
Co-Taverna: A Tool Supporting Collaborative Scientific Workflows

Jia Zhang

Department of Computer Science

Northern Illinois University

DeKalb, IL USA

jiazhang@cs.niu.edu

shiyong@cs.wayne.edu

Abstract—Scientific workflows have become an important

instrument for domain scientists to synergistically

integrate distributed computations and data to

accelerate scientific discoveries. Existing scientific

workflow tools, however, only support single scientists to

compose scientific workflows in a desktop application.

Nowadays, many scientific research projects are

becoming increasingly larger scale, requiring that

multiple research partners with different expertise

collaborate from distributed organizations. Therefore,

there is a critical need of a collaborative scientific

workflow tool that supports domain scientists to

cooperatively design, compose, annotate, execute,

monitor, and manage scientific workflows over the

Internet in both synchronous and asynchronous modes.

This research reports the design and development of our

preliminary version of a collaborative scientific

workflow tool based on an open-source, single-user tool

Taverna. We present our study of the role-organization-

based access control technique over collaborative

scientific workflow composition.

Keywords-collaborative scientific workflows; Taverna.

I. INTRODUCTION

Modern science has yielded terabytes of heterogeneous

data and a variety of data analysis and manipulation methods
and tools. These resources are distributed and need to be
seamlessly integrated to support effective scientific
explorations. Using workflows is one such way to make the
scientific exploration process structured, repeatable,
configurable, and reusable [1]. In contrast to business
workflows that are control flow oriented and coordinate a
collection of well-defined business tasks to achieve an
intended business goal, scientific workflows are dataflow
oriented and streamline a collection of scientific tasks to
enable and accelerate unpredictable scientific discovery [2,
3]. In recent years, scientific workflows have become an
important instrument for domain scientists to streamline
experiments and effectively utilize local and remote
computational and data resources.

A number of scientific workflow management systems

(SWFMSs) have been developed to facilitate scientific
workflow activities, such as Kepler [2], Taverna [4], Triana
[5], VisTrails [6], Pegasus [3], Swift [7], and VIEW [8, 9].
These tools, however, only support individual scientists to
compose scientific workflows upon an installed desktop
application. Nowadays, increasingly more scientific research
projects have become large scale, requiring multiple research
partners collaborate from distributed organizations and
locations. For example, the Cancer Biomedical Informatics
Grid (caBIG) initiative launched by the National Cancer
Institute aims to connect the entire cancer community
together to accelerate global cancer research [10].
Meanwhile, numerous researchers from a variety of domains
expect to adopt various channels, including the Internet, to
communicate and collaborate toward the ultimate goal.

Such large-scale, distributed scientific collaborations
require collaborative scientific workflow as the underlying
support, as we defined in [1]: “the computerized facilitation
or automation of a scientific process, in whole or part, which
streamlines and integrates people, datasets, and scientific
tasks with data channels, dataflow constructs, and
collaboration patterns to automate collaborative data
computation and analysis for enabling and accelerating
scientific discovery.”

Collaborative scientific workflow poses significant
challenges that cannot be handled by existing single user-
oriented SWFMs lacking collaboration support and
interoperability between SWFMSs [1]. Thus, there is a
compelling need of a tool that supports domain scientists to
cooperatively design, compose, execute, monitor,
provenance track, and manage scientific workflows over the
Internet in both a synchronous and an asynchronous mode.

As the first step, in this research, we focus on building a
tool supporting collaborative scientific workflow
composition both synchronously. In this paper, we report our
design and development toward building such a collaborative
scientific workflow editing tool. Without reinventing the
wheel, we investigate a well-known life science-oriented
scientific workflow tool, Taverna, and adapt it into a
collaborative tool, called Co-Taverna, to support generic
scientific collaboration. Since we focus on scientific
workflows, throughout this paper, we use the terms scientific
workflows and workflows interchangeably.

The remainder of the paper is organized as follows.

Section 2 surveys related work. Section 3 explains the
motivation of our research project. Section 4 reports our
design and development of Co-Taverna. Section 5 presents
discussions. Section 6 makes conclusions.

II. RELATED WORK

To date, several scientific workflow management

systems (SWFMSs) have been developed as single-user
environments, which run on local desktop computers to help
individual scientists construct scientific workflows from
available resources. Reported projects include Kepler [2],
Taverna [4], Triana [5], VisTrails [6], Pegasus [3], Swift [7],
and VIEW [8, 9].

Kepler [2] is a Java-based open-source SWFMS, where a
scientific workflow is composed of uniformed components
called actors and its execution is controlled by a dedicated
computational model controller called director. Taverna [4]
is an open-source SWFMS targeted for life science. Taverna
adopts an XML-based workflow language called SCUFL to
support workflow representation, each component being
either a Web service or a Java Beanshell script-based
processor supporting various bioinformatics data analysis
and transformation. Triana [5] provides a sophisticated
graphical user interface supporting workflow composition
and modification activities, including grouping, editing, and
zooming functions. VisTrails [6] focuses on workflow
visualizations supporting provenance tracking of workflow
evolution in addition to data product derivation history.
Pegasus [3] provides a framework that maps complex
scientific workflows onto distributed Grid resources.
Artificial intelligence planning techniques are used for
guiding workflow composition. Swift [7] combines a
scripting language called SwiftScript with a powerful runtime
system to support workflow specification and execution of
large loosely coupled computations over the Grid
environments. VIEW [8, 9] provides a tool that allows
domain scientists to compose a scientific workflow from
available resources and services. The system is featured with
efficient provenance management utilizing the power of
relational databases.

Each of these SWFMSs provides a platform to support
individual scientists in composing scientific workflows from
various resources. Their foundations center on scientific
workflow models and provenance models.

Some systems show some collaboration features, in the
sense that they allow a scientist to compose a scientific
workflow from shared resources and services, e.g., published
Grid services. However, they provide limited support for
multiple scientists to collaboratively compose and
manipulate a shared scientific workflow. They do not
address and support user interaction and cooperation that are
required and essential for an effective and efficient scientific
collaboration [1].

Some SWFMSs, such as Taverna [4], declare that they
support collaborative scientific workflow composition.

Researchers can publish their composed scientific workflows
in a dedicated social workflow space (e.g., MyExperiment
[11]); others using the same SWFMS can download the
workflows, make changes, and upload the new version into
MyExperiment to initiate further interactions. However, such
SWFMSs do not support real-time shared scientific
workflow editing.

The business world recently recognizes the need of
involving humans into business workflows and has
developed a preliminary model [12]. However, the model is
inapplicable to collaborative scientific workflows due to the
fundamental differences between business workflows and
scientific workflows. While business workflows are control
flow oriented, scientific workflows are dataflow oriented.
Furthermore, provenance data management for the
reproducibility of scientific results is essential for scientific
workflows but not for business workflows. Hence, scientific
workflows pose a different set of requirements [13].

We studied the state of the art of the field of scientific
workflows towards the support of collaborative scientific
workflows and reported our observations in [1]. We also
have surveyed the literature of workflow control mechanisms
in a collaborative environment in [14] and observed that the
current workflow control configurations have to be
predefined and remain immutable throughout the execution
of a workflow. With the rapid emergence of Services
Computing technology [15], a workflow may select available
services (e.g., a specific data processing and analysis service)
at runtime. We conclude that workflow control should be
driven by demands: it should be customizable and
modifiable during runtime.

III. PROJECT MOTIVATION

Due to its popularity, Taverna [4] has been widely used

as a scientific workflow editing and execution tool in life
science and Grid environment [16]. Created by the myGrid
project under an open-source initiative, the Taverna
workbench offers a desktop authoring environment for
designing and executing scientific workflows. Taverna is
driven by Freefluo, its underlying workflow enactment
engine. Although originally initiated for life science, Taverna
workbench can be used by other domains, such as
bioinformatics, cheminformatics, astronomy, social science,
and music.

As it focuses on helping life scientists build scientific
workflows, Taverna provides a comprehensive set of
graphical widgets, such as ports and local Java Bean widgets.
These widgets provide useful building blocks to help life
scientists easily build scientific workflows from various
resources including both local resources and remote Web
services. In other words, Taverna offers a professional
interface and environment to enable and facilitate domain
scientists, who are not computer scientists, in creating
scientific workflows.

<schema>

 <complexType name="Workflow">

 <sequence>

 <element name="dataflow" type="tav:Dataflow"

maxOccurs="unbounded" minOccurs="1"/>

 </sequence>

 <attribute use="required" name="version" type="tav:Version1"/>

 <attribute name="producedBy" type="string" use="optional"/>

 </complexType>

 <complexType name="Dataflow">

 <sequence>

 <element name="name" type="string"/>

 <element name="inputPorts"

type="tav:AnnotatedGranularDepthPorts"/>

 <element name="outputPorts" type="tav:Ports"/>

 <element name="processors" type="tav:Processors"/>

 <element name="conditions" type="tav:Conditions"/>

 <element name="datalinks" type="tav:Datalinks"/>

 <element name="annotations" type="tav:Annotations"

maxOccurs="1" minOccurs="0"/>

 </sequence>

 </complexType>

</schema>

Figure 1. Collaboration protocol.

Taverna is associated with the myExperiment [11]
website to establish a social network environment for life
scientists to publish and share interesting workflows with
each other. Taverna [4] users can publish their scientific
workflows, mostly life science workflows, in specific
formatted files in a shared space MyExperiment. Others can
download the workflow files and load them into their local
Taverna environment and continue to work on them. In this
sense, multiple scientists can collaboratively build scientific
workflows, by exchanging working versions through files in
the format specific to Taverna.

Taverna provides Web services compatibility, meaning
that it allows users to integrate existing Web services as
components into workflows. Furthermore, Taverna is written
in Java, which conforms to our open-source initiative.

However, same as other existing SWFMSs, Taverna is a
single-user tool supporting individual scientists to compose a
scientific workflow. It does not allow multiple domain
scientists to synchronously work on a shared scientific
workflow. Nevertheless, throwing away all the valuable
features provided by Taverna and starting everything from
scratch to build another scientific workflow tool is obviously
neither efficient nor desirable. Thus, our strategy is to study
the Taverna code and investigate whether it can be extended
into a collaborative version. Taverna is an open-source
project, whose nightly built source code is accessible from
the myGrid project site. This is another reason why we
selected Taverna to study the plausibility of extending it into
a collaborative tool.

IV. COLLABORATION PROTOCOLS

We carefully studied the latest Taverna code (version

2.0), focusing on exploring the plausibility of extending it

into a collaborative version. Our goal is to create a multi-

user collaborative scientific workflow environment based on

the single user-based software.
As the starting point, we examined the communication

paths between Taverna instances. In other word, we aim to
find a way to allow two Taverna running instances to
communicate with each other. By studying Taverna code, we
found that the tool is built on top of an event-based
mechanism, meaning that any user action (e.g., clicking a
button) triggers an action. When a user selects to save a
workflow, Taverna will serialize the workflow as an XML
document and save it in a file. Meanwhile, when a user
selects to open such an XML file, the stored workflow will
be loaded into the Taverna workbench and rendered on the
screen.

In Taverna, all workflows are stored in an XML-based
specification language [17]. Below is a segment of XScufl
code:

An XScufl file contains one workflow, with a required
version number and an optional author name. The workflow
comprises one to many dataflows, each comprising a
sequence of elements including: name, a set of input ports, a
set of output ports, a list of processors (tasks), some
conditions, a set of data links (edges), and annotations.

A. Basic collaboration model

We thus utilize such a file system-based workflow

storage mechanism to enable communication between two
Taverna versions. In more detail, when a collaborator who
has the write privilege saves a workflow, its serialized XML
document can be propagated to another site where another
collaborator has read privilege. An automatic file open action
will render the same workflow on the reader’s screen.

We adopt the observer design pattern [18] to build a
preliminary infrastructure enabling collaboration between
multiple Taverna versions. The observer pattern is a subset
of the asynchronous publish/subscribe design pattern. A
special subject is used to maintain a list of its dependents
(observers) and automatically notify them of any state
changes. Fig. 1 shows such a client/server-based
infrastructure. A central server is established to support
multiple Taverna users in collaborating. It acts as the subject

Algorithm 2: Floor Releasing Algorithm
Input: A requestor requests a floor
Requirements: Decide whether a floor should be
granted.

1: Check floor flag.
2: if floor ≠ taken, then
3: floor flag ← occupied
4: floor owner ← requestor
5: notify all members
6: return true
7: else if floor = taken then
8: add requestor to waiting list
9: return false
10: endif

Algorithm 1: Floor Granting Algorithm
Input: A collaborator releases a floor
Requirements: Release a floor.
1: Check the waiting list.
2: if waiting list ≠ empty then
3: get the top requestor of the waiting list
4: floor owner ← requestor
5: notify all members
6: remove the top requestor from waiting list
7: else if waiting list is empty then
8: floor flag ← unoccupied
9: notify all members
10:endif

and maintains all collaborators’ information. All
collaborators act as observers. As shown in Fig. 1, the central
server also stores and manages all provenance data, so that
late comers can view shared workflows.

Fig. 1 shows possible flow scenarios. Client 1 registers a
collaboration Group 1 on the central server (Step 1). Upon
approval (Step 2), Client 1 shares a port to his/her potential
collaborators (Step 3). Users from the invitation list (e.g.,
Client 2) may subscribe (Step 4) to the registered
collaboration group (i.e., Group 1) and start to update the
shared workflows within the group (Step 5). Any updated
version will be stored in the central server and automatically
distributed to all collaborators in the collaboration group
(Step 6).

Currently, any action in an original Taverna workbench
(including adding an element, deleting an element, updating
an element, and saving a workflow) will trigger an automatic
“save” action. The entire workflow will be serialized and
saved to a file, which will be in turn automatically sent to the
server. The server then retrieves all group members’
information and delivers the up-to-date workflow file to all
collaborators.

B. Advanced collaboration model

Scientific collaborations usually last for a long period of

time, such as months and years. In addition, temporary
discussion groups and sessions may be formed in the
lifecycle of a long-term scientific collaboration process.
Therefore, we constructed a hierarchical structure for the
central server. In our infrastructure, a central server may host
multiple collaboration groups, which may or may not have
nesting relationships between them. It maintains all
collaboration group information and acts as the subject for
all registered collaboration groups. All observers
(collaborators) are organized into corresponding
collaboration groups. As shown in Fig. 1, the central server
also stores and manages all provenance data, so that it
becomes a repository of workflow products and decides
scalability.

Within a collaboration group, a straightforward way is to
allow everyone to do anything on a workflow at any time,
and distribute the results to everyone in the same group. In
the real life, however, typically only one person is allowed to
speak at a certain moment in a group [19]. Thus, we should
grant some access control policies so that only one person at
a time can modify the shared workflow products and
distribute the changes in the group.

We adopt the floor control technique from an extensively
tested and well proved human communication protocol,
Robert’s Rules of Order (RRO) [19], where a single floor is
maintained in a shared meeting environment. Each member
requests and competes for the floor, and only the person who
obtains the floor can talk in the meeting. Applying RRO to
our collaboration environment, each member in a
collaboration group may request a floor to gain the write
privilege of the shared workflow products in the group. A
simple role-based model is adopted. The person who

registers a collaboration group at the central server becomes
the moderator of the group, and will automatically have the
control over the floor. Without losing generality, here we
only allow one single floor in our project. Multiple floor-
based access control facility can be realized in our future
work. As shown in Fig. 1, Client 3 in Group 2 requests the
floor (Step a). Upon approval, Client 3 may update the
workflow (Step b) and the changes will be distributed to
other collaborators in the same group (e.g., Client 4)
instantaneously.

Each collaborator shall request the token first, before
making any modifications on the workflow product.
Otherwise, the changes will be kept locally and will not be
distributed to other collaborators. The following pseudo code
realizes an algorithm of the floor granting process.

If the floor is not occupied, the requestor will be granted

the floor exclusively; otherwise, the requestor will be put
into the corresponding waiting list and wait for the floor.
Upon releasing a floor, the requestor on the top of the
waiting list will be automatically informed and granted the
floor. If there is no one in the waiting list, then nothing will
happen. The following pseudo code shows the algorithm of
the floor releasing process.

A moderator may force take the floor from a collaborator
under certain circumstances, for example, if the collaborator
loses her Internet connection.

Collaborator1 LightWeight-Server Collaborator2 Central-Server

instantiate()

invite()

accept()

submit()
propagate()

submit()
propagate()

finish()

store()

Figure 2. Light-weight collaboration protocol.

C. Light-weight collaboration model

The aforementioned client/server model is based on a

centralized server with the ability of permanent provenance
storage. In contrast to such a formal collaboration mode,
some researchers may prefer a more informal collaboration
mode at some points in a specific scientific collaborative
project. Informal collaborations are also called backdoor
communications, implying that collaborations occur among
some team members in a free and private manner. In a large-
scale research project, it is common that several scientists
may tend to conduct some backdoor discussions among them
from time to time. In addition to free text conversations that
can be supported by applications like instant messengers
(IMs, which is what we plan to integrate into Taverna in the
future), here we focus on sharing temporary workflow
changes among a subset of collaborators.

The intermediate workflow changes of a backdoor
collaboration will not be distributed to other team members
instantaneously and will not be stored permanently on the
central server. Instead, the changes will be shown only on the
screens of the participants who join the backdoor
communications, usually through invitation. The products of
such backdoor communications will only be stored
temporarily on each participant’s local machine, unless the
initiator of the communication decides to explicitly store
them. Typically, any scientist in a collaboration group may
decide to initiate a backdoor collaboration by sending
invitations to other collaborators. More invitations may be
sent in the middle of the backdoor collaboration. Such a form
of backdoor communication enables peer-to-peer (P2P)
communication among Taverna instances, without a central
server equipped with a centralized provenance management
facility.

To realize the backdoor collaboration, a straightforward
way is to adopt the traditional P2P mode, where each peer
(i.e., Taverna instance) is equally weighted and is enabled to
communicate with each other. This implies that each
Taverna instance becomes heavy-weight, meaning that we
have to physically embed P2P communication code into each
Taverna instance. Recall that our centralized client/server
model of Co-Taverna intentionally keeps each Taverna client
light weighted. This heavy-weight Taverna client
requirement will constraint the reusability and flexibility of
the code of the Taverna instance. In addition, our server-
based communication mode is not reusable in this option.

To overcome these limitations, our solution proposes a
light-weight server model. In contrast to the heavy server
model discussed in the previous section, we enable a light-
weight server that only serves backdoor communications and
is not equipped with the ability of automatic provenance
backtracking and management.

The only capability of a light-weight server is to
temporarily store the latest version of the workflow product
and broadcast it to all participating clients (i.e., Taverna
instances). We modularize the light server as a pluggable
component to the original Taverna instance code. This
implies that such a server can run on every client side, in

addition to the light-weight client. Between two peers who
intend to communicate, only one peer has to initiate a light-
weight server.

Fig. 2 illustrates the light-weight communication protocol
between two collaborators using a UML sequence diagram.
When one user (Collaborator1) wants to start a back-door
channel, she sends an invitation (to Collaborator2). Upon
receiving an agreement, the user (Collaborator1) implicitly
instantiates a light-weight server at the user side and it starts
to run. A signal is sent to the other party as well. It is in a
light-weight mode, in the sense that it does not permanently
store workflow products. As shown in Fig. 2, when
Collaborator1 makes some changes to the shared workflow,
the changes will be submitted to the light-weight server. The
light-weight server will in turn propagate the changes to the
participating Collaborator2. Similarly, when Collaborator2
makes changes, they will be propagated to Collaborator1
through the light-weight server. Finally, when the initiator
(Collaborator1) decides to finish the backdoor
communication, the final version of the changes can be sent
to the central server to store, if so desired.

V. CO-TAVERNA 1.X

A major technical challenge is how to embed our floor-

based workflow collaboration mechanism into Taverna

workbench. In addition to code changes, graphical interfaces

should also be adjusted as well. For example, new menus,

menu items, and hot keys should be added to allow

collaborative scientific workflow composition. In this

section, we will discuss our strategy and solutions.

A. System implementations

We have successfully created a preliminary collaborative

version of Taverna, called Co-Taverna 1.0, as shown in Fig.
3. Using a typical client/server model, multiple scientists

Figure 3. Collaborative Taverna 1.0.

may join in a shared scientific workflow composition
session. To ease discussions, Fig. 3 shows two screens, left
and right, representing two scientists working at individual
screens. Both screens are running our Co-Taverna 1.0. Any
change (adding or removal of components) in the shared
workflow made by one scientist will be immediately shown
on all collaborators’ screens. Shared workflow product is
stored at the server, so other collaborators may join the
collaboration at any time and review the current workflow if
proprietary access control allows.

Fig. 4 shows portions of the demos of Co-Taverna 1.1,
where we have realized role-based P2P collaboration using
the centralized server mode, as discussed in Section 4.2. As
shown in the upper part of Fig. 4, we added a menu item
group “Collaboration” in the menu bar, which supports five
actions regarding P2P collaboration: (1) share workflow (a
coordinator initiates a shared scientific workflow document),
(2) connect (the coordinator allows identified participants to
join), (3) disconnect (the coordinator removes a participant

from the collaboration), (4) request token (request a floor to
have write access), and (5) release token (release the write
access of the shared workflow).

The left screen in Fig. 4 shows a scientist who starts a
collaboration session. Once the scientist clicks to “Share
Workflow,” the collaboration can begin. As highlighted in
Fig. 4, the initiator of the collaboration automatically obtains
the token (floor), shown in green. He/she can also click
“Release Token” to release the token; and his/her status will
turn back into red by doing so. After a collaboration session
is started, other scientists (upon invitations) will be able to
select the “Connect” menu item to join the collaboration, and
will instantaneously view the same workflow shown on the
token holder’s screen. As shown in Fig. 4, any collaborator
can click “Request Token” to ask for the write privilege. If
available, the token will be granted to the requestor.

Fig. 5 shows a portion of a screen shot illustrating that a
backdoor communication is initiated between two Co-
Taverna 1.1 instances. A user identifies a specific IP address
(i.e., 127.0.0.1) to invite a team member to start a backdoor
communication. Our current version offers six functions
supporting backdoor communication, as shown in the drop
down menu at the upper right corner of Fig. 4: (1) backdoor
connection (initiate a backdoor communication session), (2)
share workflow (manually enable workflow sharing between
backdoor communication participants), (3) connect (invite an
additional participant to the backdoor communication), (4)
disconnect (remove a participant from the backdoor
communication), (5) request token (a participant asks for the
mutual exclusive floor for writing access to the shared
workflow), and (6) release token (a participant releases the
floor to allow other participants to request the floor).

B. Discussions

We realize there is much space to enhance Co-Taverna

Figure. 4. P2P collaboration.

1.x for higher performance. In this section, we will briefly
discuss the findings from our experience of using our
preliminary tool.

For Co-Taverna to support various scales of collaborative
scientific workflow composition, storage concerns have to be
addressed. Since we utilize the file saving function of
Taverna 2.0 to enable real-time workflow sharing, Co-
Taverna 1.1 stores the entire workflow documents onto the
server. Each time if a user decides to load a workflow, the
entire workflow document has to be downloaded from the
server and loaded into the local Taverna workbench. When a
workflow becomes complicated and comprises sub-
workflows, this strategy may generate significant network
traffic and affect workflow retrieval and display
performance. In the future, we will explore to store only
workflow actions on the server. A workflow diagram will be
dynamically rendered locally based on requests.

Version control is not enabled at the moment; only the
latest version of a workflow product is stored and becomes
accessible to collaborators. This limitation is inherited from
the current Taverna code. In the future, we plan to study how
to incorporate an effective and efficient version control
mechanism, so that provenance management can be enabled
and latecomers can view the history of workflow
development.

In the current version, ownership is not granted. A rather
straightforward collaboration protocol is adopted, as every
collaborator competes for the floor (i.e., token) for the
writing access to the entire shared workflow. In the real
world, however, some portions of a workflow may be owned
by a specific collaborator and others do not have direct
access. For example, a particular data handling process (sub-
workflow) may have to be operated by a specific scientist. In
the future, we plan to establish a more comprehensive
collaboration protocol to enable project-specific ownership
management.

We also plan to adopt the Web services technology to

restructure the system implementation of Co-Taverna 1.x.

Web services is by far the best enabling technology to

realize Service Oriented Architecture (SOA) for higher

reusability, among many other promising features. [16]. A

Web service is a programmable Web component with a

standard interface and is universally accessible using

standard network protocols. We plan to apply the Web

services technology to refactor the entire system

implementation of Co-Taverna to enable higher code

reusability for later versions.

Same as traditional Taverna, each user must run a copy

of Co-Taverna on the local machine. This is another reason

why we plan to incorporate the Web services technology.

We aim to build a collaborative scientific workflow editing

service, so that users who have Internet access can use Web

browsers to collaboratively compose, edit, and manage

scientific workflows.

To support our incremental design, development, and

testing of Co-Taverna implementations, we plan to adopt a

client/server model for the project. We will establish a

central server managing all workflow and provenance data

as well as collaboration coordination. To allow individual

scientists find available workflows, we also plan to

implement a workflow publishing and discovery engine at

the central server.

In spite of the aforementioned limitations that will be

addressed in our future research, our Co-Taverna 1.x

successfully proves the feasibility of our strategy, to extend

such an existing popular scientific workflow tool into a

collaborative version to support both synchronous and

asynchronous scientific collaboration.

VI. CONCLUSIONS

In this paper, we report our on-going efforts of

extending Taverna from a single-user version into a multi-

user version, Co-Taverna. We have successfully created an

initial version of Co-Taverna supporting multiple scientists

in editing a shared scientific workflow. To our best

knowledge, this is the first tool prototype supporting

collaborative scientific workflow composition. We have

designed and integrated a role-based collaboration protocol

and technique and have integrated it into Co-Taverna to

enable regulated scientific collaboration, based on our

previous research on Internet-based computer-supported

collaborative work [18, 19]. Results of our research will

particularly facilitate large-scale and cross-disciplinary

research projects that are collaborative in nature and require

intensive user interaction from multiple distributed domain

scientists.

VII. ACKNOWLEDGEMENT

This work is supported by National Science Foundation,

under grant NSF0959215. The author also thanks Matthew

Leverton for system implementation.

Figure. 5. Backdoor collaboration settings.

VIII. REFERENCES

[1] S. Lu and J. Zhang, "Collaborative Scientific Workflows", in

Proceedings of IEEE International Conference on Web Services

(ICWS), Jul. 6-10, 2009, Los Angeles, CA, USA, pp. 527-534.

[2] B. Lud¨ascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M.

Jones, E.A. Lee, J. Tao, and Y. Zhao, "Scientific workflow

management and the Kepler system", Concurrency and

Computation: Practice and Experience, 2006, 18(10): pp. 1039-

1065.

[3] Y. Gil, E. Deelman, J. Blythe, C. Kesselman, and H.

Tangmunarunkit, "Artificial Intelligence and Grids: Workflow

Planning and Beyond", IEEE Intelligent Systems, Jan.-Feb., 2004,

19(1): pp. 26–33.

[4] T. Oinn, M. Greenwood, M. Addis, M.N. Alpdemir, J. Ferris, K.

Glover, C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord,

M.R. Pocock, M. Senger, R. Stevens, A. Wipat, and C. Wroe,

"Taverna: Lessons in Creating a Workflow Environment for the

Life Sciences", Concurrency and Computation: Practice &

Experience, 2006, 18(10): pp. 1067–1100.

[5] D. Churches, G. Gombas, A. Harrison, J. Maassen, C.

Robinson, M. Shields, I. Taylor, and I. Wang, "Programming

Scientific and Distributed Workflow with Triana Services",

Concurrency and Computation: Practice & Experience, 2006,

18(10): pp. 1021–1037.

[6] J. Freire, C.T. Silva, S.P. Callahan, E. Santos, and C.E.

Scheidegger, "Managing Rapidly-Evolving Scientific Workflows ",

Lecture Notes in Computer Science, May, 2006, 4145/2006: pp.

10–18.

[7] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. Laszewski, V.

Nefedova, I. Raicu, T. Stef-Praun, and M. Wilde, "Swift: Fast,

Reliable, Loosely Coupled Parallel Computation", in Proceedings

of IEEE International Workshop on Scientific Workflows, Jul. 9-13,

2007, Salt Lake City, UT, USA, pp. 199–206.

[8] A. Chebotko, C. Lin, X. Fei, Z. Lai, S. Lu, J. Hua, and F.

Fotouhi, "VIEW: A Visual Scientific Workflow Management

System", in Proceedings of the 1st IEEE International Workshop

on Scientific Workflows, Jul., 2007, Salt Lake City, UT, USA, pp.

207–208.

[9] C. Lin, S. Lu, Z. Lai, A. Chebotko, X. Fei, J. Hua, and F.

Fotouhi, "Service-Oriented Architecture for VIEW: A Visual

Scientific Workflow Management System", in Proceedings of the

IEEE 2008 International Conference on Services Computing

(SCC), Jul. 9-11, 2008, Honolulu, HI, USA, pp. 335-342.

[10] NCI, "Cancer Biomedical Informatics Grid (caBIG)",

Available from: https://cabig.nci.nih.gov/.

[11] D.D. Roure, C. Goble, and R. Stevens, "The Design and

Realisation of the myExperiment Virtual Research Environment

for Social Sharing of Workflows", Future Generation Computer

Systems, 2009, 25: pp. 561-567.

[12] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M.

Kloppmann, D. König, F. Leymann, R. Müller, K. Plösser, R.

Rangaswamy, A. Rickayzen, M. Rowley, P. Schmidt, I. Trickovic,

A. Yiu, and M. Zeller, "WS-BPEL Extension for People

(BPEL4People), Version 1.0", Jun., 2007, Available from:

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws

-bpel4people/BPEL4People_v1.pdf.

[13] E. Deelman and Y. Gil, "NSF Workshop on the Challenges of

Scientific Workflows", May 1-2, 2006.

[14] C.K. Chang, J. Zhang, and K.H. Chang, "Survey of Computer

Supported Business Collaboration in Support of Business

Processes", International Journal of Business Process Integration

and Management (IJBPIM), 2006, 1(2): pp. 76-100.

[15] L.-J. Zhang, J. Zhang, and H. Cai, Services Computing.

Springer, 2007.

[16] T. Oinn, P. Li, D.B. Kell, C. Goble, A. Goderis, M.

Greenwood, D. Hull, R. Stevens, D. Turi, and J. Zhao,

Taverna/myGrid: Aligning a Workflow System with the Life

Sciences Community, Workflows for E-science: Scientific

Workflows for Grids (I. J. Taylor, E. Deelman, D. B. Gannon, and

M. Shields, eds.). Springer-Verlag, 2007, 300-319.

[17] T. Oinn, "XScufl Language Reference", 2004, Available from:

http://www.ebi.ac.uk/~tmo/mygrid/XScuflSpecification.html.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software.

Addison Wesley, Boston, MA, USA, 1995.

[19] M. Robert, W.J. Evans, D.H. Honemann, and T.J. Balch,

Robert's Rules of Order, Newly Revised, 10th Edition. Perseus

Publishing Company, 2000.

