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Convex optimization

Problem of the form
min

x
f(x)
x ∈ Q,

where

Q ⊆ Rn convex set:

x, y ∈ Q, λ ∈ [0, 1] ⇒ λx + (1− λ)y ∈ Q,

f : Q → R convex function:

epigraph(f) = {(x, t) ∈ Rn+1 : x ∈ Q, t ≥ f(x)} convex set.
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Special cases

Linear programming

min
y

〈c, y〉
〈ai, y〉 − bi ≥ 0, i = 1, . . . , n.

Semidefinite programming

min
y

〈c, y〉
∑m

j=1 Ajyj −B ) 0.

Second-order cone programming

min
y

〈c, y〉
〈ai, y〉 − bi ≥ ‖Aiy − di‖2, i = 1, . . . , r.
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Agenda

Applications

Algorithms

Open problems
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Applications
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Classification

Classification data

D = {(x1, "1), . . . , (xn, "n)}, with xi ∈ Rd, "i ∈ {−1, 1}.

Linear classification

Find (β0, β) ∈ Rd+1 such that for i = 1, . . . , n

sgn(β0 + 〈β, xi〉) = "i ⇔ "i(β0 + 〈xi, β〉) > 0.

Support vector machines

Find linear classifier with largest margin

min
β0,β

‖β‖2
"i(〈xi, β〉+ β0) ≥ 1, i = 1, . . . , n

6 / 41



Regression

Regression data

D = {(x1, y1), . . . , (xn, yn)}, with xi ∈ Rd, yi ∈ R.

Linear regression

Find β ∈ Rd that minimizes training error:

min
β

n∑

i=1

(β0 + 〈β, xi〉 − yi)2 ⇔ min
β
‖Xβ − y‖22

X :=




1 xT

1
...

...
1 xT

n



 , y =




y1
...

yn
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Sparse regression

High dimensional regression

D = {(x1, y1), . . . , (xn, yn)}, xi ∈ Rd, yi ∈ R, large d, e.g., d > n.
Want β ∈ Rd sparse:

min
β

(
‖Xβ − y‖22 + λ · ‖β‖0

)

‖β‖0 := |{i : βi ,= 0}|.

Lasso regression (Tibshirani, 1996)

The above problem is computationally intractable. Use instead

min
β

(
‖Xβ − y‖22 + λ · ‖β‖1

)
.

Extensions
Group lasso, fused lasso, and others.
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Compressive sensing

Raw 3MB jpeg versus a compressed 0.3MB version.

Question
If an image is compressible, can it be acquired efficiently?
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Compressive sensing

Compressibility corresponds to sparsity in a suitable representation.

Restatement of the above question:

Question
Can we recover a sparse vector x̄ ∈ Rn from m - n linear
measurements

bk = 〈ak, x̄〉, k = 1, . . . ,m ⇔ b = Ax̄.

Example (group testing)

Suppose only one component of x̄ is different from zero.
Then log2 n measurements or fewer suffice to find x̄.
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Compressive sensing via linear programming

Possible approach to recover sparse x̄

Take m - n measurements b = Ax̄ and solve

min
x

‖x‖0
Ax = b.

The above is computationally intractable. Use instead

min
x

‖x‖1
Ax = b.

Theorem (Candès & Tao, 2005)

If m ! s · log n and A is suitably chosen. Then the
"1-minimization problem recovers x̄ with high probability.
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Matrix completion

Problem

Assume M ∈ Rn×n has low rank and we observe some entries of
M . Can we recover M?

Possible approach to recover low rank M

Assume we observe entries in Ω ⊆ {1, . . . , n}×{ 1, . . . , n}. Solve

min
X

rank(X)

Xij = Mij , (i, j) ∈ Ω.

Rank-minimization is computationally intractable.
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Matrix completion via semidefinite programming

Fazel, 2001: Use instead

min
X

‖X‖∗
Xij = Mij , (i, j) ∈ Ω.

Here ‖ ·‖ ∗ is the nuclear norm:

‖X‖∗ :=
n∑

i=1

σi(X).

Theorem (Candès & Recht, 2010)

Assume rank(M) = r and Ω random, |Ω| ≥ Cµr(1 + β) log2 n.
Then the nuclear norm minimization problem recovers M with
with high probability.
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Algorithms
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Late 20th century: interior-point methods

To solve
min

x
〈c, x〉
x ∈ Q.

Trace path {x(µ) : µ > 0}, where x(µ) minimizes

Fµ(x) := 〈c, x〉+ µ · f(x).

Here f : Q → R a suitable barrier function for Q.

Some barrier functions

Q f
{y : 〈ai, y〉 − bi ≥ 0, i = 1, . . . , n} −

∑n
i=1 log(〈ai, y〉 − bi)

{y :
∑m

i=1 Ajyj −B ) 0} − log det
(∑m

j=1 Ajyj −B
)
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Interior-point methods

Recall Fµ(x) = 〈c, x〉+ µ · f(x) and f : Q → R barrier function.

Template of interior-point method

pick µ0 > 0 and x0 ≈ x(µ0)
for t = 0, 1, 2, . . .

pick µt+1 < µt

xt+1 := xt − [F ′′
µt+1

(xt)]−1F ′
µt+1

(xt)
end for

The above can be done so that xt → x∗, where x∗ solves

min
x

〈c, x〉
x ∈ Q.
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Interior-point methods

Features
Superb theoretical properties.

Numerical performance far better than what theory states.

Excellent accuracy.

Commercial and open-source implementations.

Limitations
Barrier function for entire constraint set.

Solve a system of equations (Newton’s step) at each iteration.

Numerically challenged for very large or dense problems.

Often inadequate for above applications.
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Early 21th century: algorithms with simpler iterations

Tradeoff the above features vs limitations.

In many applications modest accuracy is fine.

Interior-point methods

Need barrier function for entire constraint set, second-order
information (gradient & Hessian), and solve systems of equations.

Simpler algorithms

Use less information about the problem. Avoid costly operations.
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Convex feasibility problem

Assume Q ⊆ Rm is a convex set and consider the problem

Find y ∈ Q.

Any convex optimization problem can be recast this way.

Difficulty depends on how Q is described.

Assume a separation oracle for Q ⊆ Rm is available.

Separation oracle for Q

Given y ∈ Rm, verify y ∈ Q or generate 0 ,= a ∈ Rm such that

〈a, y〉 < 〈a, v〉, ∀v ∈ Q.
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Examples

Linear inequalities: ai ∈ Rm, bi ∈ R, i = 1, . . . , n

Q = {y ∈ Rm : 〈ai, y〉 − bi ≥ 0, i = 1, . . . , n}.

Oracle: Given y, check each 〈ai, y〉 − bi ≥ 0.

Linear matrix inequalities: B, Aj ∈ Rn×n, j = 1, . . . ,m
symmetric,

Q =




y ∈ Rm :
m∑

j=1

Ajyj −B ) 0




 .

Oracle: Given y, check
∑m

j=1 Ajyj −B ) 0. If this fails, get
u ,= 0 such that

m∑

j=1

〈u, Aju〉yj < 〈u, Bu〉 ≤
m∑

j=1

〈u, Aju〉vj , ∀v ∈ Q.
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Relaxation method (Agmon, Motzkin-Schoenberg)
Assume ‖ai‖2 = 1, i = 1, . . . , n and consider

Q = {y ∈ Rm : 〈ai, y〉 ≥ bi, i = 1, . . . , n}.

Relaxation method
y0 := 0; t := 0
while there exists i such that 〈ai, yt〉 < bi

yt+1 := yt − λ(bi − 〈ai, yt〉)ai

t := t + 1
end

Theorem (Agmon, 1954)

If Q ,= ∅ and λ ∈ (0, 2) then yt → ȳ ∈ Q.

Theorem (Motzkin-Schoenberg, 1954)

If int(Q) ,= ∅ and λ = 2 then yt ∈ Q for t large enough.
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Perceptron algorithm (Rosenblatt, 1958)

Consider
C = {y ∈ Rm : ATy > 0},

where A =
[
a1 . . . an

]
∈ Rm×n, ‖ai‖2 = 1, i = 1, . . . , n.

Perceptron algorithm
y0 := 0; t := 0
while there exists i such that 〈ai, yt〉 ≤ 0

yt+1 := yt + ai

t := t + 1
end
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Cone width

Assume C ⊆ Rm is a convex cone. The width of C is

τC := sup
‖y‖2=1

{r : B2(y, r) ⊆ C}.

Observe: τC > 0 if and only if int(C) ,= ∅.

Theorem (Block, Novikoff 1962)

Assume C = {y ∈ Rm : ATy > 0} ,= ∅. Then the perceptron
algorithm finds y ∈ C is at most 1

τ2
C

iterations.

23 / 41



General perceptron algorithm

The perceptron algorithm and the above convergence rate hold for
a general convex cone C provided a separation oracle is available.

Notation

Sm−1 := {v ∈ Rm : ‖v‖2 = 1}.

Perceptron algorithm (general case)

y0 := 0; t := 0
while y ,∈ C

let a ∈ Sm−1 be such that 〈a, y〉 ≤ 0 < 〈a, v〉,∀v ∈ C
yt+1 := yt + a
t := t + 1

end
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Rescaled perceptron algorithm (Soheili-P 2013)

Key idea

If C ⊆ Rm is a convex cone and a ∈ Sm−1 is such that

C ⊆
{

y ∈ Rm : 0 ≤ 〈a, y〉 ≤ 1√
6m
‖y‖2

}
,

then dilate space along a to get wider Ĉ := (I + aaT)C.

Lemma

If C, a, Ĉ are as above then vol(Ĉ ∩ Sm−1) ≥ 1.5 vol(C ∩ Sm−1).

Lemma

If C is a convex cone then vol(C ∩ Sm−1) ≥ τC√
1+τ2

C

vol(Sm−1).
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Rescaled perceptron algorithm (Soheili-P 2013)
Assume a separation oracle for C is available.

Rescaled perceptron

(1) Run perceptron for C up to 6m4 steps

(2) Identify a ∈ Sm−1 such that

C ⊆
{

y ∈ Rm : 0 ≤ 〈a, y〉 ≤ 1√
6m
‖y‖2

}
.

(3) Rescale: C := (I + aaT)C ; and go back to (1).

Theorem (Soheili-P 2013)

Assume int(C) ,= ∅. The above rescaled perceptron algorithm finds

y ∈ C is at most O
(
m5 log

(
1

τC

))
perceptron steps.

————————————————
Recall: Perceptron stops after 1

τ2
C

steps.
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Perceptron algorithm again
Consider again ATy > 0 where ‖ai‖2 = 1, i = 1, . . . , n.

Perceptron algorithm (slight variant)

y0 := 0;
for t = 0, 1, . . .

ai := argmin{〈aj , yt〉 : j = 1, . . . , n}
yt+1 := yt + ai

end

Let x(y) := argminx∈∆n
〈ATy, x〉, where

∆n := {x ∈ Rn : x ≥ 0, ‖x‖1 = 1}.

Normalized perceptron algorithm
y0 := 0;
for t = 0, 1, . . .

yt+1 := (1− 1
t+1)yt + 1

t+1Ax(yt)
end
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Smooth perceptron (Soheili-P 2011)

Key idea

Use a smooth version of

x(y) = argmin
x∈∆n

〈ATy, x〉,

namely,

xµ(y) :=
exp(−ATy/µ)

‖ exp(−ATy/µ)‖1
for some µ > 0.
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Smooth Perceptron Algorithm

Let θt := 2
t+2 ; µt := 4

(t+1)(t+2) , t = 0, 1, . . .

Smooth Perceptron Algorithm

y0 := 1
nA1; x0 := xµ0(y0);

for t = 0, 1, . . .
yt+1 := (1− θt)(yt + θtAxt) + θ2

t Axµt(yt)
xt+1 := (1− θt)xt + θtxµt+1(yt+1)

end for

————————————————
Recall main loop in the normalized version:

for t = 0, 1, . . .
yt+1 := (1− 1

t+1 )yt + 1
t+1Ax(yt)

end for
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Theorem (Soheili & P, 2011)

Assume C = {y ∈ Rm : ATy > 0} ,= ∅. Then the above smooth
perceptron algorithm finds y ∈ C in at most

2
√

2 log(n)
τC

elementary iterations.

Remarks
Smooth version retains the algorithm’s original simplicity.

Improvement on perceptron iteration bound 1
τ2
C

.

Very weak dependence on n.

30 / 41



Binary classification again

Classification data

D = {(u1, "1), . . . , (un, "n)}, with ui ∈ Rd, "i ∈ {−1, 1}.

Linear classification

Find β ∈ Rd such that for i = 1, . . . , n

sgn(βTui) = "i ⇔ "iu
T
i β > 0.

Taking A =
[
"1u1 · · · "nun

]
and y = β can rephrase as

ATy > 0.
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Kernels and Reproducing Kernel Hilbert Spaces

Assume K : Rd × Rd → R symmetric positive definite kernel:

∀x1, . . . , xm ∈ Rd, [K(xi, xj)]ij ) 0.

Reproducing Kernel Hilbert Space

FK :=

{
f(·) =

∞∑

i=1

βiK(·, zi), βi ∈ R, zi ∈ Rd, ‖f‖K < ∞
}

.

Feature mapping

φ : Rd → FK

u 6→ K(·, u)

For f ∈ FK and u ∈ Rd we have f(u) = 〈f, φ(u)〉K
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Kernelized classification

Nonlinear kernelized classification
Find f ∈ FK such that for i = 1, . . . , n

sgn(f(ui)) = "i ⇔ "if(ui) > 0

Separation margin

Assume D = {(u1, "1), . . . , (un, "n)} and K are given. Define the
margin ρK as

ρK := sup
‖f‖K=1

min
i=1,...,n

"if(ui).
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Kernelized smooth perceptron

Theorem (Ramdas & P 2014)

Assume ρK > 0.

(a) Kernelized version of the smooth perceptron finds a nonlinear

separator after at most
2
√

2 log n‖D‖
ρK

iterations.

(b) Kernelized smooth perceptron generates ft ∈ FK such that

‖ft − f∗‖K ≤ 2
√

2 log n‖D‖
t

,

where f∗ ∈ F separator with best margin.
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Open problems
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Smale’s 9th problem

Is there a polynomial-time algorithm over the real numbers which
decides the feasibility of the linear system of inequalities Ax ≥ b?

Related work
Tardos, 1986: A polynomial algorithm for combinatorial linear
programs.

Renegar, Freund, Cucker, P (2000s): Algorithms that are
polynomial in problem dimension and condition number
C(A, b).

Ye, 2005: A polynomial interior-point algorithm for the
Markov Decision Problem with fixed discount rate.

Ye, 2011: The simplex method is polynomial for the Markov
Decision Problem with fixed discount rate.
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Hirsch conjecture

A polyhedron is a set of form

{y ∈ Rm : 〈ai, y〉 − bi ≥ 0, i = 1, . . . , n}.

A face of a polyhedron is a non-empty intersection with a
non-cutting hyperplane.

Vertices: zero-dimensional faces.
Edges: one-dimensional faces.
Facets: highest-dimensional faces.

Observation
The vertices and edges of a polyhedron form a graph.
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Hirsch conjecture

Conjecture (Hirsch, 1957)

For every polyhedron P with n facets and dimension d

diam(P ) ≤ n− d.

Related work
Klee and Walkup, 1967: Unbounded counterexample.

True for special classes of bounded polyhedra.

Santos, 2012: First bounded counterexample.

Todd, 2014: diam(P ) ≤ dlog2(n−d).

Question

Small bound (e.g., linear in n, d) on diam(P )?
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Lax conjecture

Definition

A homogeneous polynomial p ∈ R[x] is hyperbolic if there exists
e ∈ Rn such that for every x ∈ Rn the roots of

t 6→ p(x + te)

are real.

Theorem (Garding, 1959)

Assume p is hyperbolic. Then each connected component of
{x ∈ Rn : p(x) > 0} is an open convex cone.

Hyperbolicity cone: Connected component of {x ∈ Rn : p(x) > 0}
for some hyperbolic polynomial p.
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Lax conjecture

Question
Can every hyperbolicity cone be described in terms of linear matrix
inequalities? 



y ∈ Rm :
m∑

j=1

Ajyj ) 0




 .

Related work

Helton and Vinnikov, 2007: Every hyperbolicity cone in R3 is
of the form

{y ∈ R3 : Ix1 + A2x2 + A3x3 ) 0},

for some symmetric matrices A2, A3 (Lax conjecture, 1958).

Branden, 2011: Disproved some versions of this conjecture for
more general hyperbolicity cones in Rn.
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