
Smoothing for non-smooth optimization, lecture 4

Last time: Smoothing techniques

• A “fixed” smoothing approach

• Excessive gap technique

Today: Applications

• Game theory: computation of Nash equilibrium

• Sparse principal component analysis
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Recap

Consider

min
x∈Q1

max
y∈Q2

{〈c, x〉 − 〈b, y〉+ 〈Ax, y〉} = max
y∈Q2

min
x∈Q1

{〈c, x〉 − 〈b, y〉+ 〈Ax, y〉} .

Write these problems as

min {f(x) : x ∈ Q1} = max {φ(y) : y ∈ Q2}
for

f(x) = 〈c, x〉+ max
y∈Q2

{〈Ax, y〉 − 〈b, y〉}

and

φ(y) = −〈b, y〉+ min
x∈Q1

{〈c, x〉+ 〈Ax, y〉} .
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Smoothing techniques

• Assume di is a prox-function for Qi with modulus ρi and
max value Di.

• In N iterations get xN ∈ Q1, yN ∈ Q2 such that

0 ≤ f(xN)− φ(yN) ≤ 4‖A‖
N + 1

√
D1D2

ρ1ρ2

• Each iteration requires elementary operations and the
solution of three problems of the form

min {di(z)− 〈g, z〉 : z ∈ Qi}

• All of this holds for any choice of norms in Ei, not
necessarily the Euclidean norm.
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Matrix games

Games in strategic form:

• Each player has a finite set of pure strategies

• A simultaneous choice of strategies determines the payoff
of each player

Equilibrium: choice of strategies for each player so that no
player wishes to deviate

Theorem 1 (Nash, 1950) Under suitable circumstances such
an equilibrium exists (may involve randomization).
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Consider a two-person, zero-sum game:

• A ∈ IRm×n : Player 2’s payoff matrix

• x ∈ ∆n: set of mixed strategies of Player 1.

• y ∈ ∆m: set of mixed strategies of Player 2.

Player 1’s problem: min
x∈∆n

max
j

(Ax)j

Player 2’s problem: max
y∈∆m

min
i

(ATy)i
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Nash equilibrium problem:

min
x∈∆n

max
y∈∆m

〈Ax, y〉 = max
y∈∆m

min
x∈∆n

〈Ax, y〉.

To apply smoothing techniques need prox-functions for
Q1 = ∆n, Q2 = ∆m.
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Euclidean distance:

d1(x) :=
1

2

n∑
i=1

(
xi −

1

n

)2
, d2(x) :=

1

2

m∑
j=1

(
yj −

1

m

)2
.

It is easy to see that

D1 =
1

2
− 1

2n
≤ 1

2
, D2 =

1

2
− 1

m
≤ 1

2
.

Also, for the Euclidean norms in IRn, IRm we have

ρ1 = ρ2 = 1,

and

‖A‖ = σmax(A) =
√

λmax(ATA).

So in N iterations get xN ∈ ∆n, yN ∈ ∆m such that

0 ≤ f(xN)− φ(yN) ≤
√

λmax(ATA)

N + 1
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Entropy:

d1(x) :=
n∑

i=1
xi logxi + logn, d2(x) :=

m∑
j=1

yj log yj + logm.

It is easy to see that

D1 = logn, D2 = logm.

Also, for the 1-norms in IRn, IRm we have

ρ1 = ρ2 = 1,

and

‖A‖ = max
{
|A|ij

}
.

So in N iterations get xN ∈ ∆n, yN ∈ ∆m such that

0 ≤ f(xN)− φ(yN) ≤ 4
√

logn logmmax |Aij|
N + 1
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What about the subproblems at each iteration? Need to solve

min {d1(x)− 〈g, x〉 : x ∈ ∆n} .

For the entropy d1(x) =
n∑

i=1
xi logxi + logn, get a closed-form

solution

xi =
egi

n∑
k=1

egk

, i = 1, . . . , n
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For the Euclidean distance d1(x) = 1
2

n∑
i=1

(xi − 1/n)2, it follows

from the KKT conditions that the solution is

xi = (gi − λ)+, i = 1, . . . , n

for λ ∈ IR such that
n∑

i=1
(gi − λ)+ = 1.

Can find λ by sorting gi, i = 1, . . . , n.
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Sequential games

Games that involve turn-taking, chance moves, and imperfect
information.

Example 2 (Simplified poker)

• Opening: players bet 1 each

• One card is dealt to each player

• Player 1 can check or raise
– If Player 1 checks then Player 2 can check or raise
– If Player 2 checks there is a showdown (higher wins)
– If Player 2 raises then Player 1 can fold, or call

(showdown)

• If Player 1 raises then Player 2 can fold, or call (showdown)
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Game tree representation
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The sequence form

• With perfect recall, can formulate the Nash equilibrium
problem in terms of sequences of moves.

• Strategies ↔ set of realization plans

Example 3 (simplified poker)
Player 1’s sequences:

S =
{
∅, kJ, rJ, kQ, rQ, kJfJ, kJcJ, kQfQ, kQcQ

}
Set of realization plans: {x : Ex = e, x ≥ 0} , for

E =


1
−1 1 1
−1 1 1

−1 1 1
−1 1 1

 , e =


1
0
0
0
0


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Nash equilibrium via sequence form

Assume

• Q1, Q2: realization plans of Players 1 and 2

• A: Player 2’s payoff matrix

Nash equilibrium

min
x∈Q1

max
y∈Q2

〈Ax, y〉 = max
y∈Q2

min
x∈Q1

〈Ax, y〉.

• In matrix games Q1, Q2 are simplices

• In sequential games Q1, Q2 are complexes
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Texas Hold’em Poker (with limits):

Game tree has ∼ 1018 nodes.

• Gilpin and Sandholm (2005–):

Can approximate by solving abstractions (simpler sequential
games)

• The closer the abstraction, the better
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Rhode Island Hold’em: created for AI research

• Each player pays an ante of 5 chips.

• Each player is dealt a single card, placed face down.

• First betting round: Each player may check, or bet if no
bets have been placed. If a bet has been placed, then the
player may fold, call, or raise. The players are limited to 3
raises per betting round. In this betting round, the bets are
10 chips.

• A community card is dealt face up and a second betting
round take place with bets equal to 20 chips.

• Another community card is dealt face up and a final betting
round takes place at this point, with bets equal to 20 chips.
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If neither player folds, then the showdown takes place. Both
players turn over their cards. The player who has the best
3-card poker hand takes the pot. In the event of a draw, the
pot is split evenly. The ranking of hands is given below.

Hands

• Straight flush: e.g., J, Q, K of spades

• Three of a kind: e.g., 8,8,8 of spades, hearts, diamonds

• Straight: e.g., J, Q, K

• Flush: e.g., 2,5,7 diamonds

• Pair: e.g., 2,2,8

• High card
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Hoda, Gilpin, Sandholm, P. (2006–):
Apply smoothing techniques to solve large sequential games.

Theorem 4 (HGP 2006) Any prox-function for the simplex
yields a prox-function for any complex.

Remarks

• Provide estimates of relevant ρ, D

• Subproblem (for Q complex):

min {d(z)− 〈g, z〉 : z ∈ Q} .

can be recursively solved via solving subproblems over
simplices

• Most expensive work per iteration: matrix-vector products

x -→ Ax, y -→ ATy
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Complexity results

From Smoothing and HGP Theorem get:

Theorem 5

• For the entropy induced prox-function:⌈
(4G2/ε)max |Aij|

⌉
itns ! (x̄, ȳ) ∈ Q1 ×Q2 such that

max
y∈Q2

〈Ay, x̄〉 − min
x∈Q1

〈Aȳ, x〉 ≤ ε

G: size of the game tree

• For the Euclidean induced prox-function:⌈
(4G/ε)λ1/2

max(A
TA)

⌉
itns ! (x̄, ȳ) ∈ Q1 ×Q2 such that

max
y∈Q2

〈Ay, x̄〉 − min
x∈Q1

〈Aȳ, x〉 ≤ ε
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Computational experience

Test problems, size of A

• Rhode Island Hold’em poker, 1M × 1M .

• Abstractions of Texas Hold’em poker:

81× 81,1041× 1041,
10421× 10421,160k × 160k,
13M × 13M,100M × 100M
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Efficient matrix representation

• Payoff matrix in poker games admits a concise
representation. For example, for a three-round game

A =

A1
A2

A3


where Ai = Fi ⊗Bi, i = 1,2 and A3 = F3 ⊗B3 + S ⊗W for
smaller matrices Fi, Bi, S, W .

• Do not need to form A explicitly.

• Instead have subroutines that compute x -→ ATx, y -→ Ay.
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About the 160K × 160K instance

Matrix A

nnz = 8684668
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More about the 160k × 160k problem 25k × 25k and 1k × 1k

upper-left blocks of A
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nz = 2280
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Matrix E

nnz = 226073
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Matrix F

nnz = 226073
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Upper-left blocks of E
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Path of the iterates’ gap

max
y∈Q2

〈y, Axk〉 − min
x∈Q1

〈yk, Ax〉
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Largest instance attempted so far:

A : 101,192,201× 101,192,221
E : 40,476,881× 101,192,201
F : 40,476,881× 101,192,221

number of non-zeros in A: 2,927,336,725,318

Implementation

• Based on EGT technique

• Machine: 1.65GHz IBM eServer p5 570 with 64 gigabytes
of RAM

• Concise representation requires only 2.49 GB of RAM.

• Entire algorithm uses about 30 GB of RAM.

• Each iteration takes a few hours (it has run for months)
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Poker players

Poker is a central challenge problem in AI. Some reasons:

• Imperfect information: the other players’ cards are hidden,
future events

• Bluffing and other deceptive strategies are needed in a
good player

• Interest in developing automatic poker players

Gilpin, Sandholm, Sorensen 2007

• A poker player based on the four-round abstraction.

• Use the approximate equilibrium found by our algorithm.
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Principal component analysis

Suppose C ∈ Sn is a covariance matrix. Then there exist
P ∈ IRn×n orthogonal such that

C = QDiag(λ(C))QT =
n∑

i=1
λi(C)pip

T
i

Principal components: p1, . . . , pn

Can find first principal component by solving:

max xTCx
s.t. xTx = 1
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Semidefinite programming (SDP) reformulation:
Put X := xxT, get

max C • X
s.t. I • X = 1

X 0 0.
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Sparse first principal component:

max xTCx
s.t. xTx = 1

card(x) ≤ k

SDP relaxation

max C • X − δ1 • |X|
s.t. I • X = 1

X 0 0.
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For simplicity assume δ = 1.

Then the SDP

max C • X − 1 • |X|
s.t. I • X = 1

X 0 0

can be written as

max
X∈Q1

min
Y ∈Q2

{〈C, X〉 − 〈X, Y 〉}

where

Q1 = {X ∈ Sn : X 0 0, 〈I, X〉 = 1} , Q2 =
{
Y ∈ Sn : |Yij| ≤ 1

}
,

and 〈·, ·〉 is the trace inner product: 〈X, S〉 = trace(XS) = X • S.
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Prox-function for Q1:

d1(X) =
n∑

i=1
λi(X) logλi(X) + logn

Prox-function for Q2:

d2(Y ) =
1

2
〈Y, Y 〉

It is easy to see that D1 = logn, D2 = n2/2.

For suitable norms we get ρ1 = ρ2 = 1 and ‖A‖ = 1.

Thus in N iterations get X̄ ∈ Q1 such that C • X̄ − 1 • |X̄| is
within

2
√

2n
√

logn

N + 1

of the optimal SDP value.
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Subproblems at each iteration:

• min


n∑

i=1
λi(X) logλi(X) + logn−G • X : X 0 0, I • X = 1


• min

{
1
2U • U − 〈G, U〉 : |Uij| ≤ 1

}

Solution to second one:

Uij = sign(Gij)min
{
|Gij|,1

}
.
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Solution to the first one (similar to entropy):

• Compute eigenvalue decomposition: G = V Diag(λ(G))V T

• Let hi := eλi(G)
n∑

k=1
eλk(G)

, i = 1, . . . , n

• Let X = V Diag(h)V T
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References for today’s material

• S. Hoda, A. Gilpin, J. Peña, and T. Sandholm, “A
gradient-based algorithm for finding Nash equilibria in
extensive form games,” In preparation.

• A. D’Aspremont, L. El Ghaoui, M. Jordan, and G.
Lankcriet, “A direct formulation for sparse PCA using
semidefinite programming,” To appear in SIAM Review.
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