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Course description

It is known that many signals, such as images and audio signals, are compressible. For a signal encoded
as a vector in a high dimensional space, compressibility corresponds to having a sparse representation in
a suitable orthonormal basis, such as a wavelet or Fourier basis.

Compressive sensing is a modern sampling and data acquisition approach that exploits compressibility
when gathering a signal of interest. Advances in this field have shown that an unknown but compressible
signal can be collected in a highly efficient manner. Roughly speaking, the number of measurements needed
is just a bit higher than the number of entries needed in a sparse representation of the signal. This is
achievable via non-adaptive sampling, that is, without any prior knowledge about the specific signal being
collected. Compressive sensing is substantially changing the way we gather, process, and analyze large
datasets. It has already had important applications in magnetic resonance imaging and seismology among
others. Compressive sensing is currently a very active area of research spanning mathematics, statistics,
engineering, and computer science.

This three-lecture course will give an introduction to compressed sensing. The first lecture will present
an overview of the main concepts, terminology, and results from this field. In particular, we will discuss on
the role of `1-minimization, incoherent projections, and the restricted isometry property for sparse signal
recovery. The second lecture will go into some of the techniques from probability and optimization under-
lying the central results and algorithms in compressive sensing. The third lecture will present extensions
of compressive sensing to low-rank matrix recovery. In this context the signals of interest are coded as
matrices and the role of sparsity is replaced by low rank. The analogous problem to compressive sampling
for sparse vectors is that of reconstructing a low rank matrix from a small subset of its entries.

Instructor

Javier Peña, Carnegie Mellon University.
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