
Smoothing for non-smooth optimization, lecture 1

Instructor:

Javier Peña, Carnegie Mellon University

Goals:

• First-order (gradient-based) algorithms for huge convex
optimization problems

• Two applications:

– Game theory: max
y∈Q2

min
x∈Q1

〈Ax, y〉
– Sparse principal components analysis:

max
X∈Q1

min
Y ∈Q2

{〈C, X〉 − 〈X, Y 〉}
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About algorithms for convex optimization

• Interior-point methods: based on Newton’s method.
O(log(1/ε)) expensive iterations to find ε-approximate
solution

• Subgradient methods (non-smooth case)
O(1/ε2) cheap iterations to find ε-approximate solution

• Efficient gradient-based methods (smooth case)
O(1/

√
ε) cheap iterations to find ε-approximate solution

• Smoothing techniques (non-smooth case)
O(1/ε) cheap iterations to find ε-approximate solution
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Course outline:

• Introduction & motivation

• Basics of convex analysis

• Gradient and subgradient schemes

• Smoothing techniques

• Applications
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Brief, incomplete, and biased history of convex
optimization

• 19th century: optimization in physics, Gauss’s least-squares
method

• 1900-1970: math developments, convex optimization

• 1940s: simplex method for linear programming

• 1970s: ellipsoid method

• 1980s: interior-point methods

• 1990s: algorithms for semidefinite programming, and
symmetric cone programming, new applications in stats,
machine learning, combinatorial optimization, control,
circuit design, etc.

• 2000s: methods with low computational cost for huge
problems
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Convex optimization

min f(x)
s.t. x ∈ D

where

• f : convex function

• D: convex set
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Examples of convex optimization

• Least squares

min
x
‖Ax− b‖2

• Linear programming

min cTx
s.t. Ax = b

x ≥ 0
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• Semidefinite programming

min C • X
s.t. AX = b

X & 0

Here the variable X is an n× n symmetric matrix and

X & 0 ⇔ uTXu ≥ 0 ∀u ∈ IRn ⇔ λ(X) ≥ 0.

Convention: λ(X) = (λ1(X), . . . , λn(X)) eigenvalues of X

with

λ1(X) ≥ · · · ≥ λn(X).
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Today:

• Convex sets

• Convex functions

• Smooth convex functions

• Non-smooth convex functions

• Fenchel duality

8



Convex sets

Throughout this course

E: finite-dimensional Euclidean space with inner product 〈·, ·〉.

‖ · ‖: norm induced by 〈·, ·〉.

Two special cases:

• IRn, with inner product 〈x, s〉 = xTs

• Sn: space of n× n real symmetric matrices with inner
product 〈X, S〉 = trace(XS) =: X • S.

Recall: trace(M) =
∑

i λi(M) =
∑

i Mii.
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Definition 1

• C ⊆ E is convex if αx + (1− α)y ∈ C whenever x, y ∈ C and
α ∈ [0,1].

• K ⊆ E is a cone if λx ∈ K whenever x ∈ K and λ ≥ 0.
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Example 2

• Polyhedron: {x ∈ IRn : Ax ≤ b} for some given
A ∈ IRm×n, b ∈ IRm.

• Non-negative orthant: IRn
+ := {x ∈ IRn : x ≥ 0}

• Polytope: {My : y ≥ 0,
∑n

j=1 yj = 1} for some given
M ∈ IRn×m.

• Simplex: ∆n := {x ∈ IRn : x ≥ 0,
∑n

i=1 xi = 1}
• Ball:

{
x ∈ E : 〈x, x〉 ≤ r2

}
for some given r > 0.

• Positive semidefinite cone: Sn
+ := {X ∈ Sn : λ(X) ≥ 0}

• Spectraplex:
{
X ∈ Sn

+ :
∑n

i=1 λi(X) = 1
}
.
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Convex functions

Definition 3 Let C ⊆ E be a convex set and f : C → IR. The
function f is convex on C if for all x, y ∈ C and α ∈ [0,1]

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y).
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Alternative definition of convex functions

• Consider extended-valued functions f : E → IR ∪ {+∞}.
• Can always do this by declaring f(x) = +∞ for x 1∈ dom(f)

• f is convex if and only its epigraph

epi(f) := {(x, r) ∈ E × IR : r ≥ f(x)},

is a convex set.

• Define dom(f) := {x ∈ E : f(x) < ∞} (projection of epi(f))
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Example 4 Some convex functions

• f : E → IR defined by x 2→ 〈x, x〉
• f : E → IR defined by x 2→ 〈a, x〉 for some a ∈ E

• f : E → IR ∪ {+∞} defined by x 2→ supi∈I gi(x) where each
gi : E → IR ∪ {+∞} , i ∈ I is convex

• f : IR → IR defined by x 2→ ex

• f : IR+ → IR defined by x 2→ x logx

• f : Sn → IR defined by X 2→ λ1(X) + · · ·+ λk(X), where k ≤ n
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Smooth convex functions

Definition 5 f : E → IR ∪ {+∞} is differentiable at x ∈ dom(f)
if there exists g ∈ E such that

lim
h→0

f(x + h)− f(x)− 〈g, h〉
‖h‖ = 0,

In other words, if

f(x + h) = f(x) + 〈g, x〉+ o(‖h‖).
When such g exists, it is unique. In this case, g is the gradient
of f at x, and is denoted ∇f(x).
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Proposition 6 Assume f is differentiable on an open set Ω ⊆ E

and C ⊆ Ω is convex. Then the following are equivalent

• f is convex on C

• f(y) ≥ f(x) + 〈∇f(x), y − x〉 for all x, y ∈ C

• 〈∇f(y)−∇f(x), y − x〉 ≥ 0 for all x, y ∈ C

Corollary 7 Assume f : E → IR is differentiable everywhere and
convex. Then x̄ = argminx f(x) if and only if ∇f(x̄) = 0.
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Lipschitz continuity of the gradient

Theorem 8 Assume f is differentiable on an open set Ω ⊆ E

and C ⊆ Ω is convex. Then the following are equivalent:

• f is convex and ∇f is Lipschitz with constant L on C

• 0 ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ L
2‖y − x‖2 for all x, y ∈ C

• 1
2L‖∇f(y)−∇f(x)‖2 ≤ f(y)− f(x)− 〈∇f(x), y − x〉 for all
x, y ∈ C

• 1
L‖∇f(y)−∇f(x)‖2 ≤ 〈∇f(y)−∇f(x), y − x〉 for all x, y ∈ C
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Strong convexity

Definition 9 Let C ⊆ E be a convex set and f : C → IR. The
function f is strongly convex on C if there exists ρ > 0 such
that for all x, y ∈ C and α ∈ [0,1]

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y)− 1

2
ρα(1− α)‖x− y‖2.

In this case say that f is strongly convex with modulus ρ.
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Proposition 10 Let C ⊆ E be a convex set and f : C → IR.
Then f is strongly convex with modulus ρ > 0 if and only if
f − 1

2ρ‖ · ‖2 is convex on C.

Theorem 11 Assume f is differentiable on an open set Ω ⊆ E

and C ⊆ Ω is convex. Then the following are equivalent

• f is strongly convex on C with modulus ρ

• f(y) ≥ f(x) + 〈∇f(x), y − x〉+ 1
2ρ‖x− y‖2 for all x, y ∈ C

• 〈∇f(y)−∇f(x), y − x〉 ≥ ρ‖x− y‖2 for all x, y ∈ C
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Example 12 Some strongly convex functions

• f : E → IR defined by x 2→ 〈x, x〉

• f : ∆n → IR defined by x 2→
n∑

i=1
xi logxi

• f : {X ∈ Sn : X & 0, I • X = 1}→ IR defined by

X 2→
n∑

i=1
λi(X) logλi(X)
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Non-smooth convex functions

Non-smoothness is pervasive in optimization.

Example 13

• f(x) = sup {gi(x) : i ∈ I} where gi, i ∈ I are convex.

• f(x) = inf {φ(u) : ci(u) ≤ xi, i = 1, . . . , n} where φ, ci, . . . , cn

are convex.
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Proposition 14 Assume f : E → IR ∪ {+∞} convex and
x ∈ int(dom(D)). Then there exists g ∈ E such that

f(y)− f(x) ≥ 〈g, y − x〉 for all y ∈ E. (1)

Generalization of the gradient:

Definition 15 Assume f : E → IR ∪ {+∞} convex and
x ∈ dom(D). The subdifferential of f at x is

∂f(x) := {g ∈ E : (1) holds}

Corollary 16 Assume f : E → IR ∪ {+∞} is convex. Then
x̄ ∈ argminx f(x) if and only if 0 ∈ ∂f(x̄).
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Notice:

If f is convex and differentiable at x then ∂f(x) = {∇f(x)}.

Proposition 17 Assume f : E → IR ∪ {+∞} convex Then f is
differentiable at x if and only if ∂f(x) is a singleton.
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Fenchel conjugate

Definition 18 Assume f : E → IR ∪ {+∞}, with dom(f) 1= ∅.
The conjugate of f is f∗ : E → IR ∪ {+∞} defined by

s 2→ f∗(s) := sup {〈s, x〉 − f(x) : x ∈ dom(f)} .

Notice:

• f∗(s) + f(x) ≥ 〈s, x〉 for all x, s ∈ E

• f∗(s) + f(x) = 〈s, x〉 if and only if s ∈ ∂f(x)
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Example 19

f(x) f∗(s)
ex s log s− s

|x|p
p

, p > 1
|s|q
q

,
1

q
= 1− 1

p√
1 + x2 −

√
1− s2

− logx −1− log(−s)
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Definition 20 f : E → IR ∪ {+∞} is closed if epi(f) is closed.

Proposition 21 Assume f : E → IR ∪ {+∞}.
• f∗ is closed and convex

• f∗∗ ≤ f

• f∗∗ = f if and only if f is closed and convex.
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Fenchel duality

Assume f : E → IR ∪ {+∞}, g : Y → IR ∪ {+∞} and A ∈ L(E, Y ).

Consider the pair

p := inf
x∈E

{f(x) + g(Ax)} (P)

and

d := sup
y∈Y

{−f∗(A∗y)− g∗(−y)} (D)

Theorem 22

• (Weak duality): p ≥ d

• (Strong duality): If 0 ∈ relint(dom(g)−Adom(f)) then
p = d and d is attained.
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Special case

Consider

min
x∈Q1

max
y∈Q2

{
f̂(x)− φ̂(y) + 〈Ax, y〉

}
. (2)

where

• E1, E2 are finite dimensional Euclidean spaces,
A ∈ L(E1, E2)

• Qi ⊆ Ei are simple compact convex sets

• f̂ and φ̂ are convex and differentiable everywhere

28

Can write (2) as

min
x∈E

{f(x) + φ∗(Ax)}
for

• f(x) = f̂(x), dom(f) := Q1

• φ(y) = φ̂(y), dom(φ) := Q2

Fenchel dual:

max
y∈E2

{−f∗(A∗y)− φ∗∗(−y)}

which can be written as

max
y∈Q2

min
x∈Q1

{
f̂(x)− φ̂(y) + 〈Ax, y〉

}
.
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Fenchel duality yields

min
x∈Q1

max
y∈Q2

{
f̂(x)− φ̂(y) + 〈Ax, y〉

}
= max

y∈Q2
min
x∈Q1

{
f̂(x)− φ̂(y) + 〈Ax, y〉

}
.
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• S. Boyd and L. Vanderberghe, “Convex Optimization,”
Cambridge Academic Press, 2004. Available from
http://www.stanford.edu/~boyd/cvxbook/

• Y. Nesterov, “Introductory Lectures on Convex
Optimization,” Kluwer Academic Publishers, 2004.

• A. Ben-Tal and A. Nemirovski, “Lectures on Modern
Convex Optimization,” MPS-SIAM Series on Optimization,
2001. Related material available from
http://www2.isye.gatech.edu/~nemirovs/
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