COLLABORATIVE SCIENTIFIC WORKFLOW COMPOSITION 9

If we set up the locks on individual processors and da-
ta links only, two collaborators may concurrently update
one processor Mapper1 and its output data links, respec-
tively. This situation may not be desirable, because the
data link directly depends on the processor. In other
words, connected processors and data links may have
close semantic relationships, which need to be preserved
by requiring that adjacent entities cannot be updated by
different collaborators at the same time.

Furthermore, continuous processors in a workflow
may also possess semantic relationships between them.
For example, as shown in Fig. 8 where triangles represent
workflow inputs and outputs, the Mapper1 processor and
the Reducer processor are neighbors in the workflow, and
a data link connects them together. The Reducer processor
stays at the downstream of Mapper1; meaning that the
output of the Mapper1 processor serves as the input of the
Reducer processor. Assume that two collaborators are
working on the two processors simultaneously, and col-
laborator A changes some business logic at the Mapper1
processor. Even if these changes may not change the in-
put format of the Reducer processor, the collaborator
working on the Reducer processor should be aware that
someone is working on the upstream processor.

Therefore, we introduce a concept of synchronization ar-
ea that represents a conceptual area in a shared scientific
workflow, which allows only one collaborator to work on
it at a given time. Such an area represents a semantic area.
In the context of a Taverna workflow, if a user tries to
lock a data link, the synchronization area is the data link
itself. If a user tries to lock a processor, the synchroniza-
tion area will be dynamically delimited and include all of
the fan-out data links of the processor. In Fig. 8, the man-
ually drawn red circle around the Mapper1 processor and
its fan-out data link represents such a synchronization
area.

5.2 Locking Algorithms

Based on the concept of synchronization area, we devel-
oped four algorithms (3-6), on locking/releasing a proces-
sor and locking/releasing a data link.

If a user selects a processor to lock it, we first check
whether it has been locked by another collaborator. If
nobody locks it, then an uninterruptable transaction
starts. First, we set the lock flag of the processor, and fill
the name of the owner of the processor. For each outgoing

data link of the processor, we check whether there is an
active lock on it. If any outgoing data link is currently
locked by other collaborators, the entire locking attempt
will be aborted. Otherwise, we call the corresponding
algorithm (i.e., 5) to lock the data link. After all outgoing
data links are locked, the transaction succeeds. In sum-
mary, the lock action will automatically lock all down-
stream data links, in addition to the processor.

To release a processor, we will first check whether the
user has the privilege, i.e., whether she is the owner of the
processor. If the answer is positive, in addition to the pro-
cessor itself, the action will call the corresponding algo-
rithm (i.e., 6) to release all of its downstream data links.

To lock a data link, we first check whether the data
link has been uploaded into the database (here we adopt
a lazy instantiation pattern for a higher performance).
After ensuring that the data link is in the locked link list,
we check whether it has already been locked. If not, the
data link will be marked as being locked. Otherwise, a
notification will be sent. To release a data link, we first
check whether the user has the privilege, i.e., whether she
is the owner of the data link. If the answer is positive, the
flag of the data link will be set as unlocked.

 Fig. 8. Word count workflow.

10 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

Algorithm: RC_fcw scheme part 1.

Input: A transaction t(x) intends to work on an item x.

Requirements: Place an intentional lock.

1: add an intentional lock � x

2: collaborators[list] ← t(x)

2: return vn(x)

Algorithm: RC_fcw scheme part 2.

Input: A transaction t(x) intends to submit changes on item x.

Requirements: RC_fcw.

1: begin transaction

2: get vn(x new)

3: if (vn(x new) > vn(x))

4: abort t(x)

5: else

6: vn(x) ← vn(x) + 1

7: commit t(x)

8: notify (collaborators[list])

9: endif

Fig. 9. RC_fcw scheme algorithm.

5.3 Collaboration Transactions

Our locking algorithms facilitate concurrent workflow
composition. Actions by each user are modeled as trans-
actions to ensure concurrency control. We further define
four basic actions (in the Taverna context): 1) insert a data
link, 2) delete a data link, 3) insert a processor, and 4) de-
lete a processor. An update action can be modeled as a
delete followed by an insert action. Thus, all collaborative
composition actions can be mapped to database update
operations. As a result, we can exploit the concurrency
control facility of database management systems to en-
sure the serializability of all executions. Bad transactions
will be automatically aborted. We are also working on an
exception handling facility; which is out of the scope of
this paper. After a user update is successfully committed,
all collaborators will be notified, so that each collaborator
can have the most up-to-date workflow.

We studied various concurrency control schemes at the
database level, aiming to better support collaborative
workflow composition. Specifically, we have observed
that scientists tend to adopt a “long-thinking” pattern,
meaning that they take a long time to think before they
actually make changes that take much less amount of
time. As a result, the traditional read and write locks may
lower the parallelism in such a working style.

Therefore, instead of placing a traditional exclusive
write lock on a task, we realized a Read Committed with
first-committer-win (RC_fcw) scheme, which is an extension
of READ COMMITTED with the first-committer-win fea-
ture at the SNAPSHOT isolation level. Correctness proofs
of RC_fcw can be found in our previous report [52]. Here
we discuss how we apply RC_fcw to facilitate collabora-
tive scientific workflow composition.

Definition 1: A provenance log is a tuple L = <D, T, ∑,

S, ∏), where D is data item set, T is transaction set, ∑ is

atomic operation set, S is the access function that returns

the set of items accessed by an atomic operation, and ∏ is

the permutation function that assigns a sequence number

to an operation.

Definition 2: L is RC_fcw iff it can be generated by a

locking sequence where: 1) a transaction must obtain a

write lock on an item before writing it and the write lock

is released when the transaction terminates (long-term

write lock); 2) a transaction must obtain a read lock on an

item before reading it and the read lock is released right

after the read operation completes (i.e., a transaction can

read only committed values); 3) when a transaction at-

tempts to acquire a lock on an item on which a conflicting

lock is held, the transaction will be put into a waiting

queue; and 4) after a transaction T1 reads a data item and

before T1 attempts to write the item, if another transaction

T2 writes the item and commits, T1 will be aborted (first

committer win).

Only the scientist who submits the changes first will
get through. As shown in the pseudo code in Fig. 9,
RC_fcw is implemented by attaching a version number
vn(x) to an object x, which is a synchronization area as in-
troduced in Section 5.1. vn(x) is incremented by one

whenever x is updated, i.e., some actions are performed
over area x. If a transaction T1 attempts to update x, T1
will first read the item associated with its contemporary
vn(x) to the local drive and work locally. When time
comes and T1 tries to submit the changes to x, a version
comparison is triggered to check whether any other
transaction has updated x in between. If changes have
been submitted since T1 read x, T1’s submission will be
aborted. Otherwise, the commitment will become perma-
nent and the vn(x) will be incremented and updated to
item x. The check and the update together are performed
atomically.

6 SYSTEM IMPLEMENTATION AND EXPERIMENTS

6.1 System Implementation

We have constructed a collaboration pattern template li-
brary. The basic building blocks are collaboration primi-
tives. Users can build new collaboration patterns using
existing collaboration primitives. Identified collaboration
patterns are stored as provenance data to support the
tracking, storing, and querying of interactions and coordi-
nation among scientists.

Without reinventing the wheel, we extended the single
user-version Taverna into a collaborative version [50]. The
reason why we chose Taverna is mainly based on its
popularity and large user base [11]. Another reason is that
Taverna is an open-source tool developed in Java. Thus
we can explore its code base.

We built a central server supporting all workflow col-
laborations. Workflow evolution provenance and collabo-
ration provenance are stored in a shared database on the
server. Each collaborator may store an intermediate ver-
sion of the workflow at a local machine, but all committed
activities are stored at the server, to support asynchronous
collaboration where collaborators may work on the shared
workflow at preferable time. We consider four options for
selecting database systems: native XML, relational, XML-
relational, and RDF. Currently we use a relational data-
base because it is a preferable choice of Taverna, upon
which our Confucius is built.

Fig. 10 shows a snapshot of our Confucius system sup-

J. ZHNAG, D. KUC, AND S. LU: CONFUCIUS: A TOOL SUPPORTING COLLABORATIVE SCIENTIFIC WORKFLOW COMPOSITION 11

porting concurrent workflow composition. To ease illus-
tration, we show two screens (left and right) representing
two scientists running two client versions of Confucius on
two distributed machines. Here we use the remote desk-
top feature of Windows to show the two screens together.
Any change (adding or removal of components) in the
shared workflow made by one scientist will be instantane-
ously shown on all collaborators’ screens. Shared work-
flow product is stored at the server, so other collaborators
may join the collaboration at any time and review the cur-
rent workflow if proprietary access control allows. When a
scientist applies a write lock on a task on the shared work-
flow, the other scientist cannot update the task due to our
concurrency control policy.

Fig. 11 shows portions of our demo, where role-based
P2P collaboration is realized using the centralized server
mode, as discussed in Section 3.2. As shown in the upper
part of Fig. 11, we added a menu item group “Collabora-
tion” in the menu bar, which supports five actions regard-
ing P2P collaboration: (1) share workflow (a coordinator
initiates a shared scientific workflow document), (2) con-
nect (the coordinator allows identified participants to
join), (3) disconnect (the coordinator removes a participant
from the collaboration), (4) request token (request a floor
to have write access), and (5) release token (release the
write access of the shared workflow).

The left screen in Fig. 11 shows a scientist who starts a
collaboration session. Once the scientist clicks the “Share

Workflow” menu item, the collaboration will begin. As
highlighted in Fig. 11, the initiator of the collaboration
automatically obtains the token (floor), shown in green.
She can also click “Release Token” to release the token;
and her status will turn back into red by doing so. After a
collaboration session is started, other scientists (upon invi-
tations) will be able to select the “Connect” menu item to
join the collaboration, and will instantaneously view the
same workflow shown on the token holder’s screen. As
shown in Fig. 11, any collaborator can click “Request To-
ken” to ask for the write privilege. If available, the token
will be granted to the requestor.

Fig. 12 shows a portion of a screen shot illustrating that
a backdoor communication is initiated between two Con-
fucius instances. A user identifies a specific IP address
(i.e., 127.0.0.1) to invite a team member to start a backdoor
communication. Our current version offers six functions
supporting backdoor communication, as shown in the
drop down menu at the upper right corner of Fig. 12: (1)
backdoor connection (initiate a backdoor communication
session), (2) share workflow (manually enable workflow
sharing between backdoor communication participants),
(3) connect (invite an additional participant to the back-
door communication), (4) disconnect (remove a partici-
pant from the backdoor communication), (5) request token
(a participant asks for the mutual exclusive floor for writ-
ing access to the shared workflow), and (6) release token
(a participant releases the floor to allow other participants
to request the floor).

6.2 Experiments

We have designed and conducted a series of experiments
to evaluate the performance of our concurrency control
scheme (the RC_fcw algorithm) implemented in the Con-
fucius system, in supporting collaborative (i.e., concur-
rent) workflow composition among a group of scientists.
We compared our algorithm with two popular concur-
rency control schemes: strict two-phase locking (2PL_wait0
or 2PL in short) and strict two-phase locking with update lock
(2PL_update) [53]. Both schemes are extensions of the
standard strict two-phase locking scheme to handle dead-
locks, while 2PL resolves deadlocks and 2PL_update pre-

 Fig. 11. P2P collaboration.

 Fig. 10. Screen shots of concurrent workflow updates.

12 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

vents deadlocks.
Definition 3: L is 2PL_wait0 iff it can be generated by a

locking sequence where: 1) a transaction must hold a read
lock (respectively a write lock) on an item before reading
(respectively writing) the item; 2) if a transaction T tries to
put a lock on an item on which a conflicting lock is held,
T will be aborted immediately (wait 0); and 3) a transac-
tion T holds all obtained locks until it terminates, at that
time all locks that T has acquired will be released (strict).

Definition 4: L is 2PL_update iff it can be generated by
a locking sequence where: 1) a transaction must hold a
read lock (respectively a write lock) on an item before
reading (respectively writing) the item; 2) if a transaction
T attempts to read an item and then possibly modify it
later, then T has to acquire an update lock first and
then upgrade the update lock to a write lock right be-
fore the write operation; 3) if a transaction attempts to
obtain an update lock on an item with update locks, it
will be put into a waiting queue.

6.2.1 Experimental setup

We simulated a collaborative workflow composition envi-
ronment, where a group of scientists collaboratively (con-
currently) compose (update) different parts of a mutual
workflow during a time period. We developed a work-
flow generator, which can produce a randomly generated
scientific workflow comprising a configurable number of
tasks. For simplicity, we made the following two assump-
tions. (1) A workflow under test contains a configurable
number of individual tasks, meaning that they do not
depend on each other. (2) The concurrency control granu-
larity was set at the task level.

Each collaborator was simulated by an independent
(Java) thread, which iteratively reads a random task of the
workflow, waits for a predefined time period (e.g., 0.05
seconds for thinking), and then performs an update on
the task. The time interval between iterations was set to
zero at the moment, but could be configured to other val-
ues. To simulate the long-thinking, short-read pattern, the
reading and writing time for each thread are neglected.
While each collaborator infinitely performed such itera-
tive random updates, we recorded the total numbers of
both successful and unsuccessful task updates (due to
abort), respectively, within a predefined time window.
All experiments were conducted on a PC with Intel Core
2 Duo CPU P8800 (@2.66 GHz & 2.76GHz) and 3 GB main
memory, running the Windows 7 Professional Edition

operating system. The database system used is Apache
Derby 10.5.3.0. The database was installed in an embed-
ded fashion for this experiment, so that data transporta-
tion time could be neglected.

Our first set of experiments focused on testing the
throughput of the three schemes by varying the number
of collaborators. The throughput (collaboration produc-
tivity) is defined as the number of successful task updates
by all collaborators per minute. The average throughput
is calculated for each collaboration group of size N (1, 5,
10, 20, 30, …, 100). To avoid coincidence, for each group
size, the experiment was repeated 3 times with the aver-
age value calculated. We also monitored the number of
failed task updates performed per minute to examine the
trend of update conflicts as the number of collaborators
increased. Table II summarized the parameters of our
experiments.

Table II. Experimental settings.

Number of tasks 20

Number of collaborators 1 to 150

Experiment time 60 seconds

Thinking time 0.05 seconds

6.2.2 Experimental results and discussions

6.2.2.1 Throughput study. Fig. 13 shows the comparison
of throughput by varying the number of collaborators for
the three schemes. All three schemes show similar
productivity when the group size is smaller than 10.
However, when the group size grows, their throughputs
become significantly different. This phenomenon is
caused by the increase of possibility of conflict when the
group size grows.

For the RC_fcw scheme, the collaboration productivity
steadily increases as the number of collaborators increas-
es, reaching a maximum rate of 11,882 updates per mi-
nute at a group size of 40. Afterwards, the throughput
starts to decline due to the increase of the number of con-
flicts that lead to abortion. For the 2PL scheme, the
throughput is increased until the group size reaches 20
with the maximum rate of 6,721. Afterwards, the
throughput keeps on declining until reaching a very low
level, mainly due to the increasing numbers of deadlocks
caused by the strict two-phase locking algorithm. For the
2PL_update scheme, the throughput increases monoton-
ically. Especially, the group productivity grows rapidly to
reach a throughput of 16,000 at the group size of 60. Af-
terwards, the group productivity keeps on growing but
with a much lower increase rate. Since collaborators lock

 Fig. 12. Backdoor collaboration setting.

Fig. 13. Comparison of successful update rates.

J. ZHNAG, D. KUC, AND S. LU: CONFUCIUS: A TOOL SUPPORTING COLLABORATIVE SCIENTIFIC WORKFLOW COMPOSITION 13

the tasks before reading them in the 2PL_update scheme,
more and more collaborators have to wait in queues when
the group size increases.

For the 2PL_update scheme, every collaborator will
put an update lock on the task that she is reading, which
means other people will not be able to update the task
until the lock is released. As the group size grows, the
ratio of time for reading and updating of a single task will
increase, because the maximum number of tasks that can
be simultaneously updated is predefined (e.g., 20). There-
fore, eventually productivity will stop increasing.

6.2.2.2 Occupancy study. We monitored the efficiency for
each scheme, which is counted as the ratio of a task being
occupied on average in the process of a testing time peri-
od. The formula is as follows:

� =
�ℎ����ℎ��� ∗ �
��_��
�

∑ �
��_��
� ∗ ����_
�����_��
���

where throughput is the total number of successful up-
dates, unit_time is the execution time for each collabora-
tor, task_no is the total number of tasks in the workflow.

As an example in Fig. 13, the efficiency of 2PL when
the number of collaborators is 20 can be calculated as fol-
lows:

7566 * 0.05 / (60 * 20) = 31.5%
When the group size is 40, the efficiency of

2PL_update is 61.9%. When the group size reaches 100, its
value goes up to 71%. This means that as the number of
collaborators increases, more and more tasks will be used
at the same time in 2PL_update, which is why its
throughput increases monotonically. However, it is also
noticeable that the curve of 2PL_update becomes flatter as
the number of conflicts increases, since every collaborator
will need more time to find an available task to update.

For the RC_fcw scheme, in the beginning, the number
of collaborators is less than the number of tasks, so more
collaborators will contribute to a higher productivity. As
the group size increases, the possibility of multiple col-
laborators accessing the same task will increase. More
users will read the same task, make some changes, and
then submit the request. If one collaborator commits, all
other collaborators will have to abort their work. On the
other hand, in the 2PL_update scheme, a task will be
queued when someone is trying to update it. That is why
the 2PL_update scheme can show a higher productivity
than RC_fcw as the group size increases.

For 2PL, since it uses the SERIALIZABLE isolation lev-
el, SELECT statement will get a shared lock on a range of
rows; it is highly possible to create a deadlock if two col-
laborators update tasks at the same time. That’s why the
throughput of 2PL drops significantly as the group size
increases.

6.2.2.3 Failed update rate study. Fig. 14 shows the failed
task update rates by varying the number of collaborators
for the three schemes.

For the RC_fcw scheme, as the number of collaborators
increases, the number of conflicts and hence the number
of failed task updates also increase. Note that RC_fcw

also has an increasing collaboration productivity before
reaching 40 collaborators. This means that an increasing
number of failed task updates is more than compensated
by the increased number of successful task updates.

However, when the group size exceeds 40, the number of
conflicts decreases the productivity of every collaborator.
One reason may be a scientist may find that another col-
laborator has already updated the task, which forces her
to abort the task.

For the 2PL scheme, the number of abortions signifi-
cantly increases as the number of collaborators increases.
Because of its strict two-phase locks, more conflicts cause
more deadlocks that lead to more abortions.

For the 2PL_update scheme, because of the use of up-
date locks, no collaborator could get the resource if there
is any conflict, so no abortion will occur.

6.2.2.4 Analysis. From this comparison, it can be observed
that RC_fcw shows similar throughput to 2PL_update for
a smaller group size (less than 20 collaborators).

Although the 2PL_update scheme yields the highest
throughput for a larger group of collaborators, one issue
is significant. Collaborators cannot access a task even
though the person who is reading the task does not in-
tend to update it. It is possible that many collaborators
want to read a task, but only a few of them want to modi-
fy it. Under such a circumstance, RC_fcw remains a good
option because it allows multiple users to read a common
task at the same time.

6.2.2.5 Scalability study. We further studied the scalabil-
ity of RC_fcw in the Confucius system under different
numbers of tasks and collaborators. We chose three fixed
numbers for collaborators (2, 10 and 50) to represent
small, medium, and large collaborator groups, respective-
ly. The total number of tasks was set from 10 to 100, with
10 as the incremental step. For each testing number of
tasks, the experiment was repeatedly performed three
times with the average value calculated. Table III summa-
rizes the setting parameters of our experiments.

Table III. Experimental Settings.
Number of collaborators 2, 10, 50

Number of tasks 10 to 100

Experiment time period 60 seconds

Thinking time 0.05 second

Fig. 14. Failed task update rates under numbers of collaborators.

14 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

Fig. 15 shows our experimental results: (a)~(c) show
successful task updates; (d)~(f) show failed task updates.

In Fig. 15(a), two collaborators keep updating tasks, so
the possibility that they intend to update the same task
drops as the number of tasks increases. In the beginning,
2PL_update has more successful updates than the other
two when conflicts exist. The RC_fcw curve stays slightly
below the other two curves, indicating that its perfor-
mance is lower when the conflict level is low. The reason
might be the overhead inherent in the RC_fcw scheme, as
it has to keep on identifying the first committer.

In Fig. 15(b), 10 collaborators work together. With a
higher conflict rate, the rank of throughput is: 2PL <
RC_fcw < 2PL_update. After 40 tasks, the 2PL curve
gradually exceeds the RC_fcw curve, because the number
of conflicts drops as the number of tasks increases and the
overhead of RC_fcw gradually dominates. All three
curves become flat when the number of tasks exceeds 50,
since the conflict level becomes very low.

In Fig. 15(c), 50 collaborators work together. Under a
medium to high level of conflict, the rank of throughput
is: 2PL_update > RC_fcw > 2PL. The collaboration
productivity in all three schemes increases monotonically
when the workflow comprises less than 100 tasks.

Fig. 15(a)~(c) indicate that 2PL and 2PL_update show
similar performance at the low conflict level, because
their locks behave similarly when there is no conflict.

Fig 15(d)~(f) show failed update rates with the same
experimental settings. RC_fcw constantly show lower
failure rates than 2PL.

In summary, our scalability experiments proved that
our RC_fcw scheme provides decent throughout and fail-
ure rates for different sizes of collaboration groups.

7 CONCLUSIONS

In this paper, we presented our ongoing work on estab-
lishing collaboration protocols to support collaborative
scientific workflow composition. Our service-oriented
infrastructure includes a collaboration ontology associat-
ed with a set of collaboration patterns, primitives, and
constructs, as well as concurrent control mechanisms to
support concurrent collaborative workflow composition.

We plan to continue our research in the following di-

rections. First, we will design and conduct an evaluation
study and use the feedback to enhance the system. Se-
cond, based on the collaboration ontology, we plan to
enhance collaboration provenance management perfor-
mance. Third, we plan to conduct more experiments to
study the effects of tuning various parameters (e.g., the
number of concurrent collaborators, the productivity of
individual members, the number of tasks comprised in
the shared scientific workflow) on concurrent productivi-
ty. Fourth, we plan to explore conducting collaborative
scientific workflow composition in the Cloud infrastruc-
ture.

ACKNOWLEDGMENT
The authors thank Sha Liu for the assistance in the pre-
sented experimental study. This work is supported by
National Science Foundation, under grants NSF IIS-
0959215 and IIS-0960014.

REFERENCES
[1] G.M. Olson, A. Zimmerman, and N. Bos, eds., Scientific

Collaboration on the Internet, 2008, MIT Press, Cambridge, MA, USA.

[2] LSST, "Large Synoptic Survey Telescope", 2009, Accessed on,

Available from: http://www.lsst.org/lsst/science.

[3] B. Ludäscher, "Scientific Workflows: Cyberinfrastructure for e-

Science", in Proceedings of Pacific Neighborhood Consortium (PNC),

2007, Berkeley, CA, USA, Oct. 19, pp.

[4] Y. Gil, E. Deelman, J. Blythe, C. Kesselman, and H.

Tangmunarunkit, "Artificial Intelligence and Grids: Workflow

Planning and Beyond", IEEE Intelligent Systems, Jan.-Feb., 2004, 19(1):

pp. 26–33.

[5] E. Deelman and Y. Gil, "NSF Workshop on the Challenges of

Scientific Workflows", (ed.), May 1-2, 2006.

[6] S. Wuchty, B. Jones, and B. Uzzi, "The Increasing Dominance of

Teams in Production of Knowledge", Science, 2007, 316: pp. 1036-

1039.

[7] N.R. Council, "Facilitating Interdisciplinary Research". 2004,

National Academies Press, Washington DC, USA.

[8] G. Bell, T. Hey, and A. Szalay, "Beyond the Data Deluge", Science,

2009, 323(5919): pp. 1297-1298.

[9] S. Lu and J. Zhang, "Collaborative Scientific Workflows

Supporting Collaborative Science", International Journal of Business

Process Integration and Management (IJBPIM), 2011, 5(2): pp. 185-199.

[10] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M.

Jones, E.A. Lee, J. Tao, and Y. Zhao, "Scientific Workflow

 Fig. 15. Comparison of successful update rates.

J. ZHNAG, D. KUC, AND S. LU: CONFUCIUS: A TOOL SUPPORTING COLLABORATIVE SCIENTIFIC WORKFLOW COMPOSITION 15

Management and the Kepler System", Concurrency and Computation:

Practice & Experience, 2006, 18(10): pp. 1039-1065.

[11] T. Oinn, M. Greenwood, M. Addis, M.N. Alpdemir, J. Ferris, K.

Glover, C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M.R.

Pocock, M. Senger, R. Stevens, A. Wipat, and C. Wroe, "Taverna:

Lessons in Creating a Workflow Environment for the Life Sciences",

Concurrency and Computation: Practice & Experience, 2006, 18(10): pp.

1067–1100.

[12] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson,

M. Shields, I. Taylor, and I. Wang, "Programming Scientific and

Distributed Workflow with Triana Services", Concurrency and

Computation: Practice & Experience, 2006, 18(10): pp. 1021–1037.

[13] J. Freire, C.T. Silva, S.P. Callahan, E. Santos, and C.E.

Scheidegger, "Managing Rapidly-Evolving Scientific Workflows ",

Lecture Notes in Computer Science, May, 2006, 4145/2006: pp. 10–18.

[14] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. Laszewski, V.

Nefedova, I. Raicu, T. Stef-Praun, and M. Wilde, "Swift: Fast,

Reliable, Loosely Coupled Parallel Computation", in Proceedings of

IEEE International Workshop on Scientific Workflows, 2007, Salt Lake

City, UT, USA, Jul. 9-13, pp. 199–206.

[15] A. Chebotko, C. Lin, X. Fei, Z. Lai, S. Lu, J. Hua, and F. Fotouhi,

"VIEW: A Visual Scientific Workflow Management System", in

Proceedings of the 1st IEEE International Workshop on Scientific

Workflows, 2007, Salt Lake City, UT, USA, Jul., pp. 207–208.

[16] C. Lin, S. Lu, Z. Lai, A. Chebotko, X. Fei, J. Hua, and F. Fotouhi,

"Service-Oriented Architecture for VIEW: A Visual Scientific

Workflow Management System", in Proceedings of the IEEE 2008

International Conference on Services Computing (SCC), 2008, Honolulu,

HI, USA, Jul. 9-11, pp. 335-342.

[17] D.D. Roure, C. Goble, and R. Stevens, "The Design and

Realisation of the myExperiment Virtual Research Environment for

Social Sharing of Workflows", Future Generation Computer Systems,

2009, 25: pp. 561-567.

[18] L.-J. Zhang, J. Zhang, and H. Cai, Services Computing, 2007,

Springer.

[19] R. Barga, J. Jackson, N. Araujo, D. Guo, N. Gautam, and Y.

Simmhan, "The Trident Scientific Workflow Workbench", in

Proceedings of 4th IEEE International Conference on eScience, 2008,

Dec. 7-12, pp. 317-318.

[20] A. Chebotko, X. Fei, C. Lin, S. Lu, and F. Fotouhi, "Storing and

Querying Scientific Workflow Provenance Metadata Using an

RDBMS", in Proceedings of the 3rd IEEE International Conference on e-

Science and Grid Computing, 2007, Bangalore, India, Dec. 10-13, pp.

611–618.

[21] A. Chebotko, S. Lu, X. Fei, and F. Fotouhi, "RDFProv: A

Relational RDF Store for Querying and Managing Scientific

Workflow Provenance", Data & Knowledge Engineering (DKE), 2010,

69(8): pp. 836-865.

[22] A. Chebotko, S. Lu, and F. Fotouhi, "Semantics Preserving

SPARQL-to-SQL Query Translation", Data & Knowledge Engineering,

2009, 68(10): pp. 973-1000.

[23] S. Lu and J. Zhang, "Collaborative Scientific Workflows", in

Proceedings of IEEE International Conference on Web Services (ICWS),

2009, Los Angeles, CA, USA, Jul. 6-10, pp. 527-534.

[24] G. Fakas and B. Karakostas, "A Workflow Management System

Based on Intelligent Collaborative Objects", Information & Software

Technology, 1999, 41(13): pp. 907-915.

[25] H. Song, J.J. Dong, C. Han, W.R. Jung, and C.-H. Youn, "A SLA-

Adaptive Workflow Integrated Grid Resource Management System

for Collaborative Healthcare Services", in Proceedings of the 3rd

International Conference on Internet and Web Applications and Services

(ICIW), 2008, Athens, Greece, Jun. 8-13, pp. 702-707.

[26] L. Pudhota and E. Chang, "Collaborative Workflow

Management Using Service Oriented Approach", in Proceedings of

International Conference on E-Business, Enterprise Information Systems,

E-Government (EEE), 2005, Las Vegas, USA, Jun. 20, pp. 167-173.

[27] R. Lu and S.W. Sadiq, "A Survey of Comparative Business

Process Modeling Approaches", in Proceedings of the 10th

International Conference on Business Information Systems (BIS), 2007,

Poznan, Poland, Apr. 25-27, pp. 82-94.

[28] C.-J. Huang, C.V. Trappey, and C.C. Ku, "A JADE-Based

Autonomous Workflow Management System for Collaborative IC

Design", in Proceedings of the 11th International Conference on

Computer Supported Cooperative Work in Design (CSCWD), 2007,

Melbourne, Australia, Apr. 26-28, pp. 777-782.

[29] J. Dang, J. Huang, and M.N. Huhns, "Workflow Coordination

for Service-Oriented Multiagent Systems", in Proceedings of the 6th

International Joint Conference on Autonomous Agents and Multiagent

Systems (AAMAS), 2007, pp. 1056-1058.

[30] J. Balasooriya, S.K. Prasad, and S.B. Navathe, "A Middleware

Architecture for Enhancing Web Services Infrastructure for

Distributed Coordination of Workflows", in Proceedings of IEEE

International Conference on Services Computing (SCC), 2008, Jul., pp.

370-377.

[31] J. Balasooriya, J. Joshi, S.K. Prasad, and S. Navathe, "A Two-

Layered Software Architecture for Distributed Workflow

Coordination over Web Services", in Proceedings of IEEE

International Conference on Web Services (ICWS), 2006, Sep., pp. 933-

934.

[32] P. Kazanis and A. Ginige, "Asynchronous collaborative business

process modeling through a web forum", in Proceedings of Seventh

Annual CollECTeR Conference on Electronic Commerce, 2002,

Melbourne, VIC, Australia, pp.

[33] T. Miller, P. McBurney, J. McGinnis, and K. Stathis, "First-Class

Protocols for Agent-Based Coordination of Scientific Instruments", in

Proceedings of 16th IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises (WETICE),

2007, Jun., pp. 41-46.

[34] Z. Nemeth, C. Perez, and T. Priol, "Distributed Workflow

Coordination: Molecules and Reactions", in Proceedings of 20th IEEE

International Parallel & Distributed Processing Symposium, 2006, Apr.,

pp. 260-267.

[35] C. Yen, W.J. Li, and J.C. Lin, "A web-based collaborative,

computer-aided sequential control design tool", IEEE Control Systems

Magazine, Apr., 2003, 23(2): pp. 14-19.

[36] D. Dori, D. Beimel, and E. Toch, "OPCATeam - Collaborative

Business Process Modeling with OPM", in Proceedings of 2nd

International Conference on Business Process Management (BPM), 2004,

Potsdam, Germany, Jun. 17-18, Springer-Verlag Berlin Heidelberg,

pp. 66-81.

[37] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D.

Wenke, "OntoEdit: collaborative ontology engineering for the

semantic Web", in Proceedings of the First International Semantic Web

Conference 2002 (ISWC), LNCS 2342, 2002, Springer, pp. 221-235.

[38] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M.

Kloppmann, D. König, F. Leymann, R. Müller, K. Plösser, R.

Rangaswamy, A. Rickayzen, M. Rowley, P. Schmidt, I. Trickovic, A.

Yiu, and M. Zeller, "WS-BPEL Extension for People (BPEL4People),

Version 1.0", 2007 Jun., Accessed on, Available from:

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws

-bpel4people/BPEL4People_v1.pdf.

[39] N. Ayachitula, M.J. Buco, Y. Diao, M. Surendra, R. Pavuluri, L.

Shwartz, and C. Ward, "IT Service Management Automation - A

Hybrid Methodology to Integrate and Orchestrate Collaborative

Human Centric and Automation Centric Workflows", in Proceedings

of IEEE International Conference on Services Computing (SCC), 2007,

Salt Lake City, UT, USA, Jul. 9-13, pp. 574-581.

16 IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

[40] D. Russell, P.M. Dew, and K. Djemame, "Service-Based

Collaborative Workflow for DAME", in Proceedings of IEEE

International Conference on Services Computing (SCC), 2005, Orlando,

FL, USA, Jul. 11-15, pp. 139-146.

[41] D. Jordan and J. Evdemon, "Web Services Business Process

Execution Language, Version 2.0", 2007 Apr., Accessed on, Available

from: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-

OS.html.

[42] J.Y. Sayah and L.-J. Zhang, "On-Demand Business Collaboration

Enablement with Services Computing", Decision Support Systems, Jul.,

2005, 40(1): pp. 107-127.

[43] C.K. Chang, J. Zhang, and K.H. Chang, "Survey of Computer

Supported Business Collaboration in Support of Business Processes",

International Journal of Business Process Integration and Management

(IJBPIM), 2006, 1(2): pp. 76-100.

[44] I. Altintas, Collaborative Provenance for Workflow-Driven Science

and Engineering, Ph.D thesis, Universiteit van Amsterdam, 2011.

[45] A. Chapman, H.V. Jagadish, and P. Ramanan, "Efficient

Provenance Storage", in Proceedings of ACM International Conference

on Management of Data (SIGMOD), 2008, Vancouver, Canada, Jun. 9-

12, pp. 993-1006.

[46] M.K. Anand, S. Bowers, T.M. McPhillips, and B. Ludäscher,

"Efficient Provenance Storage over Nested Data Collections", in

Proceedings of EDBT, 2009, pp. 958-969.

[47] T. Oinn, "XScufl Language Reference", 2004, Accessed on,

Available from:

http://www.ebi.ac.uk/~tmo/mygrid/XScuflSpecification.html.

[48] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software, 1995, Addison Wesley,

Boston, MA, USA.

[49] M. Robert, W.J. Evans, D.H. Honemann, and T.J. Balch, Robert's

Rules of Order, Newly Revised, 10th Edition, 2000, Perseus Publishing

Company.

[50] J. Zhang, "Co-Taverna: A Tool Supporting Collaborative

Scientific Workflows", in Proceedings of IEEE International Conference

on Services Computing (SCC), 2010, Miami, FL, USA, Jul. 5-10, pp. 41-

48.

[51] J. Dean and S. Ghemawat, "MapReduce: Simplified Data

Processing on Large Clusters", in Proceedings of OSDI, 2004, pp.

137–150.

[52] S. Lu, A. Bernstein, and P. Lewish, "Correct Execution of

Transactions at Different Isolation Levels", IEEE Transactions on

Knowledge and Data Engineering (TKDE), September, 2004, 16(9): pp.

1070-1081.

[53] J. Gray and A. Reuter, Transaction Processing: Concepts and

Techniques (1st edition), 1992, Morgan Kaufmann.

Jia Zhang, Ph.D., is an Associate Professor of Department of Com-
puter Science at Northern Illinois University. Her current research
interests center on Services Computing, with a focus on Internet-
centric collaboration, service-oriented architecture, and semantic
service discovery. She has co-authored 1 book and published over
120 journal articles, book chapters, and conference papers. Zhang is
an associate editor of IEEE Transactions on Services Computing
(TSC) and International Journal on Web Services Research (JWSR).
She is a member of the IEEE and can be reached at jia-
zhang@cs.niu.edu.

Daniel Kuc is a master student at Department of Computer Science
at Northern Illinois University. His research focuses on collaborative
scientific workflow composition and service-oriented architecture.

Shiyong Lu, Ph.D., is an Associate Professor of Department of
Computer Science at Wayne State University. His current research
interests focus on scientific workflows and provenance data man-
agement. He has published 2 books and over 100 papers. He is the
founding chair and program chair of IEEE International Workshop on

Scientific Workflows since 2007. Dr. Lu is an associate editor of the
International Journal of Cloud Applications and Computing, and an
editorial board member of the International Journal of Healthcare
Information Systems and Informatics. He is a Senior Member of the
IEEE. He can be reached at shiyong@wayne.edu.

