Compressive Sensing, Lecture 2

Yesterday

e Undetermined systems of equations and ¢; minimization
e Compressive sensing

e Probabilistic approach: isotropy & incoherence
e Deterministic approach: restricted isometry property

Today

e |deas of the main proofs

e Main computational tool: convex optimization
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Recap

Compressive sampling approach

e measure b = AT

e obtain Z via ¢; minimization: Z := argmin,{||z|; :

Probabilistic approach

e fix T € R™ arbitrary
e randomize A

e with high probability & recovers Z or Z,

Deterministic approach: RIP

e find m X n matrix A satisfying RIP

e I recovers T or T, for all € R"
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RIP and exact recovery

Recall
Given a sensing matrix A, 0y is smallest § such that

(1= 0)ll=l3 < [[Az]3 < (1 + 6)|[13
for all k-sparse vector x.

Observe
0o is the smallest ¢ such that

(1= 0)llzr — @2/l < [ A(z1 = 22) I3 < (1 +6)l|lz1 — 223

for all s-sparse vectors x1, x2.

Therefore if do5 < 1 in principle we can recover T from b = AZ,
e.g., via £y minimization.
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RIP and signal recovery (special case)

Theorem
Assume T € R™ and A satisfies RIP with do5 < /2 — 1. Then the
{1 solution % satisfies

.- |2 — Zs[lx
- <C - —==—"—
| |2 < 75
for some constant C.
Proof
Let h:= 2 — z. Put Tp := indexes of s largest entries of |h],
T, := indexes of s largest entries of \hToc], etc.

o llz—z|
Let A := 7 L.
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By construction of the Tjs:

AR
> lhyllz < \/05

Jj=2

By optimality of Z:

Ihzells < [[hylln +2- Vs - A

By RIP:
(1 = 0as)lhryum ll2 < V2 025+ > [Ihgy |2
Jj=2
Hence ||h,ur, |2 < pA for p:= ‘lf . Therefore
2(1+
1R]|2 < (1p) A
—p

O
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Gaussian matrices and RIP

Theorem

Let M be an m x n Gaussian matrix and A := \}M If

m > M for 6 € (0,1/3) and 1 < k < n, then with
probability at least 1 — 2%

1-36< Umin(AT) < Umax(AT) <1+ 36 for all |T’ = k.

In particular, A satisfies RIP with high probability.
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Related property of random projections

Theorem (Johnson Lindenstrauss Lemma)
Assume 11, .. cReL Ifk > 62?‘15 105673) for some € € (0,1) and
6 >1, then a random projection 11 : RY — RF satisfies

k k .,
(1 —€)E\|$z‘—%|l§ < [Ty — I |3 < (1 +e)~ i — 3, Vi #j

-1
with probability at least 1 — n(n % ),
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Key lemmas (for both Johnson-Lindenstrauss and Gaussian RIP):

Lemma (Borell, Tsirelson-Ibragimov-Sudakov)
Let X ~ N(0,1;) and f : R? — R be L-Lipschitz. Then fort >0

P(f(X) - E[f(X)] > ) < e /2,

Lemma (Sudakov-Fernique)

Let (X¢)ier and (Yi)ier be Gaussian processes. If EXy = EY; and
E(Xs — X¢)? <E(Y; — Y;)? for all s,t € I then

Esup X; < EsupV;.
tel tel
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Proof of Gaussian RIP Theorem
Assume |T| =k and t > 0.

By Sudakov-Fernique:
E(UmaX(MT)) <vm+ vk

E(Urnin(MT)) > \/m - \/%

By Borell, Tsirelson-lbragimov-Sudakov:

IED(O'max(]\4T) > \/TTL + \/E + t) < e_t2/2

]P)(Umin(MT) < \/m - \/E - t) < €_t2/2-

Hence
P (ﬂ%la%i Omax(A7) > 1+ “j%j < (Z)e—”ﬂ < (en/k)ke 12

= exp (klog(en/k) — t?/2) .
To finish, take t = 2y/m - ¢. (Similar for omin.) O
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Signal recovery for probabilistic (“RIPless”) approach

Probabilistic approach
e Suppose T € R" is s-sparse.

e Pick A € R™*" and measure b = AZ.

Question
How likely it is that the solution & to the #; minimization problem

min ||z

Az =0

recovers T.?
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Optimality conditions for £; minimization

min ||z

Axr =10

Optimality conditions

A feasible x € R" is optimal iff there exists v = A*\ such that
o v; =sgn(z;) fori e T := {i:x; #0}.
o |v;| <1forieT®:={i:z; =0}

Sufficient condition for uniqueness

If, in addition, |v;| < 1 for all i € T and A7 is full column rank
then z is the unique solution.
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Strategy to prove exact recovery via {1 minimization

Suppose & has support T', i.e., T := {i : z; # 0}.
Take

v = A*Ap(A%Ar) " Lsgn(xr).
By construction v = A*X and v; = sgn(x;) fori € T.

We would be done if we can show that |v;| < 1 for ¢ € T°.

An easy probabilistic result:

Theorem

For A Gaussian, achieve exact recovery with probability at least
1 —3/+/n provided m > 4slogn.
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Proof of Theorem
Put w:= Ap(A% A7) tsgn(zr).
Observe: w, A; are independent for ¢ € T°.

Thus v;Jw ~ N(0, lw||3). Hence

P(jv;| > 1|w) < 2e~ /2wl

On the other hand, as in the RIP Theorem,

P(omin (A7) < vVm — /5 — 1) < e /2,

Therefore with probability at least 1 — e~t*/2

NG
Jol <« —X— = B.
vVm—/s—t

Consequently

P <max lvi| > 1> < Ine V2B | gmmi?/2
ieTe

To finish, take t := y/logn.
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Optimality of Compressive Sensing

Back to Gaussian sensing
m Gaussian measurements and ¢; decoding:

~

e PPN

ST s T log(n/m)

Question
Can we do better with other measurements or other algorithms?
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image sorted wavelet coefficients

Power law decay: |z|q) > [72) > -+ > |2](n)
C
|$|(k) < W
Model

¢, ball By :={z : [|z|, < 1}.
Discuss case p = 1 but same discussion applies to 0 < p < 1.
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Recovery of ¢; ball B

Gaussian sensing

e Suppose unknown vector is in B
e Take m Gaussian measurements

log(n/m) + 1.

12— zfl2 S
m

Ideal sensing
Best we can hope from m linear measurements:

En(B) = inf sup |lz — D(F(2))].

D,F yep
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Gelfand widths
Theorem (Donoho)

where d,(B) is the m-width of B:

dm(B) := inf {sup | Pvz||2 : codim(V') < m}
vV zeB

Theorem (Kashin, Garnaev-Gluskin)
For ¢1 ball

o[y ey <, [T T

Compressive sensing achieves the limits of performance.
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Convex functions and sets

Subdifferential
Assume f : R™ — R convex and x € R". A vector g ¢ R" is a
subgradient of f at x if

fly) > f(z) +(9,y —x), forallycR"

Subdifferential Of(x) := {g : g subgradient of f at x}.

Normal cone
Assume S C R™ is convex and z € S.
Normal cone to S at z:

Ng(x) :={d: (d,y —z) <0 forall y e S}.
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Convex optimization

Problem of the form
min  f(x)

rzes.

where f and S are convex.

Sufficient optimality conditions
A point Z € S is a solution to the above problem if

~9f(z) N Ne(a) £ 0.
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Special convex optimization problems

Linear programming
Objective function is linear: f(z) = (c, z)
Constraint set is polyhedral: S = {z: Az = b, Bz > d}.

Optimality conditions for linear programming

c=Ay+ B*z, 2> 0, (z2,Bx —d) =0.
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Special convex optimization problems

Consider the vector space S™ : n X n symmetric matrices with
inner product
(X, Z) =trace(X 7).

Cone of positive semidefinite matrices
ST i={XeS": \NX) >0} ={X :u"Xu>0VuecR"}.

Write X = Z for X — Z € S™.

Semidefinite programming

Objective function: f(X) = (C, X)

Constraint set: S ={X € S": A(X) =, B(X) > D} for some
linear maps A, B.

Sufficient optimality conditions for semidefinite programming

C = A*(y) + B*(Z), Z+ 0, (Z,B(X) - D) =0.
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What is so special about linear and semidefinite programming?

e They have powerful duality properties
e They can be solved efficiently (via interior-point methods)
e Popular matlab-based solvers: SeDuMi, SDPT3

e Matlab toolbox CVX serves as a wrapper for these solvers

22/26



CVX examples
To solve

min ||z i=1
T >
Ar=b zst
—x <t
Axr=10>

Use CVX code

cvx_begin
variable x(n);
variable t(n);
minimize (sum(t));

subject to
X <= t;
-x <= t;
Axx == D;

cvx_end
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CVX does some standard transformations.

To solve
min ||z
Az =0

Use CVX code

cvx_begin
variable x(n);
minimize (norm(x,1));
subject to
A*xx == D;
cvx_end
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More CVX examples
To solve

use CVX code

cvx_begin
variable X(n,n) symmetric;
minimize( trace( I * X ) );
subject to
trace( A * X ) == b;
X == semidefinite(n);
cvx_end
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Main references for today's material

e Slides for this minicourse:
http://andrew.cmu.edu/user/jfp/UNencuentro

e E. Candes, "“The restricted isometry property and its implications for
compressed sensing,” C. R. Acad. Sci. Paris, Ser. | 346, pp.
589-592, 2008.

e R. Baraniuk, M. Davenport, R. DeVore, M. Wakin, “A Simple Proof
of the Restricted Isometry Property for Random Matrices,”

Constructive Approximation, 2008.

e D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol 52,
no. 4, pp. 1289-1306, April 2006.

e M. Grant and S. Boyd, CVX: Matlab Software for Disciplined Convex
Programming, http://cvxr.com/cvx/
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