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Wavelets and images

Compressibility corresponds to sparsity in a suitable basis.

1 megapixel image

Materials available at
http://andrew.cmu.edu/user/jfp/UNencuentro

wavelet coeffs

(sorted)

58 b e e B gEE

zoom in

(log, o sorted)

Compressive Sensing, Lecture 1

Consider the following two pictures

One of these is a raw jpg 2.7MB file. The other one is a
compressed jpg 300KB version.

Can you tell them apart?

Compression

e Take original 1 megapixel image

e Compute all 1 million wavelet coefficients

o Keep only the 25K largest and set the others to zero

e |nvert the wavelet transform

original image

25K approximation
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Conventional signal acquisition paradigm
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Question
If the signal is compressible, can it be acquired efficiently?
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Plan

e Introduction to compressive sensing, undetermined systems of
equations, /1 minimization

e Main theoretical and computational techniques

e Matrix completion, undetermined linear matrix equations,
nuclear norm minimization.

~
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Compressive sensing

e Term coined by Donoho

e Body of theory and algorithms for sparse signal acquisition
and recovery

e Seminal papers:
e Candés, Romberg and Tao (2006)
o Candés and Tao (2006)
e Donoho (2006)

e Hot area of research spanning information theory, signal
processing, statistics, mathematics, etc.

e Applications where measurements are

e slow or costly (MRI)
e missing or wasteful
e beyond other capabilities such as memory
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Undetermined systems of equations

Problem
Recover a signal X € R” from m < n linear measurements

b = (ak,X), k=1,...,m~> b= AX

e In general this is impossible.

e Suppose we know that X is sparse. Does that help?

Example

Suppose only one component of x is different from zero.
Can we get by with fewer than n measurements?



Possible approach to recover sparse X
Take m < n measurements b = AX and then solve

min  ||x]lo
Ax=0>b

Here || -|| o stands for the ¢g quasi-norm: ||x||o = |{/ : x; # 0}].

Relevant questions

e Does this work (provided we take enough measurements)?

e Suppose X is k-sparse, i.e., ||X|lo = k. How many
measurements suffice?

e How hard is it to solve the above fp-minimization problem?
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A bit of history of ¢; optimization

/1 minimization often finds the “right” answer

e Seismology

e Lasso regression

Bandlimited deconvolution

Total variation (TV) denoising

e Basis pursuit
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ly versus (1-optimization

min || x|1

min  ||x]|o Ax — b

Ax=0b
computationally tractable

computationally hard (linear program)

e /1 norm is the convex envelope of the £y quasi-norm.

e The /1 minimization problem is a convex relaxation of the /g
minimization problem.

e |In many cases the above /1 minimization problem yields the
same solution as the ¢y problem.

Acquiring a sparse signal

Suppose x € R" is s-sparse.

e Take m random and nonadaptive measurements
by = (ak,x), k=1,...,m ~» b= Ax
e Try to reconstruct X via £1 minimization.

First fundamental result

If m > s-logn and the aj are suitably chosen, then the recovery is
exact.
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Nonadaptive sensing of compressible signals

Optimality of compressive sensing
Classical approach Compressive sensing It is not possible to do better

e Measure the full signal x e with fewer measurements

. e Take m random
(all coefficients) measurements e with other reconstruction algorithms

e Store s largest coefficients e Reconstruct X via /1

e Distorsion [|x — X||2 minimization _ _
Key features of compressive sensing

Second fundamental result e Obtain compressible signals from few sensors

If m>s-logn then e Sensing is nonadaptive: no knowledge about the signal

e Simple acquisition followed by ¢; decoder
1% = Xll2 < IX = X2
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Next: formal statements Probabilistic approach: random sensing

Acquire x € R" by measuring

Probabilistic approach be = (a, %), k=1 m s b= Ax
e |sotropy and incoherence Y ’ ’

¢ Incoherent sampling theorems where ay are iid F for some distribution F in C".

Deterministic approach Two key properties
o Restricted isometry property

o Signal recovery theorem e lIsotropy: E(aa*) =1

e Coherence measure p(F): smallest number such that

Robustness to noise

o ‘max |(a,e)|? < u(F) with high probability
Optimality i=1,...,n

We want low coherence u(F).
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Coherence

Observe
o E(aa*) = I implies pu(F) > 1.
e We would like 1(F) to be as close as possible to 1 (incoherent
sensing).

Examples of isotropic incoherent sensing

e Gaussian sensing
e Binary sensing

e Partial Fourier transform

Notation: forae C"and i=1,...,n

ali] = (a, €).
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An example of coherent sensing

Sample random components of x

e Select j uniformly at random in {1,...,n}
e Set a = /ne;.
In this case
E(aa®) =1
and

“max |a[i]|*> = n.

1=

geeey

For this type of sensing, how many samples do we need to recover
a l-sparse vector with high probability?
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Isotropic incoherent sensing

Gaussian sensing
a~ N(0,/1), that is, a[1],...,a[n] are iid N(0,1).

In this case u(F) = logn.

Binary sensing
a[l],..., a[n] are iid with distribution P(a[/] = £1) = 1/2.

In this case pu(F) = 1.

Partial discrete Fourier transform

e Select k uniformly at random in {0,1,...,n—1}
o Set a[t] := e?™kt/n +=0,1...,n—1.

In this case pu(F) = 1.

Incoherent sampling theorems

Compressive sampling approach

measure
bk: <ak,)'<>, k:].,...,m ~ b= Ax

perform /1 recovery

% := argmin{||x||1 : Ax = b}
X

Theorem (Candes & Plan)

Assume X is s-sparse. Then recovery is exact with probability at
least 1 —5/n — e~" provided that

m>Cy-(1+8) -u(F)-s-logn

for some constant (.
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Related predecessors: Sampling of non-sparse signals
Theorem (Candes & Tao)

Assume X is s-sparse and sample m Fourier coefficients selected at

Given x € R" and s < n define

random. Then recovery is exact with probability at least Xs = argmin ||z — x||2
1 — O(n=P) provided that llzllo<k
m> Cg-s-logn Theorem (Candés & Plan)

Let x € R", B> 0 and s be such that m > Cg -5 -logn. Then

for some constant Cg that depends only on the desired accuracy [3. with probability at least 1 — 6/n — 66— the {1 solution % satisfies

This result is optimal: any reliable recovery method would require % —x|j1 < min_ C- (14 a)-|x — xs||1
at least s - log n samples. 1<s<5

for some constant C and

Theorem (Candés & Tao)

Assume x € R" is s-sparse, n is prime, and we sample m Fourier o= \/(1 + B3)su(F)log nlog m log” s
coefficients. Then X can be reconstructed from the m samples if m
m > 2s.
21/32
Deterministic approach: restricted isometry Signal recovery with a RIP matrix
Compressive sampling approach
measure
bk: (ak,)?>, k:].,...,m ~ b= Ax

Restricted isometry property (RIP) perform /1 recovery
Given A€ R™" and k € {1,..., m}, the k-isometry constant 0y R _
is the smallest 6 > 0 such that X= arg)[nln{Hle : Ax = b}

(1= 8)lIxI3 < IAx]13 < (1 +6)|IxI3 i
Theorem (Candes, Romberg, Tao)
for all k-sparse x € R". Assume 62s < \/2 — 1. Then the solution X satisfies
If 0 < 1, we say that A satisfies the RIP with constant J. o L
1% =Xl[1 < C-[Ix = Xs]lx
and L
[1X = Xs]la
NG

I -zl < C-

for some constant C.

N
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Matrices that satisfy RIP

With high probability an m x n matrix A satisfies the RIP in the
following cases:

e m 2 slog(n/s) and A is Gaussian
e m 2 slog(n/s) and A is binary
e m > slog* nand A is partial DFT

o m > u(F)slog* n and rows of A are iid F.

Noise aware recovery (random sensing)

Theorem (Candes & Plan)

Let x € R", B >0 and 5 be such that m > Cg-5-logn. Then
with probability at least 1 —6/n — 6e " the solution X to the
Lasso or the Dantzig selector with A = 10+/log n satisfies

. log n
¢ %l < ) 2y - <
%= %1 < min_C- (1+0?) (nx %l + 5oy m)

for some constant C.

N
=
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Sampling with noise

e Measurements in real life are generally noisy
e More appropriate model

b=Ax+z

noise term z ~ N(0, 0%1)
e Assume all columns of A have Euclidean norm equal to one.
e Modify £1 minimization to account for noise

Lasso
1 )
min §]|b—AXH2+)\-a- l|Ix11

Dantzig selector

min || x|

|4 (b~ AxX)low < A -0

Optimality of Compressive Sensing

Back to Gaussian sensing
m Gaussian measurements and ¢; decoding:

1% = x||2 < [[x = Xsll1 ~ m

~ s 7 log(n/m)

Question
Can we do better with other measurements or other algorithms?



Signals with power law
T | 4 "W‘

sorted wavelet coefficients

image

Power law decay: |X|(1) > |X|(2) > 2 |X|(n)

C
’X‘(k) < P
Model
Ly ball By = {x: ||x]|, < 1}.
Discuss case p = 1 but same discussion applies to 0 < p < 1.
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Gelfand widths

Theorem (Donoho)

dm(B) < Em(B) < C - dn(B),
where d,(B) is the m-width of B:

dm(B) = inf {sup |Pvx]|2 : codim(V) < m}
V' (xeB

Theorem (Kashin, Garnaev-Gluskin)
For ¢1 ball

I RSP SN - CL ETY

Compressive sensing achieves the limits of performance.
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Recovery of ¢, ball B

Gaussian sensing

e Suppose unknown vector is in B
e Take m Gaussian measurements

log(n/m) + 1.

1% = xl 5 4/ 22

Ideal sensing
Best we can hope from m linear measurements:

Em(B) = inf sup |lx — D(F(x))|-

i
D,E XGB
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