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Preamble: some motivation
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Convex optimization

Constrained format

min
x∈C

f(x)

where f : Rn → R∪ {∞} and C ⊆ Rn are convex and C has some
“simple” structure.

Composite minimization format

min
x∈Rn
{f(x) + ψ(x)}

where f, ψ : Rn → R ∪ {∞} are convex and ψ has some “simple”
structure.

Composite format subsumes the constrained format by taking
ψ := δC where

δC(x) =

{
0 if x ∈ C
∞ if x 6∈ C.

3 / 37



Iconic algorithms for min
x∈C

f(x)

Let ΠC : Rn → C denote the orthogonal projection onto C.

Projected subgradient method (SG)

pick gk ∈ ∂f(xk) and tk > 0

xk+1 = ΠC(xk − tkgk)

Projected gradient descent (GD)

pick tk > 0

xk+1 = ΠC(xk − tk∇f(xk))

Conditional gradient (CG)

sk = argmin
s∈C

〈∇f(xk), s〉

pick θk ∈ [0, 1]

xk+1 = xk + θk(sk − xk)
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Iconic algorithms for min
x∈Rn
{f(x) + ψ(x)}

Suppose the following proximal mapping is computable for all t > 0

g 7→ Proxt(g) := argmin
y∈Rn

{
ψ(y) +

1

2t
‖y − g‖2

}
Observe: if ψ = δC then Proxt = ΠC for all t > 0.

Proximal gradient (PG)

pick tk > 0

xk+1 = Proxtk(xk − tk∇f(xk))

Fast proximal gradient (FPG)

pick tk > 0 and βk

yk = xk + βk(xk − xk−1)

xk+1 = Proxtk(yk − tk∇f(yk))

(Nesterov (1984), Beck-Teboulle (2009), Nesterov (2013),...)
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Convergence properties

Under suitable assumptions of smoothness and choice of stepsizes:

Algorithm Convergence rate

SG O(1/
√
k)

GD, CG, PG O(1/k)
FPG O(1/k2)

Question

So many algorithms and so many convergence results.
Could all of the above be “unified”?

Answer: YES, via perturbed Fenchel duality.
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Theme

A generic first-order meta-algorithm satisfies a perturbed
Fenchel duality property.

The first-order meta-algorithm includes as special cases:
conditional gradient, proximal gradient, fast and universal
proximal gradient, proximal subgradient.

The perturbed Fenchel duality property yields concise
derivations of the best-known convergence rates for each of
these algorithms.
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Perturbed Fenchel Duality
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The Fenchel conjugate

Suppose f : Rn → R ∪ {∞}. The Fenchel conjugate of f is:

f∗(u) = sup
x∈Rn
{〈u, x〉 − f(x)}.

Fenchel-Young inequality

For all x, u ∈ Rn
f∗(u) + f(x) ≥ 〈u, x〉,

and the equality holds if and only if u ∈ ∂f(x).

Recall

∂f(x) = {u ∈ Rn : f(y) ≥ f(x) + 〈u, y − x〉 for all y ∈ Rn}.
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Fenchel duality

Fenchel duality

The Fenchel dual of minx∈Rn {f(x) + ψ(x)} is

max
u∈Rn

{−f∗(u)− ψ∗(−u)}

Weak duality

For all x, u ∈ Rn

f(x) + ψ(x) + f∗(u) + ψ∗(−u) ≥ 0.

Thus x̄, ū ∈ Rn are ε-optimal if

f(x̄) + ψ(x̄) + f∗(ū) + ψ∗(−ū) ≤ ε.
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Perturbed Fenchel duality

Gist of my story

First-order meta-algorithm generates xk, uk ∈ Rn such that

f(xk) + ψ(xk) + f∗(uk) + (ψ + dk)
∗(−uk) ≤ δk

for some δk ≥ 0 and dk : Rn → R+ both converging to zero.

Observe

For all x ∈ Rn we have

f∗(uk) + (ψ + dk)
∗(−uk) ≥ −f(x)− ψ(x)− dk(x)

and thus perturbed Fenchel duality implies that

f(xk) + ψ(xk)− (f(x) + ψ(x)) ≤ δk + dk(x).
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First-Order Meta-Algorithm
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First-order meta-algorithm

Want to solve min
x
{f(x) + ψ(x)}.

Suppose the following proximal mapping is computable for all t > 0

g 7→ Proxt(g) := argmin
y∈Rn

{
ψ(y) +

1

2t
‖y − g‖2

}
.

Key ideas

Generate two sequences sk, yk

At iteration k pick gk ∈ ∂f(yk) and tk > 0 and update sk via

sk = Proxtk(sk−1 − tkgk)

Flexibility on the selection of yk.

Specific choices of yk: Bregman proximal (sub)gradient, fast
and universal Bregman proximal gradient.
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First-order meta-algorithm

Want to solve min
x
{f(x) + ψ(x)}.

First-order meta-algorithm

pick s−1 ∈ dom(ψ)

for k = 0, 1, . . .
pick yk ∈ dom(∂f), gk ∈ ∂f(yk), and tk > 0
let sk := Proxtk(sk−1 − tkgk)

end for

Some convenient notation

Let F := f + ψ and for g ∈ ∂f(y) let Df (x, y) denote the
following Bregman distance

Df (x, y) := f(x)− f(y)− 〈g, x− y〉.
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Main Theorem

Let x0 := s−1 and

xk =

∑k−1
i=0 tisi∑k−1
i=0 ti

, uk =

∑k−1
i=0 tigi∑k−1
i=0 ti

, dk(s) =
‖s− x0‖2

2
∑k−1

i=0 ti
, θk =

tk∑k
i=0 ti

.

Theorem

The iterates generated by the above meta-algorithm satisfy

f(xk) + ψ(xk) + f∗(uk) + (ψ + dk)
∗(−uk)

≤
∑k−1

i=0

(
tiD(xi, yi, si, θi)/θi − ‖si − si−1‖2/2

)∑k−1
i=0 ti

for

D(x, y, s, θ) := F (x+θ(s−x))− (1−θ)F (x)−θF (s)+θDf (s, y).
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Convergence of Iconic First-Order Algorithms
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Proximal gradient

Want to solve min
x
{f(x) + ψ(x)}. Suppose f is differentiable.

Proximal gradient

pick y0 ∈ dom(ψ)

for k = 0, 1, . . .
pick tk > 0
let yk+1 = Proxtk(yk − tk∇f(yk))

end for

This is precisely the first-order meta-algorithm with yk = sk−1.
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Proximal gradient

Recall F = f + ψ and

D(x, y, s, θ) = F (x+ θ(s− x))− (1− θ)F (x)− θF (s) + θDf (s, y)

≤ θDf (s, y).

Thus Main Theorem yields

f(xk) + ψ(xk) + f∗(uk) + (ψ + dk)
∗(−uk)

≤
∑k−1

i=0

(
tiD(xi, yi, si, θi)/θi − ‖si − si−1‖2/2

)∑k−1
i=0 ti

≤
∑k−1

i=0

(
tiDf (si, si−1)− ‖si − si−1‖2/2

)∑k−1
i=0 ti

.
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Theorem

Suppose the stepsizes satisfy Df (si, si−1) ≤ 1
2ti
‖si − si−1‖2. Then

for all x ∈ Rn

f(xk) + ψ(xk)− (f(x) + ψ(x)) ≤ ‖x− x0‖2

2
∑k−1

i=0 ti

Proof: Main Theorem implies that

f(xk) + ψ(xk) + f∗(uk) + (ψ + dk)
∗(−uk) ≤ 0.

Thus for all x ∈ Rn

f(xk) + ψ(xk)− (f(x) + ψ(x)) ≤ dk(x) =
‖x− x0‖2

2
∑k−1

i=0 ti
.
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Smoothness and O(1/k) convergence of proximal gradient

Suppose X̄ := argminx{f(x) + ψ(x)} 6= ∅.

Smoothness

We say that f is L-smooth on C if for all x, y ∈ C

Df (y, x) ≤ L · ‖y − x‖2

2
.

It is easy to see that f is L-smooth if ∇f is L-Lipschitz.

When f is L-smooth on dom(ψ), we can take ti ≥ 1/L and
recover the iconic O(1/k) convergence rate for proximal gradient:

f(xk) + ψ(xk)−min
x
{f(x) + ψ(x)} ≤ L · dist(X̄, x0)2

2k
.
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Fast and universal proximal gradient

Fast and universal proximal gradient

pick x0 := s−1 ∈ dom(ψ)

for k = 0, 1, . . .
let yk := (1− θk)xk + θksk−1 and pick tk > 0
let sk := Proxtk(sk−1 − tk∇f(yk))
let xk+1 := (1− θk)xk + θksk

end for

First-order meta-algorithm with yk = (1− θk)xk + θksk−1.

Observe: the sequence yk can also be written as

yk = xk +
θk(1− θk−1)

θk−1
(xk − xk−1)
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Convergence of fast proximal gradient

Theorem

Suppose ti is such that ti · D(xi, yi, si, θi)/θi ≤ ‖si − si−1‖2/2.
Then for all x ∈ Rn

f(xk) + ψ(xk)− f(x)− ψ(x) ≤ ‖x− x0‖2

2
∑k−1

i=0 ti
.

Proof: Again Main Theorem implies that

f(xk) + ψ(xk) + f∗(uk) + (ψ + dk)
∗(−uk) ≤ 0.

Thus for all x ∈ Rn

f(xk) + ψ(xk)− (f(x) + ψ(x)) ≤ dk(x) =
‖x− x0‖2

2
∑k−1

i=0 ti
.
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Smoothness and O(1/k2) convergence
Recall that f is L-smooth on C if for all x, y ∈ C

Df (y, x) ≤ L · ‖y − x‖2

2
.

Fast proximal gradient: when f is L-smooth on dom(ψ) we have

D(xi, yi, si, θi) ≤
L · θ2

i ‖si − si−1‖2

2
.

Thus we can take ti such that tiθi ≥ 1/L. This implies that

1∑k−1
i=0 ti

=
θk−1

tk−1
≤ L

(
2

k + 1

)2

.

Recover iconic O(1/k2) convergence for fast proximal gradient:

f(xk) + ψ(xk)−min
x
{f(x) + ψ(x)} ≤ 2L · dist(X̄, x0)2

(k + 1)2
.

Nesterov (1984), Beck-Teboulle (2009), Nesterov (2013), ...
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Convergence of universal proximal gradient

Smoothness-like condition

Suppose ν ∈ [0, 1] and M > 0 are such that for all x, y ∈ C

Df (x, y) ≤ M‖x− y‖1+ν

1 + ν
.

Observe

Smothness-like holds if ∇f is ν-Hölder continuous.
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Convergence of universal proximal gradient

Theorem

Let ε > 0 be fixed. Suppose the smoothness-like condition holds
on dom(ψ) and ti is the largest such that

ti · D(xi, yi, si, θi)/θi ≤ ‖si − si−1‖2/2 + tiε.

Then for all x ∈ Rn

f(xk) + ψ(xk)− (f(x) + ψ(x)) ≤ M
2

1+ν ‖x− x0‖2

ε
1−ν
1+ν k

1+3ν
1+ν

+ ε.

Proof: Main Theorem implies that

f(xk) + ψ(xk)− f(x)− ψ(x) ≤ ‖x− x0‖2

2
∑k−1

i=0 ti
+ ε.

To finish: the smoothness-like condition yields
1∑k−1
i=0 ti

=
θk−1

tk−1
≤ 2M

2
1+ν

ε
1−ν
1+ν k

1+3ν
1+ν

.

Recover O(1/k
1+3ν

2 ) universal convergence by Nesterov (2015).
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First-Order Meta-Algorithm (non-Euclidean)
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First-order meta-algorithm (non-Euclidean)
Want to solve min

x
{f(x) + ψ(x)}.

Key ingredient

Let h : Rn → R ∪ {∞} be a convex and differentiable reference
function. Let Dh denote the Bregman distance

Dh(y, x) = h(y)− h(x)− 〈∇h(x), y − x〉.

Key assumption

The following proximal mapping is computable for all t > 0:

(g, s−) 7→ argmin
s

{
〈g, s〉+ ψ(s) +

1

t
Dh(s, s−)

}
.

Example

h(x) = ‖x‖22/2 Dh(y, x) = ‖y − x‖22/2.
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First-order meta-algorithm (non-Euclidean)

Want to solve min
x
{f(x) + ψ(x)}

First-order meta-algorithm (non-Euclidean)

pick s−1 ∈ dom(ψ)

for k = 0, 1, . . .
pick yk ∈ dom(∂f), gk ∈ ∂f(yk), and tk > 0

pick sk ∈ argmins

{
〈gk, s〉+ ψ(s) + 1

tk
Dh(s, sk−1)

}
end for
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Why consider non-Euclidean algorithms?

The Bregman proximal template provides a lot more flexibility.

The additional freedom to choose h can facilitate the
computation of the proximal mapping. For instance for
x ∈ ∆n−1 := {x ∈ Rn+ : ‖x‖1 = 1} the mapping

g 7→ argmin
y∈∆n−1

{〈g, y〉+Dh(y, x)}

is easily computable for h(x) =
∑n

i=1 xi log(xi).
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Main Theorem again
Let

xk =

∑k−1
i=0 tisi∑k−1
i=0 ti

, uk =

∑k−1
i=0 tigi∑k−1
i=0 ti

, dk(s) =
Dh(s, s−1)∑k−1

i=0 ti
, θk =

tk∑k
i=0 ti

.

Theorem

The iterates generated by the above meta-algorithm satisfy

f(xk) + ψ(xk) + f∗(uk) + (ψ + dk)
∗(−uk)

≤
∑k−1

i=0 (tiD(xi, yi, si, θi)/θi −Dh(si, si−1))∑k−1
i=0 ti

for

D(x, y, s, θ) := F (x+θ(s−x))− (1−θ)F (x)−θF (s)+θDf (s, y).

(Recall that F = f + ψ.)
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Some special cases of first-order meta-algorithm

Bregman proximal gradient

Obtained by taking yk = sk−1. Get O(1/k) convergence if the
following relative L-smoothness assumption holds:

Df (x, y) ≤ L ·Dh(x, y).

This O(1/k) convergence result was established by Bauschke et al.

(2016) and by Lu et al. (2018).

Fast and universal Bregman proximal gradient

Obtained by taking yk = (1− θk)xk + θksk−1. Get O(1/k
1+3ν

2 )
convergence if the following smoothness-like property holds:

Df ((1− θ)x+ θs, (1− θ)x+ θs−) ≤ M · θ1+ν ·Dh(s, s−)
1+ν
2

1 + ν
.

Related triangle-scaling property by Hanzely et al (2018).
Two more special cases: conditional gradient and proximal subgradient.
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Conditional gradient

Want to solve min
x
{f(x) + ψ(x)}.

Conditional gradient

pick x0 ∈ dom(f)

for k = 0, 1, . . .
let gk := ∇f(xk)
pick sk ∈ argmins {〈gk, s〉+ ψ(s)} and θk ∈ [0, 1]
let xk+1 := (1− θk)xk + θksk

end for

This is the first-order meta-algorithm for

s−1 = x0, yk = xk, h ≡ 0, and tk such that θk =
tk∑k
i=1 ti

.

(Mild assumption: θ0 = 1, and θk ∈ (0, 1) for k ≥ 1.)
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Conditional gradient
For the conditional gradient algorithm the Main Theorem yields

f(xk) + ψ(xk) + f∗(uk) + ψ∗(−uk) ≤
∑k−1

i=0 tiD(xi, si, θi)/θi∑k−1
i=0 ti

for

D(x, s, θ) = Df (x+ θ(s− x), x)

+ ψ(x+ θ(s− x))− (1− θ)ψ(x)− θψ(s).

Curvature condition (cf. Jaggi’s curvature)

For ν > 0 there exists M > 0 such that for all x, s ∈ dom(ψ) and
θ ∈ [0, 1]

D(x, s, θ) ≤ Mθ1+ν

1 + ν
.

This holds in particular when dom(ψ) bounded and ∇f is ν-Hölder
continuous.
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Theorem

If the above curvature condition holds and θk = 1+ν
k+1+ν then

f(xk) + ψ(xk) + f∗(uk) + ψ∗(−uk) ≤M
(

1 + ν

k + 1 + ν

)ν
.

Proof: Main Theorem implies that

f(xk) + ψ(xk) + f∗(uk) + ψ∗(−uk) ≤ CGgapk

where CGgap0 = D(x0, s0, 1) and

CGgapk+1 = (1− θk)CGgapk +D(xk, sk, θk), k = 1, 2, . . . .

Curvature condition and induction show that

CGgapk ≤M
(

1 + ν

k + 1 + ν

)ν
.

The above generalizes the O(1/k) convergence of conditional gradient.
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Sublinear to linear spectrum of convergence rates
Define the duality gap function

gap(x, u) := f(x) + ψ(x) + f∗(u) + ψ∗(−u).

Curvature-like condition

For ν > 0 and r ∈ [0, 1] there exists M ≥ 1 such that for
x ∈ dom(ψ), g := ∇f(x), s = argminy{〈g, y〉+ ψ(y)} and
θ ∈ [0, 1]

D(x, s, θ) ≤ Mθ1+ν

1 + ν
· gap(x, g)r.

Previous curvature condition corresponds to special case r = 0.
Special case ν = 1, r = 1 holds when ∇f is Lipschitz continuous
and ψ is strongly continuous.

Line-search procedure

Choose θk ∈ [0, 1] in the conditional gradient algorithm via

θk := argmin
θ∈[0,1]

{(1− θ)gap(xk, gk) +D(xk, sk, θ)}.
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Sublinear to linear spectrum of convergence rates
Consider the “best duality gap”: gapk := min

i=0,1,...,k
gap(xk, gk).

Theorem

Suppose the curvature-like condition holds for some ν > 0, r ∈ [0, 1] and
the conditional gradient algorithm chooses θk ∈ [0, 1] via above
line-search procedure.
If r = 1 then gapk → 0 linearly:

gapk ≤
(

1− ν

(ν + 1)M
1
ν

)k

gap0.

If r ∈ [0, 1) then for k ≤ k0 := argmin{i : gapi ≤ 1}

gapk ≤
(

1− ν

ν + 1

)k

gap0,

and for k > k0

gapk ≤
(

gap
r−1
ν

k0
+

1− r
(ν + 1)M

1
ν

(k − k0)

) ν
r−1

.
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Conclusions

Consider the problem min
x∈Rn

{f(x) + ψ(x)} where f, ψ convex.

Perturbed Fenchel duality: first-order meta-algorithm
generates iterates that satisfy

f(xk) + ψ(xk) + f∗(uk) + (ψ + dk)
∗(−uk) ≤ δk

Convergence of most popular first-order methods readily
follows.
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