Smoothing for non-smooth optimization, lecture 1

Instructor:

Javier Pefa, Carnegie Mellon University

Goals:

e First-order (gradient-based) algorithms for huge convex
optimization problems

e Two applications:

— Game theory: max min (Ax,
pagx i (Awy)

— Sparse principal components analysis:

i C,X)—(X,Y
Jax min {CX) = (X, Y)}

Course outline:

e Introduction & motivation

Basics of convex analysis

Gradient and subgradient schemes

Smoothing techniques

Applications

About algorithms for convex optimization

Interior-point methods: based on Newton’'s method.
O(log(1/e)) expensive iterations to find e-approximate
solution

Subgradient methods (non-smooth case)
0(1/62) cheap iterations to find e-approximate solution

Efficient gradient-based methods (smooth case)
O(1/+/€) cheap iterations to find e-approximate solution

Smoothing techniques (non-smooth case)
O(1/e) cheap iterations to find e-approximate solution

Brief, incomplete, and biased history of convex
optimization

19th century: optimization in physics, Gauss's least-squares
method

1900-1970: math developments, convex optimization
1940s: simplex method for linear programming
1970s: ellipsoid method

1980s: interior-point methods

1990s: algorithms for semidefinite programming, and
symmetric cone programming, new applications in stats,
machine learning, combinatorial optimization, control,
circuit design, etc.

2000s: methods with low computational cost for huge
problems



Convex optimization

min
s.t.
where

e f: convex function

e D: convex set

e Semidefinite programming

min

s.t.

Here the variable X is an n x n symmetric matrix and

X=0&eu'Xu>0VueR"< A(X) > 0.
Convention: M(X) = (\(X),..

with

A(X) 2 - 2 (X)),

f(x)
reD

CeX
AX =D
X >0

., An(X)) eigenvalues of X

Examples of convex optimization

e Least squares

min || Az — b||?
xr

e Linear programming

min

s.t.

Today:
e Convex sets
e Convex functions

Smooth convex functions

Fenchel duality

Non-smooth convex functions

c'w
Ax=1b
x>0



Convex sets

Throughout this course

E: finite-dimensional Euclidean space with inner product (., -).
|| - |l norm induced by (,-).

Two special cases:
e IR™, with inner product (z,s) =z s
e S™: space of n x n real symmetric matrices with inner
product (X, S) = trace(XS) =: X o S.

Recall: trace(M) = >, (M) = >, M.

Example 2

e Polyhedron: {z € R" : Az < b} for some given
A€ R™*" pec R™,

e Non-negative orthant: RY :={z € R":z > 0}

e Polytope: {My:y >0, Z;.l:l y; = 1} for some given
M € R™*™,

o Simplex: Ap:={zecR":2>0, ¥ ;z; =1}

e Ball: {a: €EE:(z,z) < 1"2} for some given r > 0.

e Positive semidefinite cone: 8% = {X € 8" : A(X) > 0}
e Spectraplex: {X €S8 13, (X)) = 1}.
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C

Definition 1

e C C Eis convex if ax + (1 — a)y € C whenever z,y € C and
a € [0,1].
e K C FEis aconeif \x € K whenever x € K and XA > 0.

nob
O N\VOL

Convex functions

Definition 3 Let C C E be a convex set and f:C — R. The
function f is convex on C if for all z,y € C and « € [0, 1]

flaz + (1 - a)y) <af(z) + (1 —a)f(y).
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e Consider extended-valued functions f : E — RU {4oc0}.

Alternative definition of convex functions

e Can always do this by declaring f(z) = +oo for x € dom(f)
e f is convex if and only its epigraph

epi(f) :={(z,r) e ExR:r > f(x)},

is a convex set.

e Define dom(f) :={z € E: f(z) < oo} (projection of epi(f))

13

Smooth convex functions \ ' X4h

Definition 5 f: E — RU {400} is differentiable at x € dom(f)
if there exists g € E such that

im L@t ) = (@) — (g, h)
h—0 1Al

In other words, if

=0,

h
fz+h) = f(2) + (94 + o(|||]).

When such g exists, it is unique. In this case, g is the gradient
of f at z, and is denoted Vf(x).
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Example 4 Some convex functions

. — 2
e f:FE— R defined by z — (z,z) = 1%\
e f: E — R defined by = — (a,z) for some a € E

o f:E — RU{4oo} defined by z +— sup;csg;(z) where each
gi - E— RU{4o00}, i € I is convex

e f: R — R defined by z +— e”
e f: Ry — R defined by z +— xlogzx

e f:S™ — R defined by X — A (X) + -+ M\ (X), where k <n
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Proposition 6 Assume f is differentiable on an open set Q C E
and C C Q2 is convex. Then the following are equivalent

e f is convex on C
o f(y) > f(z) +(Vf(x),y—z) forallz,yeC

e (Vf(y) —Vf(z),y—=x)>0 forall z,yeC

Corollary 7 Assume [ : E — R is differentiable everywhere and
convex. Then x = argmin, f(z) if and only if Vf(z) = 0.
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e Vi eE SE
NfE Lgsolr i Ny foo-f)le L4

| ~— ‘F(ﬂ + <V‘F(Mlg— )<> Lipschitz continuity of the gradient
\
J\"\i——) Theorem 8 Assume f is differentiable on an open set Q C E
x ‘1' and C C Q2 is convex. Then the following are equivalent:

Yo Qureve:
§ ) > Lexy + (V?Lx))j- * >

e f is convex and Vf is Lipschitz with constant L on C
e 0< f(y) — f(@) = (Vf(@),y —a) < §lly — 2|2 for all z,y € C

E- Considear Le (£):= fF(x+¢t (V}-*\) o« LIVIW) = VI@I2 < F) — F@) = (TH(x)y—a) for al
\?\ (0) =LV \a,-x> zyeC
)
@ley=F (x+E(g-0)= § (£ +G-tyx) 2 £y G-t

1
£ F(O +1 (€= £00) = Yo+t (Frgy-f o) 2.
[ew -9/t ¢ £r95-£0)

o HIVI(y) — VI@)? < (Vf(y) — V(z),y—z) for all z,y € C

NSF0-9f )b ¢ £A-Pea) - (3Fip) £-9

Proposition 10 Let C C E be a convex set and f:C — R.
Then f is strongly convex with modulus p > 0 if and only if

Strong convexity f—3pll-11? is convex on C.

Definition 9 Let C C F be a convex set and f: C — R. The
function f is strongly convex on C' if there exists p > 0 such
that for all z,y € C and « € [0, 1]

Theorem 11 Assume f is differentiable on an open set Q2 C FE
and C C Q2 is convex. Then the following are equivalent

1 5 e f is strongly convex on C with modulus p
flaz+ (1 —-a)y) <af(z) + (1 —a)f(y) - Epa(l —a)llz -y~

o > f(z) + (Vf(z),y —x) + p|lz — y||2 for all z,y € C
In this case say that f is strongly convex with modulus p. f@) 2 J@) + (VI@).y ) 2p|| ull Y

o (Vf(y) —Vf(x),y—=) > pllz —yl|? forall z,y€C
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Non-smooth convex functions
Non-smoothness is pervasive in optimization.

Example 13
o f(z) =sup{g;(z):i €I} whereg;, i € I are convex.

o f(z) =inf{p(u) :¢(u) <zj;i=1,...,n} where ¢,c;,...,cn
are convex.
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Example 12 Some strongly convex functions
e f: E — R defined by z — (z,z)

n
o f: A, — R defined by z +— Z z;log x;
i=1

o f:{XeS": X >0,TeX =1} — R defined by
n

X = 3 N(X) log A(X)
i=1

20

Proposition 14 Assume f: E — RU {400} convex and
z € int(dom(D)). Then there exists g € E such that

fy) — f(x) > {g,y —x) forall ycE. (1)

£ -fn3 <V-F(ﬂ,\¢-*>

Generalization of the gradient:

Definition 15 Assume f: E — RU {+o0} convex and
z € dom(D). The subdifferential of f at z is
of(xz) :={g € E: (1) holds}
Corollary 16 Assume f: E — RU {400} is convex. Then
T € argming f(x) if and only if 0 € 0f(Z).
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- Fenchel conjugate —£%cs)

Definition 18 Assume f: E — RU {+oo}, with dom(f) # 0.
Notice: The conjugate of fis f*: E — RU{4+oo} defined by
If f is convex and differentiable at « then 9f(z) = {Vf(z)}. s f*(s) :=sup {{s,z) — f(z) : © € dom(f)}.

Proposition 17 Assume f: E — RU {+oo} convex Then f is

differentiable at x if and only if 8f(x) is a singleton. Notice:

e f*(s)+ f(z) > (s,z) for all z,s € E

e [*(s) 4+ f(z) = (s,z) if and only if s € 9f(z)
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Example 19 Definition 20 f: E — RU {+oo} is closed if epi(f) is closed.
*
féf) slc]:g(sS)— s Proposition 21 Assume f: E — RU {4oc0}.

m p>1 |3j 1 —1_ 1 e f* is closed and convex ar‘(g): 5\.‘? {(S})"F(")‘S
p’ 7 q P . preg =

Jixa? | i :

—logx 1 —log(—s) o f** = f if and only if f is closed and convex.
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Fenchel duality
Assume f: E - RU{+x}, g: Y - RU{4+oc0} and A € L(E,Y).

Consider the pair

pi= 3],21;_, {f(z) + g(Ax)} (P)
and
d:=sup{-f*(A%y) — g"(—y)} (D)
yey v
Theorem 22 Lox) + %(P")" f (A.j)“'ﬂ (-9)

o (Weak duality): p > e

e (Strong duality): If O € relint(dom(g) — Adom(f)) then
p=d and d is attained.
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Can write (2) as
min {f(z) + ¢*(Az)}
for
o f(z) = f(z), dom(f) := Q1
e ¢(y) = &(y), dom(¢) := Q2

Fenchel dual:
max {—f*(A*y) — ¢"*(—y)}
yeks

which can be written as

max min {f(z) - $(y) + (Az, 1)} .

YyEQ2 Q1
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Special case

Consider
min max {f(2) - &) + (Az,v)} . (2)

z€Q1y€Q2
where

e F1, E> are finite dimensional Euclidean spaces,
A€ L(Ey, E2)

e ; C E; are simple compact convex sets

e f and ¢ are convex and differentiable everywhere
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Fenchel duality yields
min max {f(z) = 6(y) + (Az,y)} = max min {(@) = &) + (Az,y)}.

r€Q1 YEQ2 Q2 7€Q1
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References for today’s material

J. Borwein and A. Lewis, “Convex Analysis and Nonlinear
Optimization,” Springer Verlag, 2005.

e S. Boyd and L. Vanderberghe, “Convex Optimization,”
Cambridge Academic Press, 2004. Available from
http://www.stanford.edu/ boyd/cvxbook/

e Y. Nesterov, “Introductory Lectures on Convex
Optimization,” Kluwer Academic Publishers, 2004.

e A. Ben-Tal and A. Nemirovski, ‘“Lectures on Modern
Convex Optimization,” MPS-SIAM Series on Optimization,
2001. Related material available from
http://www2.isye.gatech.edu/ "nemirovs/
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