
Compressive Sensing, Lecture 2

Yesterday

• Undetermined systems of equations and `1 minimization

• Compressive sensing
• Probabilistic approach: isotropy & incoherence
• Deterministic approach: restricted isometry property

Today

• Ideas of the main proofs

• Main computational tool: convex optimization
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Recap

Compressive sampling approach

• measure b = Ax̄

• obtain x̂ via `1 minimization: x̂ := argminx{‖x‖1 : Ax = b}.

Probabilistic approach

• fix x̄ ∈ Rn arbitrary

• randomize A

• with high probability x̂ recovers x̄ or x̄s

Deterministic approach: RIP

• find m× n matrix A satisfying RIP

• x̂ recovers x̄ or x̄s for all x̄ ∈ Rn
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RIP and exact recovery

Recall
Given a sensing matrix A, δk is smallest δ such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22

for all k-sparse vector x.

Observe
δ2s is the smallest δ such that

(1− δ)‖x1 − x2‖22 ≤ ‖A(x1 − x2)‖22 ≤ (1 + δ)‖x1 − x2‖22

for all s-sparse vectors x1, x2.

Therefore if δ2s < 1 in principle we can recover x̄ from b = Ax̄,
e.g., via `0 minimization.
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RIP and signal recovery (special case)

Theorem
Assume x̄ ∈ Rn and A satisfies RIP with δ2s ≤

√
2− 1. Then the

`1 solution x̂ satisfies

‖x̂− x̄‖2 ≤ C ·
‖x̄− x̄s‖1√

s

for some constant C.

Proof
Let h := x̂− x̄. Put T0 := indexes of s largest entries of |h|,
T1 := indexes of s largest entries of |hT c0 |, etc.

Let ∆ := ‖x̄−x̄s‖1√
s

.
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By construction of the Tjs:

∑
j≥2

‖hTj‖2 ≤
‖hT c0 ‖1√

s
.

By optimality of x̂:

‖hT c0 ‖1 ≤ ‖hT0‖1 + 2 ·
√
s ·∆.

By RIP:

(1− δ2s)‖hT0∪T1‖2 ≤
√

2 · δ2s ·
∑
j≥2

‖hTj‖2.

Hence ‖hT0∪T1‖2 ≤
2ρ·∆
1−ρ for ρ :=

√
2·δ2s

1−δ2s . Therefore

‖h‖2 ≤
2(1 + ρ)

1− ρ
·∆

5 / 26



Gaussian matrices and RIP

Theorem
Let M be an m× n Gaussian matrix and A := 1√

m
M . If

m ≥ k log(en/k)
δ2

for δ ∈ (0, 1/3) and 1 ≤ k ≤ n, then with

probability at least 1− 2e−δ
2m

1− 3δ ≤ σmin(AT ) ≤ σmax(AT ) ≤ 1 + 3δ for all |T | = k.

In particular, A satisfies RIP with high probability.
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Related property of random projections

Theorem (Johnson-Lindenstrauss Lemma)

Assume x1, . . . , xn ∈ Rd. If k ≥ 8δ logn
ε2(1−2ε/3)

for some ε ∈ (0, 1) and

δ ≥ 1, then a random projection Π : Rd → Rk satisfies

(1− ε)k
d
‖xi− xj‖22 ≤ ‖Πxi−Πxj‖22 ≤ (1 + ε)

k

d
‖xi− xj‖22, ∀i 6= j

with probability at least 1− n(n−1)
n2δ .
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Key lemmas (for both Johnson-Lindenstrauss and Gaussian RIP):

Lemma (Borell, Tsirelson-Ibragimov-Sudakov)

Let X ∼ N(0, Id) and f : Rd → R be L-Lipschitz. Then for t ≥ 0

P (f(X)− E[f(X)] > t) ≤ e−t2/2L2
.

Lemma (Sudakov-Fernique)

Let (Xt)t∈I and (Yt)t∈I be Gaussian processes. If EXt = EYt and
E(Xs −Xt)2 ≤ E(Ys − Yt)2 for all s, t ∈ I then

E sup
t∈I

Xt ≤ E sup
t∈I

Yt.
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Proof of Gaussian RIP Theorem
Assume |T | = k and t ≥ 0.

By Sudakov-Fernique:

E(σmax(MT )) ≤
√
m+

√
k

E(σmin(MT )) ≥
√
m−

√
k.

By Borell, Tsirelson-Ibragimov-Sudakov:

P(σmax(MT ) ≥
√
m+

√
k + t) ≤ e−t2/2

P(σmin(MT ) ≤
√
m−

√
k − t) ≤ e−t2/2.

Hence

P

(
max
|T |=k

σmax(AT ) ≥ 1 +

√
k + t√
m

)
≤
(
n

k

)
e−t

2/2 ≤ (en/k)ke−t
2/2

= exp
(
k log(en/k)− t2/2

)
.

To finish, take t = 2
√
m · δ. (Similar for σmin.)
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Signal recovery for probabilistic (“RIPless”) approach

Probabilistic approach

• Suppose x̄ ∈ Rn is s-sparse.

• Pick A ∈ Rm×n and measure b = Ax̄.

Question
How likely it is that the solution x̂ to the `1 minimization problem

min ‖x‖1
Ax = b

recovers x̄?
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Optimality conditions for `1 minimization

min ‖x‖1
Ax = b

Optimality conditions

A feasible x ∈ Rn is optimal iff there exists v = A∗λ such that

• vi = sgn(xi) for i ∈ T := {i : xi 6= 0}.
• |vi| ≤ 1 for i ∈ T c := {i : xi = 0}.

Sufficient condition for uniqueness

If, in addition, |vi| < 1 for all i ∈ T c and AT is full column rank
then x is the unique solution.
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Strategy to prove exact recovery via `1 minimization

Suppose x̄ has support T , i.e., T := {i : xi 6= 0}.

Take
v := A∗AT (A∗TAT )−1sgn(xT ).

By construction v = A∗λ and vi = sgn(xi) for i ∈ T .

We would be done if we can show that |vi| < 1 for i ∈ T c.

An easy probabilistic result:

Theorem
For A Gaussian, achieve exact recovery with probability at least
1− 3/

√
n provided m ≥ 4s log n.
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Proof of Theorem
Put w := AT (A∗TAT )−1sgn(xT ).

Observe: w,Ai are independent for i ∈ T c.
Thus vi|w ∼ N (0, ‖w‖22). Hence

P(|vi| ≥ 1|w) ≤ 2e−1/2‖w‖22 .

On the other hand, as in the RIP Theorem,

P(σmin(AT ) ≤
√
m−

√
s− t) ≤ e−t2/2.

Therefore with probability at least 1− e−t2/2

‖w‖ ≤
√
s√

m−
√
s− t

:= B.

Consequently

P
(

max
i∈T c
|vi| ≥ 1

)
≤ 2ne−1/2B2

+ e−mt
2/2.

To finish, take t :=
√

log n.
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Optimality of Compressive Sensing

Back to Gaussian sensing

m Gaussian measurements and `1 decoding:

‖x̂− x‖2 .
‖x− xs‖1√

s
, s ≈ m

log(n/m)
.

Question
Can we do better with other measurements or other algorithms?
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Signals with power law

Class of signals with power-law decay
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image sorted wavelet coefficients

Power law decay: |x|(1) ≥ |x|(2) ≥ · · · ≥ |x|(n)

|x|(k) ≤
C

kp

Model
`p ball Bp := {x : ‖x‖p ≤ 1}.
Discuss case p = 1 but same discussion applies to 0 ≤ p ≤ 1.
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Recovery of `1 ball B

Gaussian sensing

• Suppose unknown vector is in B
• Take m Gaussian measurements

‖x̂− x‖2 .
√

log(n/m) + 1
m

.

Ideal sensing

Best we can hope from m linear measurements:

Em(B) = inf
D,F

sup
x∈B
‖x−D(F (x))‖.
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Gelfand widths

Theorem (Donoho)

dm(B) ≤ Em(B) ≤ C · dm(B),

where dm(B) is the m-width of B:

dm(B) := inf
V

{
sup
x∈B
‖PV x‖2 : codim(V ) < m

}

Theorem (Kashin, Garnaev-Gluskin)

For `1 ball

C1 ·
√

log(n/m) + 1
m

≤ dm(B) ≤ C2 ·
√

log(n/m) + 1
m

.

Compressive sensing achieves the limits of performance.
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Convex functions and sets

Subdifferential
Assume f : Rn → R convex and x ∈ Rn. A vector g ∈ Rn is a
subgradient of f at x if

f(y) ≥ f(x) + 〈g, y − x〉, for all y ∈ Rn.

Subdifferential ∂f(x) := {g : g subgradient of f at x}.

Normal cone
Assume S ⊆ Rn is convex and x ∈ S.
Normal cone to S at x:

NS(x) := {d : 〈d, y − x〉 ≤ 0 for all y ∈ S}.
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Convex optimization

Problem of the form
min f(x)

x ∈ S.

where f and S are convex.

Sufficient optimality conditions

A point x̄ ∈ S is a solution to the above problem if

−∂f(x̄) ∩NS(x̄) 6= ∅.
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Special convex optimization problems

Linear programming

Objective function is linear: f(x) = 〈c, x〉
Constraint set is polyhedral: S = {x : Ax = b, Bx ≥ d}.

Optimality conditions for linear programming

c = A∗y +B∗z, z ≥ 0, 〈z,Bx− d〉 = 0.
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Special convex optimization problems
Consider the vector space Sn : n× n symmetric matrices with
inner product

〈X,Z〉 = trace(XZ).

Cone of positive semidefinite matrices

Sn+ := {X ∈ Sn : λ(X) ≥ 0} = {X : uTXu ≥ 0 ∀u ∈ Rn}.

Write X � Z for X − Z ∈ Sn+.

Semidefinite programming

Objective function: f(X) = 〈C,X〉
Constraint set: S = {X ∈ Sn : A(X) = b, B(X) � D} for some
linear maps A,B.

Sufficient optimality conditions for semidefinite programming

C = A∗(y) + B∗(Z), Z � 0, 〈Z,B(X)−D〉 = 0.
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What is so special about linear and semidefinite programming?

• They have powerful duality properties

• They can be solved efficiently (via interior-point methods)

• Popular matlab-based solvers: SeDuMi, SDPT3

• Matlab toolbox CVX serves as a wrapper for these solvers
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CVX examples

To solve

min
x
‖x‖1
Ax = b

 

min
x,t

n∑
i=1

ti

x ≤ t
−x ≤ t
Ax = b

Use CVX code

cvx begin
variable x(n);
variable t(n);
minimize(sum(t));
subject to

x <= t;
-x <= t;
A*x == b;

cvx end
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CVX does some standard transformations.

To solve
min ‖x‖1

Ax = b

Use CVX code

cvx begin
variable x(n);
minimize(norm(x,1));
subject to

A*x == b;
cvx end
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More CVX examples

To solve
min 〈I,X〉

〈A,X〉 = b
X � 0

use CVX code

cvx begin
variable X(n,n) symmetric;
minimize( trace( I * X ) );
subject to
trace( A * X ) == b;
X == semidefinite(n);

cvx end
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Main references for today’s material

• Slides for this minicourse:
http://andrew.cmu.edu/user/jfp/UNencuentro

• E. Candès, “The restricted isometry property and its implications for
compressed sensing,” C. R. Acad. Sci. Paris, Ser. I 346, pp.
589-592, 2008.

• R. Baraniuk, M. Davenport, R. DeVore, M. Wakin, “A Simple Proof
of the Restricted Isometry Property for Random Matrices,”
Constructive Approximation, 2008.

• D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol 52,
no. 4, pp. 1289–1306, April 2006.

• M. Grant and S. Boyd, CVX: Matlab Software for Disciplined Convex
Programming, http://cvxr.com/cvx/

26 / 26


