Compressive Sensing, Lecture 2

Yesterday

- Undetermined systems of equations and ℓ_1 minimization
- Compressive sensing
 - Probabilistic approach: isotropy & incoherence
 - Deterministic approach: restricted isometry property

Today

- Ideas of the main proofs
- Main computational tool: convex optimization

Recap

Compressive sampling approach

- measure $b = A\bar{x}$
- obtain \hat{x} via ℓ_1 minimization: $\hat{x} := \operatorname{argmin}_x \{ \|x\|_1 : Ax = b \}.$

Probabilistic approach

- fix $\bar{x} \in \mathbb{R}^n$ arbitrary
- randomize A
- with high probability \hat{x} recovers \bar{x} or \bar{x}_s

Deterministic approach: RIP

- find $m \times n$ matrix A satisfying RIP
- \hat{x} recovers \bar{x} or \bar{x}_s for all $\bar{x} \in \mathbb{R}^n$

RIP and exact recovery

Recall

Given a sensing matrix A, δ_k is smallest δ such that

$$(1-\delta)\|x\|_2^2 \le \|Ax\|_2^2 \le (1+\delta)\|x\|_2^2$$

for all k-sparse vector x.

$\begin{array}{l} \label{eq:second} \mbox{Observe} \\ \delta_{2s} \mbox{ is the smallest } \delta \mbox{ such that} \end{array}$

$$(1-\delta)\|x_1 - x_2\|_2^2 \le \|A(x_1 - x_2)\|_2^2 \le (1+\delta)\|x_1 - x_2\|_2^2$$

for all s-sparse vectors x_1, x_2 .

Therefore if $\delta_{2s} < 1$ in principle we can recover \bar{x} from $b = A\bar{x}$, e.g., via ℓ_0 minimization.

RIP and signal recovery (special case)

Theorem

Assume $\bar{x} \in \mathbb{R}^n$ and A satisfies RIP with $\delta_{2s} \leq \sqrt{2} - 1$. Then the ℓ_1 solution \hat{x} satisfies

$$\|\hat{x} - \bar{x}\|_2 \le C \cdot \frac{\|\bar{x} - \bar{x}_s\|_1}{\sqrt{s}}$$

for some constant C.

Proof

Let $h := \hat{x} - \bar{x}$. Put $T_0 :=$ indexes of s largest entries of |h|, $T_1 :=$ indexes of s largest entries of $|h_{T_0^c}|$, etc.

Let
$$\Delta := \frac{\|\bar{x} - \bar{x}_s\|_1}{\sqrt{s}}$$
.

By construction of the T_j s:

$$\sum_{j\geq 2} \|h_{T_j}\|_2 \le \frac{\|h_{T_0^c}\|_1}{\sqrt{s}}.$$

By optimality of \hat{x} :

$$\|h_{T_0^c}\|_1 \le \|h_{T_0}\|_1 + 2 \cdot \sqrt{s} \cdot \Delta.$$

By RIP:

$$(1 - \delta_{2s}) \|h_{T_0 \cup T_1}\|_2 \le \sqrt{2} \cdot \delta_{2s} \cdot \sum_{j \ge 2} \|h_{T_j}\|_2.$$

Hence $\|h_{T_0\cup T_1}\|_2 \leq \frac{2\rho\cdot\Delta}{1-\rho}$ for $\rho := \frac{\sqrt{2}\cdot\delta_{2s}}{1-\delta_{2s}}$. Therefore $\|h\|_2 \leq \frac{2(1+\rho)}{1-\rho}\cdot\Delta$

5/26

Gaussian matrices and RIP

Theorem

Let M be an $m \times n$ Gaussian matrix and $A := \frac{1}{\sqrt{m}}M$. If $m \geq \frac{k \log(en/k)}{\delta^2}$ for $\delta \in (0, 1/3)$ and $1 \leq k \leq n$, then with probability at least $1 - 2e^{-\delta^2 m}$

 $1 - 3\delta \le \sigma_{\min}(A_T) \le \sigma_{\max}(A_T) \le 1 + 3\delta$ for all |T| = k.

In particular, A satisfies RIP with high probability.

Related property of random projections

Theorem (Johnson-Lindenstrauss Lemma) Assume $x_1, \ldots, x_n \in \mathbb{R}^d$. If $k \ge \frac{8\delta \log n}{\epsilon^2(1-2\epsilon/3)}$ for some $\epsilon \in (0,1)$ and $\delta \ge 1$, then a random projection $\Pi : \mathbb{R}^d \to \mathbb{R}^k$ satisfies

$$(1-\epsilon)\frac{k}{d}\|x_i - x_j\|_2^2 \le \|\Pi x_i - \Pi x_j\|_2^2 \le (1+\epsilon)\frac{k}{d}\|x_i - x_j\|_2^2, \ \forall i \ne j$$

with probability at least $1 - \frac{n(n-1)}{n^{2\delta}}$.

Key lemmas (for both Johnson-Lindenstrauss and Gaussian RIP): Lemma (Borell, Tsirelson-Ibragimov-Sudakov) Let $X \sim N(0, I_d)$ and $f : \mathbb{R}^d \to \mathbb{R}$ be L-Lipschitz. Then for $t \ge 0$

$$\mathbb{P}\left(f(X) - \mathbb{E}[f(X)] > t\right) \le e^{-t^2/2L^2}$$

Lemma (Sudakov-Fernique)

Let $(X_t)_{t \in I}$ and $(Y_t)_{t \in I}$ be Gaussian processes. If $\mathbb{E}X_t = \mathbb{E}Y_t$ and $\mathbb{E}(X_s - X_t)^2 \leq \mathbb{E}(Y_s - Y_t)^2$ for all $s, t \in I$ then

 $\mathbb{E}\sup_{t\in I} X_t \leq \mathbb{E}\sup_{t\in I} Y_t.$

Proof of Gaussian RIP Theorem

Assume |T| = k and $t \ge 0$.

By Sudakov-Fernique:

$$\mathbb{E}(\sigma_{\max}(M_T)) \le \sqrt{m} + \sqrt{k}$$
$$\mathbb{E}(\sigma_{\min}(M_T)) \ge \sqrt{m} - \sqrt{k}.$$

By Borell, Tsirelson-Ibragimov-Sudakov:

$$\mathbb{P}(\sigma_{\max}(M_T) \ge \sqrt{m} + \sqrt{k} + t) \le e^{-t^2/2}$$
$$\mathbb{P}(\sigma_{\min}(M_T) \le \sqrt{m} - \sqrt{k} - t) \le e^{-t^2/2}.$$

Hence

$$\mathbb{P}\left(\max_{|T|=k} \sigma_{\max}(A_T) \ge 1 + \frac{\sqrt{k}+t}{\sqrt{m}}\right) \le \binom{n}{k} e^{-t^2/2} \le (en/k)^k e^{-t^2/2}$$
$$= \exp\left(k \log(en/k) - t^2/2\right).$$
To finish, take $t = 2\sqrt{m} \cdot \delta$. (Similar for σ_{\min} .)

9 / 26

Signal recovery for probabilistic ("RIPless") approach

Probabilistic approach

- Suppose $\bar{x} \in \mathbb{R}^n$ is *s*-sparse.
- Pick $A \in \mathbb{R}^{m \times n}$ and measure $b = A\bar{x}$.

Question

How likely it is that the solution \hat{x} to the ℓ_1 minimization problem

$$\begin{array}{ll} \min & \|x\|_1 \\ & Ax = b \end{array}$$

recovers \bar{x} ?

Optimality conditions for ℓ_1 minimization

 $\begin{array}{ll} \min & \|x\|_1 \\ & Ax = b \end{array}$

Optimality conditions

A feasible $x \in \mathbb{R}^n$ is optimal iff there exists $v = A^* \lambda$ such that

•
$$v_i = \operatorname{sgn}(x_i)$$
 for $i \in T := \{i : x_i \neq 0\}.$

•
$$|v_i| \le 1$$
 for $i \in T^c := \{i : x_i = 0\}.$

Sufficient condition for uniqueness

If, in addition, $|v_i| < 1$ for all $i \in T^c$ and A_T is full column rank then x is the unique solution.

Strategy to prove exact recovery via ℓ_1 minimization

Suppose \bar{x} has support T, i.e., $T := \{i : x_i \neq 0\}$. Take

$$v := A^* A_T (A_T^* A_T)^{-1} \operatorname{sgn}(x_T).$$

By construction $v = A^* \lambda$ and $v_i = \operatorname{sgn}(x_i)$ for $i \in T$.

We would be done if we can show that $|v_i| < 1$ for $i \in T^c$.

An easy probabilistic result:

Theorem

For A Gaussian, achieve exact recovery with probability at least $1-3/\sqrt{n}$ provided $m \ge 4s \log n$.

Proof of Theorem

Put $w := A_T (A_T^* A_T)^{-1} \operatorname{sgn}(x_T).$

Observe: w, A_i are independent for $i \in T^c$.

Thus $v_i | w \sim \mathcal{N}(0, \|w\|_2^2)$. Hence

$$\mathbb{P}(|v_i| \ge 1|w) \le 2e^{-1/2||w||_2^2}.$$

On the other hand, as in the RIP Theorem,

$$\mathbb{P}(\sigma_{\min}(A_T) \le \sqrt{m} - \sqrt{s} - t) \le e^{-t^2/2}.$$

Therefore with probability at least $1-e^{-t^2/2}$

$$||w|| \le \frac{\sqrt{s}}{\sqrt{m} - \sqrt{s} - t} := B.$$

Consequently

$$\mathbb{P}\left(\max_{i\in T^c} |v_i| \ge 1\right) \le 2ne^{-1/2B^2} + e^{-mt^2/2}.$$

To finish, take $t := \sqrt{\log n}$.

Optimality of Compressive Sensing

Back to Gaussian sensing

m Gaussian measurements and ℓ_1 decoding:

$$\|\hat{x} - x\|_2 \lesssim \frac{\|x - x_s\|_1}{\sqrt{s}}, \ s \approx \frac{m}{\log(n/m)}.$$

Question

Can we do better with other measurements or other algorithms?

Signals with power law

sorted wavelet coefficients

Power law decay: $|x|_{(1)} \ge |x|_{(2)} \ge \cdots \ge |x|_{(n)}$

$$|x|_{(k)} \le \frac{C}{k^p}$$

Model $\ell_p \text{ ball } \mathcal{B}_p := \{ x : \|x\|_p \le 1 \}.$ Discuss case p = 1 but same discussion applies to $0 \le p \le 1$. Recovery of ℓ_1 ball \mathcal{B}

Gaussian sensing

- Suppose unknown vector is in $\ensuremath{\mathcal{B}}$
- Take m Gaussian measurements

$$\|\hat{x} - x\|_2 \lesssim \sqrt{\frac{\log(n/m) + 1}{m}}.$$

Ideal sensing

Best we can hope from m linear measurements:

$$E_m(\mathcal{B}) = \inf_{D,F} \sup_{x \in \mathcal{B}} ||x - D(F(x))||.$$

Gelfand widths

Theorem (Donoho)

$$d_m(\mathcal{B}) \le E_m(\mathcal{B}) \le C \cdot d_m(\mathcal{B}),$$

where $d_m(\mathcal{B})$ is the *m*-width of \mathcal{B} :

$$d_m(\mathcal{B}) := \inf_V \left\{ \sup_{x \in \mathcal{B}} \|P_V x\|_2 : \operatorname{codim}(V) < m \right\}$$

Theorem (Kashin, Garnaev-Gluskin) For ℓ_1 ball

$$C_1 \cdot \sqrt{\frac{\log(n/m) + 1}{m}} \le d_m(\mathcal{B}) \le C_2 \cdot \sqrt{\frac{\log(n/m) + 1}{m}}.$$

Compressive sensing achieves the limits of performance.

Convex functions and sets

Subdifferential

Assume $f: \mathbb{R}^n \to \mathbb{R}$ convex and $x \in \mathbb{R}^n$. A vector $g \in \mathbb{R}^n$ is a subgradient of f at x if

$$f(y) \geq f(x) + \langle g, y - x \rangle, \quad \text{for all } y \in \mathbb{R}^n.$$

Subdifferential $\partial f(x) := \{g : g \text{ subgradient of } f \text{ at } x\}.$

Normal cone

Assume $S \subseteq \mathbb{R}^n$ is convex and $x \in S$. Normal cone to S at x:

$$N_S(x) := \{ d : \langle d, y - x \rangle \le 0 \text{ for all } y \in S \}.$$

Convex optimization

Problem of the form

 $\begin{array}{ll} \min & f(x) \\ & x \in S. \end{array}$

where f and S are convex.

Sufficient optimality conditions

A point $\bar{x} \in S$ is a solution to the above problem if

 $-\partial f(\bar{x}) \cap N_S(\bar{x}) \neq \emptyset.$

Special convex optimization problems

Linear programming

Objective function is linear: $f(x) = \langle c, x \rangle$ Constraint set is polyhedral: $S = \{x : Ax = b, Bx \ge d\}$.

Optimality conditions for linear programming

$$c = A^*y + B^*z, \ z \ge 0, \ \langle z, Bx - d \rangle = 0.$$

Special convex optimization problems

Consider the vector space $\mathbb{S}^n:n\times n$ symmetric matrices with inner product

$$\langle X, Z \rangle = \operatorname{trace}(XZ).$$

Cone of positive semidefinite matrices

$$\mathbb{S}^n_+ := \{ X \in \mathbb{S}^n : \lambda(X) \ge 0 \} = \{ X : u^\mathsf{T} X u \ge 0 \; \forall u \in \mathbb{R}^n \}.$$

Write $X \succeq Z$ for $X - Z \in \mathbb{S}^n_+$.

Semidefinite programming

Objective function: $f(X) = \langle C, X \rangle$ Constraint set: $S = \{X \in \mathbb{S}^n : \mathcal{A}(X) = b, \mathcal{B}(X) \succeq D\}$ for some linear maps \mathcal{A}, \mathcal{B} .

Sufficient optimality conditions for semidefinite programming

$$C = \mathcal{A}^*(y) + \mathcal{B}^*(Z), \ Z \succeq 0, \ \langle Z, \mathcal{B}(X) - D \rangle = 0.$$

What is so special about linear and semidefinite programming?

- They have powerful duality properties
- They can be solved efficiently (via interior-point methods)
- Popular matlab-based solvers: SeDuMi, SDPT3
- Matlab toolbox CVX serves as a wrapper for these solvers

CVX examples

To solve

Use CVX code

```
cvx_begin
variable x(n);
variable t(n);
minimize(sum(t));
subject to
    x <= t;
    -x <= t;
    A*x == b;
cvx_end
```

CVX does some standard transformations.

To solve

$$\min \quad \begin{aligned} \|x\|_1 \\ Ax = b \end{aligned}$$

Use CVX code

```
cvx_begin
 variable x(n);
 minimize(norm(x,1));
 subject to
   A*x == b;
cvx_end
```

More CVX examples

To solve

$$\begin{array}{ll} \min & \langle I, X \rangle \\ & \langle A, X \rangle = b \\ & X \succeq 0 \end{array}$$

use CVX code

```
cvx_begin
variable X(n,n) symmetric;
minimize( trace( I * X ) );
subject to
    trace( A * X ) == b;
    X == semidefinite(n);
cvx_end
```

Main references for today's material

- Slides for this minicourse: http://andrew.cmu.edu/user/jfp/UNencuentro
- E. Candès, "The restricted isometry property and its implications for compressed sensing," *C. R. Acad. Sci. Paris*, Ser. I 346, pp. 589-592, 2008.
- R. Baraniuk, M. Davenport, R. DeVore, M. Wakin, "A Simple Proof of the Restricted Isometry Property for Random Matrices," *Constructive Approximation*, 2008.
- D. Donoho, "Compressed sensing," *IEEE Trans. Inf. Theory*, vol 52, no. 4, pp. 1289–1306, April 2006.
- M. Grant and S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, http://cvxr.com/cvx/