
Smoothing for non-smooth optimization, lecture 4

Last time: Smoothing techniques

• A “fixed” smoothing approach

• Excessive gap technique

Today: Applications

• Game theory: computation of Nash equilibrium

• Sparse principal component analysis

1

Recap

Consider

min
x∈Q1

max
y∈Q2

{〈c, x〉 − 〈b, y〉+ 〈Ax, y〉} = max
y∈Q2

min
x∈Q1

{〈c, x〉 − 〈b, y〉+ 〈Ax, y〉} .

Write these problems as

min {f(x) : x ∈ Q1} = max {φ(y) : y ∈ Q2}
for

f(x) = 〈c, x〉+ max
y∈Q2

{〈Ax, y〉 − 〈b, y〉}

and

φ(y) = −〈b, y〉+ min
x∈Q1

{〈c, x〉+ 〈Ax, y〉} .

2

Smoothing techniques

• Assume di is a prox-function for Qi with modulus ρi and
max value Di.

• In N iterations get xN ∈ Q1, yN ∈ Q2 such that

0 ≤ f(xN)− φ(yN) ≤ 4‖A‖
N + 1

√
D1D2

ρ1ρ2

• Each iteration requires elementary operations and the
solution of three problems of the form

min {di(z)− 〈g, z〉 : z ∈ Qi}

• All of this holds for any choice of norms in Ei, not
necessarily the Euclidean norm.

3

Matrix games

Games in strategic form:

• Each player has a finite set of pure strategies

• A simultaneous choice of strategies determines the payoff
of each player

Equilibrium: choice of strategies for each player so that no
player wishes to deviate

Theorem 1 (Nash, 1950) Under suitable circumstances such
an equilibrium exists (may involve randomization).

4

Consider a two-person, zero-sum game:

• A ∈ IRm×n : Player 2’s payoff matrix

• x ∈ ∆n: set of mixed strategies of Player 1.

• y ∈ ∆m: set of mixed strategies of Player 2.

Player 1’s problem: min
x∈∆n

max
j

(Ax)j

Player 2’s problem: max
y∈∆m

min
i

(ATy)i

5

Nash equilibrium problem:

min
x∈∆n

max
y∈∆m

〈Ax, y〉 = max
y∈∆m

min
x∈∆n

〈Ax, y〉.

To apply smoothing techniques need prox-functions for
Q1 = ∆n, Q2 = ∆m.

6

Euclidean distance:

d1(x) :=
1

2

n∑
i=1

(
xi −

1

n

)2
, d2(x) :=

1

2

m∑
j=1

(
yj −

1

m

)2
.

It is easy to see that

D1 =
1

2
− 1

2n
≤ 1

2
, D2 =

1

2
− 1

m
≤ 1

2
.

Also, for the Euclidean norms in IRn, IRm we have

ρ1 = ρ2 = 1,

and

‖A‖ = σmax(A) =
√

λmax(ATA).

So in N iterations get xN ∈ ∆n, yN ∈ ∆m such that

0 ≤ f(xN)− φ(yN) ≤
√

λmax(ATA)

N + 1
7

Entropy:

d1(x) :=
n∑

i=1
xi logxi + logn, d2(x) :=

m∑
j=1

yj log yj + logm.

It is easy to see that

D1 = logn, D2 = logm.

Also, for the 1-norms in IRn, IRm we have

ρ1 = ρ2 = 1,

and

‖A‖ = max
{
|A|ij

}
.

So in N iterations get xN ∈ ∆n, yN ∈ ∆m such that

0 ≤ f(xN)− φ(yN) ≤ 4
√

logn logmmax |Aij|
N + 1

8

What about the subproblems at each iteration? Need to solve

min {d1(x)− 〈g, x〉 : x ∈ ∆n} .

For the entropy d1(x) =
n∑

i=1
xi logxi + logn, get a closed-form

solution

xi =
egi

n∑
k=1

egk

, i = 1, . . . , n

9

For the Euclidean distance d1(x) = 1
2

n∑
i=1

(xi − 1/n)2, it follows

from the KKT conditions that the solution is

xi = (gi − λ)+, i = 1, . . . , n

for λ ∈ IR such that
n∑

i=1
(gi − λ)+ = 1.

Can find λ by sorting gi, i = 1, . . . , n.

10

Sequential games

Games that involve turn-taking, chance moves, and imperfect
information.

Example 2 (Simplified poker)

• Opening: players bet 1 each

• One card is dealt to each player

• Player 1 can check or raise
– If Player 1 checks then Player 2 can check or raise
– If Player 2 checks there is a showdown (higher wins)
– If Player 2 raises then Player 1 can fold, or call

(showdown)

• If Player 1 raises then Player 2 can fold, or call (showdown)

11

Game tree representation

2

1 1 11

2

2

2

2

1111

2 2

00

0

00 1

0−1 −1 2 −1−2−1

1 1 2−2−1

2

(Q,Q)(J,J)

(Q,J)

k r
k k k

r r r

f c c c cf f f

k

r r r rk k k

f f f fc c c c

1/6

1/3

1/6

1/3

(J,Q)

1 1

12

The sequence form

• With perfect recall, can formulate the Nash equilibrium
problem in terms of sequences of moves.

• Strategies ↔ set of realization plans

Example 3 (simplified poker)
Player 1’s sequences:

S =
{
∅, kJ, rJ, kQ, rQ, kJfJ, kJcJ, kQfQ, kQcQ

}
Set of realization plans: {x : Ex = e, x ≥ 0} , for

E =


1
−1 1 1
−1 1 1

−1 1 1
−1 1 1

 , e =


1
0
0
0
0


13

Nash equilibrium via sequence form

Assume

• Q1, Q2: realization plans of Players 1 and 2

• A: Player 2’s payoff matrix

Nash equilibrium

min
x∈Q1

max
y∈Q2

〈Ax, y〉 = max
y∈Q2

min
x∈Q1

〈Ax, y〉.

• In matrix games Q1, Q2 are simplices

• In sequential games Q1, Q2 are complexes

14

Texas Hold’em Poker (with limits):

Game tree has ∼ 1018 nodes.

• Gilpin and Sandholm (2005–):

Can approximate by solving abstractions (simpler sequential
games)

• The closer the abstraction, the better

15

Rhode Island Hold’em: created for AI research

• Each player pays an ante of 5 chips.

• Each player is dealt a single card, placed face down.

• First betting round: Each player may check, or bet if no
bets have been placed. If a bet has been placed, then the
player may fold, call, or raise. The players are limited to 3
raises per betting round. In this betting round, the bets are
10 chips.

• A community card is dealt face up and a second betting
round take place with bets equal to 20 chips.

• Another community card is dealt face up and a final betting
round takes place at this point, with bets equal to 20 chips.

16

If neither player folds, then the showdown takes place. Both
players turn over their cards. The player who has the best
3-card poker hand takes the pot. In the event of a draw, the
pot is split evenly. The ranking of hands is given below.

Hands

• Straight flush: e.g., J, Q, K of spades

• Three of a kind: e.g., 8,8,8 of spades, hearts, diamonds

• Straight: e.g., J, Q, K

• Flush: e.g., 2,5,7 diamonds

• Pair: e.g., 2,2,8

• High card

17

Hoda, Gilpin, Sandholm, P. (2006–):
Apply smoothing techniques to solve large sequential games.

Theorem 4 (HGP 2006) Any prox-function for the simplex
yields a prox-function for any complex.

Remarks

• Provide estimates of relevant ρ, D

• Subproblem (for Q complex):

min {d(z)− 〈g, z〉 : z ∈ Q} .

can be recursively solved via solving subproblems over
simplices

• Most expensive work per iteration: matrix-vector products

x -→ Ax, y -→ ATy

18

Complexity results

From Smoothing and HGP Theorem get:

Theorem 5

• For the entropy induced prox-function:⌈
(4G2/ε)max |Aij|

⌉
itns ! (x̄, ȳ) ∈ Q1 ×Q2 such that

max
y∈Q2

〈Ay, x̄〉 − min
x∈Q1

〈Aȳ, x〉 ≤ ε

G: size of the game tree

• For the Euclidean induced prox-function:⌈
(4G/ε)λ1/2

max(A
TA)

⌉
itns ! (x̄, ȳ) ∈ Q1 ×Q2 such that

max
y∈Q2

〈Ay, x̄〉 − min
x∈Q1

〈Aȳ, x〉 ≤ ε

19

Computational experience

Test problems, size of A

• Rhode Island Hold’em poker, 1M × 1M .

• Abstractions of Texas Hold’em poker:

81× 81,1041× 1041,
10421× 10421,160k × 160k,
13M × 13M,100M × 100M

20

Efficient matrix representation

• Payoff matrix in poker games admits a concise
representation. For example, for a three-round game

A =

A1
A2

A3


where Ai = Fi ⊗Bi, i = 1,2 and A3 = F3 ⊗B3 + S ⊗W for
smaller matrices Fi, Bi, S, W .

• Do not need to form A explicitly.

• Instead have subroutines that compute x -→ ATx, y -→ Ay.

21

About the 160K × 160K instance

Matrix A

nnz = 8684668
22

More about the 160k × 160k problem 25k × 25k and 1k × 1k

upper-left blocks of A

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 2280

23

Matrix E

nnz = 226073

24

Matrix F

nnz = 226073

25

Upper-left blocks of E

0 50 100 150 200 250

0

20

40

60

80

100

nz = 348

0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

35

40

nz = 138

26

Path of the iterates’ gap

max
y∈Q2

〈y, Axk〉 − min
x∈Q1

〈yk, Ax〉

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

27

Largest instance attempted so far:

A : 101,192,201× 101,192,221
E : 40,476,881× 101,192,201
F : 40,476,881× 101,192,221

number of non-zeros in A: 2,927,336,725,318

Implementation

• Based on EGT technique

• Machine: 1.65GHz IBM eServer p5 570 with 64 gigabytes
of RAM

• Concise representation requires only 2.49 GB of RAM.

• Entire algorithm uses about 30 GB of RAM.

• Each iteration takes a few hours (it has run for months)

28

Poker players

Poker is a central challenge problem in AI. Some reasons:

• Imperfect information: the other players’ cards are hidden,
future events

• Bluffing and other deceptive strategies are needed in a
good player

• Interest in developing automatic poker players

Gilpin, Sandholm, Sorensen 2007

• A poker player based on the four-round abstraction.

• Use the approximate equilibrium found by our algorithm.

29

Principal component analysis

Suppose C ∈ Sn is a covariance matrix. Then there exist
P ∈ IRn×n orthogonal such that

C = QDiag(λ(C))QT =
n∑

i=1
λi(C)pip

T
i

Principal components: p1, . . . , pn

Can find first principal component by solving:

max xTCx
s.t. xTx = 1

30

Semidefinite programming (SDP) reformulation:
Put X := xxT, get

max C • X
s.t. I • X = 1

X 0 0.

31

Sparse first principal component:

max xTCx
s.t. xTx = 1

card(x) ≤ k

SDP relaxation

max C • X − δ1 • |X|
s.t. I • X = 1

X 0 0.

32

For simplicity assume δ = 1.

Then the SDP

max C • X − 1 • |X|
s.t. I • X = 1

X 0 0

can be written as

max
X∈Q1

min
Y ∈Q2

{〈C, X〉 − 〈X, Y 〉}

where

Q1 = {X ∈ Sn : X 0 0, 〈I, X〉 = 1} , Q2 =
{
Y ∈ Sn : |Yij| ≤ 1

}
,

and 〈·, ·〉 is the trace inner product: 〈X, S〉 = trace(XS) = X • S.

33

Prox-function for Q1:

d1(X) =
n∑

i=1
λi(X) logλi(X) + logn

Prox-function for Q2:

d2(Y) =
1

2
〈Y, Y 〉

It is easy to see that D1 = logn, D2 = n2/2.

For suitable norms we get ρ1 = ρ2 = 1 and ‖A‖ = 1.

Thus in N iterations get X̄ ∈ Q1 such that C • X̄ − 1 • |X̄| is
within

2
√

2n
√

logn

N + 1

of the optimal SDP value.
34

Subproblems at each iteration:

• min


n∑

i=1
λi(X) logλi(X) + logn−G • X : X 0 0, I • X = 1


• min

{
1
2U • U − 〈G, U〉 : |Uij| ≤ 1

}

Solution to second one:

Uij = sign(Gij)min
{
|Gij|,1

}
.

35

Solution to the first one (similar to entropy):

• Compute eigenvalue decomposition: G = V Diag(λ(G))V T

• Let hi := eλi(G)
n∑

k=1
eλk(G)

, i = 1, . . . , n

• Let X = V Diag(h)V T

36

References for today’s material

• S. Hoda, A. Gilpin, J. Peña, and T. Sandholm, “A
gradient-based algorithm for finding Nash equilibria in
extensive form games,” In preparation.

• A. D’Aspremont, L. El Ghaoui, M. Jordan, and G.
Lankcriet, “A direct formulation for sparse PCA using
semidefinite programming,” To appear in SIAM Review.

37

