Compressive Sensing, Lecture 2

Yesterday

e Undetermined systems of equations and ¢; minimization
e Compressive sensing

e Probabilistic approach: isotropy & incoherence
e Deterministic approach: restricted isometry property

Today

e |deas of the main proofs

e Main computational tool: convex optimization

RIP and exact recovery

Recall
Given a sensing matrix A, Jy is smallest § such that

(1= 0)[l=l3 < [[Az]3 < (1 +9)||=[3
for all k-sparse vector x.

Observe
0o is the smallest ¢ such that

(1= 0)llzr — @2/l < [A(z1 = 22)lI3 < (1+6) o1 — 223

for all s-sparse vectors 1, Ts.

Therefore if d25 < 1 in principle we can recover T from b = AT,
e.g., via £y minimization.

Recap

Compressive sampling approach

e measure b = AT

e obtain Z via ¢; minimization: & := argmin,{||z||1 : Az = b}.

Probabilistic approach

e fix z € R™ arbitrary

e randomize A

e with high probability & recovers & or

Deterministic approach: RIP

e find m x n matrix A satisfying RIP

e I recovers T or T, for all z € R™

RIP and signal recovery (special case)

Theorem

Assume T € R™ and A satisfies RIP with 695 < /2 — 1. Then the

{1 solution I satisfies

& -zl <C-

for some constant C'.

Proof
Let h:=2 —Z. Put Tj :

1z = 251

NG

indexes of s largest entries of |h/,

T := indexes of s largest entries of |hy¢|, etc.

)



By construction of the Ts:

e ll1
E Az ]l2 < \/Og :
i>2

By optimality of Z:
Ihrglly < llhrplle +2- Vs - A
By RIP:

(1= G29)lhmyumll2 < V2625 - > ||y |-

j>2
Hence ||hr,ur, |2 < 7=, for p:= =52 Therefore

||hH2SM'A
I—p

OJ

Related property of random projections

Theorem (Johnson-Lindenstrauss Lemma)
S Tn €ERL K> ﬁ% for some € € (0,1) and
6 > 1, then a random projection 11 : R — RF satisfies

Assume x4, ..

k k .
(1= €)= llwi = 513 < [Ty — T 13 < (14 €)= [li — 513, Vi # 5

with probability at least 1 — %
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Gaussian matrices and RIP

Theorem
Let M be an m x n Gaussian matrix and A := ﬁM If

m > Foslen/k) for 5 ¢ (0,1/3) and 1 < k < n, then with

—5%m

probability at least 1 — 2e
1-36< Umin(AT) < O'max(AT) <1+ 36 for all ‘T‘ = k.

In particular, A satisfies RIP with high probability.

Key lemmas (for both Johnson-Lindenstrauss and Gaussian RIP):

Lemma (Borell, Tsirelson-lIbragimov-Sudakov)
Let X ~ N(0,1;) and f : R? — R be L-Lipschitz. Then fort >0

P(f(X) —E[f(X)] > ) < e /2",

Lemma (Sudakov-Fernique)

Let (Xy)ier and (Yy)ier be Gaussian processes. If EX; = EY; and
E(Xs — X¢)? <E(Y, — Y;)? for all s,t € I then

Esup Xy < EsupV;.
tel tel

6
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Proof of Gaussian RIP Theorem
Assume |T'| =k and t > 0.

By Sudakov-Fernique:
E(UmaX(MT)) < \/m"" \/E
IE(O-min(-Z\4T)) > \/TT'L - \/%

By Borell, Tsirelson-lbragimov-Sudakov:

P(Umax(MT) > \/TTL + \/% + t) < 67t2/2

P(0min(Mr) < Vm —Vk —t) < e /2.

Hence

P <|r:p|zl>’<C Omax (A7) > 1+ \/\%/%t> < <Z> e"/2 < (en/k)re )
= exp (klog(en/k) — t%/2).

To finish, take ¢t = 2y/m - 6. (Similar for opin.) O
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Optimality conditions for /1 minimization

min ||z

Ax =0

Optimality conditions

A feasible z € R" is optimal iff there exists v = A*\ such that
o v; =sgn(x;) fori € T :={i: x; # 0}.
o |v)|<1forieT:={i:z; =0}

Sufficient condition for uniqueness

If, in addition, |v;| < 1 for all i € T° and Ar is full column rank
then x is the unique solution.
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Signal recovery for probabilistic ( “RIPless”) approach

Probabilistic approach

e Suppose T € R" is s-sparse.
e Pick A € R™*™ and measure b = AZ.

Question
How likely it is that the solution Z to the #; minimization problem

min [l

Az =b

recovers 7

Strategy to prove exact recovery via £; minimization

Suppose Z has support 7', i.e., T := {i : z; # 0}.
Take

vi= A*Ap(ARAr) tsgn(zr).
By construction v = A*X and v; = sgn(x;) fori € T'.

We would be done if we can show that |v;| < 1 for i € T.

An easy probabilistic result:

Theorem
For A Gaussian, achieve exact recovery with probability at least
1 —3/+/n provided m > 4slogn.
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Proof of Theorem
Put w:= Ap(A%Ar) tsgn(zr).
Observe: w, A; are independent for i € T°.
Thus v;|w ~ N(0, [|w]|3). Hence
P(jv;| > 1|w) < 2~ 1/2wl5,

On the other hand, as in the RIP Theorem,

P(omin(Ar) < Vm — /5 —t) < e /2,

Therefore with probability at least 1 — e~ /2

Vs = DB.

Jw|| < —=—7=—

Vm—y/s—t’

Consequently
P <mf%x|vl-| > 1> < 2ne V2B 4 ommi?/2,
el’c

To finish, take t := /logn.

Signals with power law
e

10 - —
10° 10 10 107

image sorted wavelet coefficients

Power law decay: [z[(1) > [z]@2) = -+ = [2](n)

C
|[z](r) < w

Model
Ly ball B, :={x: ||z, <1}
Discuss case p = 1 but same discussion applies to 0 < p < 1.
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Optimality of Compressive Sensing

Back to Gaussian sensing
m Gaussian measurements and ¢; decoding:

i —ally s 1222l g

s leg(n/m)

Question
Can we do better with other measurements or other algorithms?

Recovery of ¢; ball B

Gaussian sensing

e Suppose unknown vector is in B
e Take m Gaussian measurements
log(n/m) +1

I - oz 5 /22

Ideal sensing
Best we can hope from m linear measurements:

Ey(B) = inf sup |z — D(F ().
F zeB
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Gelfand widths

Theorem (Donoho)

dm(B) < Eq(B) < C - dm(B),
where d,,,(B) is the m-width of B:

dpm(B) := inf {sup |Pyz|2 : codim(V) < m}
V. zeB

Theorem (Kashin, Garnaev-Gluskin)
For ¢1 ball

. /log(n/7;n)+1 < dy(B) < Cy - llog(n/én)—l-l.

Compressive sensing achieves the limits of performance.
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Convex optimization

Problem of the form
min f(z)

e S.

where f and S are convex.

Sufficient optimality conditions
A point T € S is a solution to the above problem if

—0f(z) N Ns(z) # 0.
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Convex functions and sets

Subdifferential
Assume f : R™ — R convex and x € R™. A vector g € R" is a
subgradient of f at x if

fy) =z f(x) +(g,y — ), forally e R"
Subdifferential 0f(z) := {g : g subgradient of f at z}.
Normal cone

Assume S C R" is convex and z € S.
Normal cone to S at x:

Ng(z) :={d: (d,y —z) <0 forall ye S}
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Special convex optimization problems

Linear programming
Objective function is linear: f(z) = (¢, x)
Constraint set is polyhedral: S = {xz: Az = b, Bx > d}.

Optimality conditions for linear programming

c=A"y+ B*z, 2> 0, (z,Bx —d) =0.
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Special convex optimization problems

Consider the vector space S™ : n X n symmetric matrices with
inner product
(X,Z) = trace(X Z).

Cone of positive semidefinite matrices
ST i={X €S": \MX) >0} ={X:u"Xu>0VuecR"}.

Write X = Z for X — Z € S%}.

Semidefinite programming

Objective function: f(X) = (C, X)

Constraint set: S ={X € S": A(X) =b, B(X) = D} for some
linear maps A, B.

Sufficient optimality conditions for semidefinite programming

C = A*(y) + B*(Z), Z = 0, {Z,B(X) — D) = 0.

21/26

CVX examples
To solve

min [|z]}x i=1
Az = b vt
—x <t
Ax =10

Use CVX code

cvx_begin
variable x(n);
variable t(n);
minimize (sum(t));

subject to
X <= 1t;
-X <= t;
A*x == b;
cvx_end
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What is so special about linear and semidefinite programming?
e They have powerful duality properties
e They can be solved efficiently (via interior-point methods)
e Popular matlab-based solvers: SeDuMi, SDPT3

e Matlab toolbox CVX serves as a wrapper for these solvers

CVX does some standard transformations.

To solve
min ||z|;

Ax =0
Use CVX code

cvx_begin
variable x(n);
minimize (norm(x,1));

subject to
Axx == b;
cvx_end
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Main references for today's material
More CVX examples

To solve e Slides for this minicourse:
min (I, X) http://andrew.cmu.edu/user/jfp/UNencuentro
(4, X)=b o N
X =0 e E. Candes, “The restricted isometry property and its implications for

compressed sensing,” C. R. Acad. Sci. Paris, Ser. | 346, pp.

589-592, 2008.
use CVX code

e R. Baraniuk, M. Davenport, R. DeVore, M. Wakin, “A Simple Proof

cvx_begin of the Restricted Isometry Property for Random Matrices,”
variable X(n,n) symmetric; Constructive Approximation, 2008.
minimize( trace( I * X ) );
subject to e D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol 52,
trace( A * X ) == b; no. 4, pp. 1289-1306, April 2006.
X == semidefinite ; C
cvx_ond mL inite(n) e M. Grant and S. Boyd, CVX: Matlab Software for Disciplined Convex

Programming, http://cvxr.com/cvx/



