Compressive (or Compressed) Sensing "Detección Comprimida"

> Javier Peña Carnegie Mellon University

UN Encuentro de Matemáticas Universidad Nacional, July 2012

Materials available at http://andrew.cmu.edu/user/jfp/UNencuentro

Compressive Sensing, Lecture 1

Consider the following two pictures

One of these is a raw jpg 2.7MB file. The other one is a compressed jpg 300KB version.

Can you tell them apart?

Wavelets and images

Compressibility corresponds to sparsity in a suitable basis.

1 megapixel image

Compression

- Take original 1 megapixel image
- Compute all 1 million wavelet coefficients
- Keep only the 25K largest and set the others to zero
- Invert the wavelet transform

original image

25K approximation

Conventional signal acquisition paradigm

Question

If the signal is compressible, can it be acquired efficiently?

Compressive sensing

- Term coined by Donoho
- Body of theory and algorithms for sparse signal acquisition and recovery
- Seminal papers:
 - Candès, Romberg and Tao (2006)
 - Candès and Tao (2006)
 - Donoho (2006)
- Hot area of research spanning information theory, signal processing, statistics, mathematics, etc.
- Applications where measurements are
 - slow or costly (MRI)
 - missing or wasteful
 - · beyond other capabilities such as memory

Plan

- Introduction to compressive sensing, undetermined systems of equations, ℓ_1 minimization
- Main theoretical and computational techniques
- Matrix completion, undetermined linear matrix equations, nuclear norm minimization.

Undetermined systems of equations

Problem

Recover a signal $\bar{x} \in \mathbb{R}^n$ from $m \ll n$ linear measurements

$$b_k = \langle a_k, \bar{x} \rangle, \ k = 1, \dots, m \rightsquigarrow b = A \bar{x}$$

- In general this is impossible.
- Suppose we know that \bar{x} is sparse. Does that help?

Example

Suppose only one component of \bar{x} is different from zero. Can we get by with fewer than *n* measurements? Possible approach to recover sparse \bar{x} Take $m \ll n$ measurements $b = A\bar{x}$ and then solve

 $\begin{array}{ll} \min & \|x\|_0\\ & Ax = b \end{array}$

Here $\|\cdot\|_0$ stands for the ℓ_0 quasi-norm: $\|x\|_0 = |\{i : x_i \neq 0\}|$.

Relevant questions

- Does this work (provided we take enough measurements)?
- Suppose \bar{x} is *k*-sparse, i.e., $\|\bar{x}\|_0 = k$. How many measurements suffice?
- How hard is it to solve the above ℓ_0 -minimization problem?

ℓ_0 versus $\ell_1\text{-optimization}$

 $\begin{array}{ll} \min & \|x\|_0\\ Ax = b \end{array}$

 $\begin{array}{ll} \min & \|x\|_1 \\ Ax = b \end{array}$

computationally hard

computationally tractable (linear program)

- ℓ_1 norm is the convex envelope of the ℓ_0 quasi-norm.
- The l₁ minimization problem is a *convex relaxation* of the l₀ minimization problem.
- In many cases the above ℓ_1 minimization problem yields the same solution as the ℓ_0 problem.

A bit of history of ℓ_1 optimization

ℓ_1 minimization often finds the "right" answer

- Seismology
- Lasso regression
- Bandlimited deconvolution
- Total variation (TV) denoising
- Basis pursuit

Acquiring a sparse signal

Suppose $\bar{x} \in \mathbb{R}^n$ is *s*-sparse.

• Take *m* random and nonadaptive measurements

$$b_k = \langle a_k, \bar{x} \rangle, \ k = 1, \dots, m \ \rightsquigarrow b = A \bar{x}$$

• Try to reconstruct \bar{x} via ℓ_1 minimization.

First fundamental result

If $m \gtrsim s \cdot \log n$ and the a_k are suitably chosen, then the recovery is exact.

Nonadaptive sensing of compressible signals

Classical approach

- Measure the full signal x
 (all coefficients)
- Store s largest coefficients
- Distorsion $\|\bar{x} \bar{x}_s\|_2$

Compressive sensing

- Take *m* random measurements
- Reconstruct \hat{x} via ℓ_1 minimization

Second fundamental result If $m \gtrsim s \cdot \log n$ then

$$\|\hat{x}-\bar{x}\|_2 \lesssim \|\bar{x}-\bar{x}_s\|_2$$

Optimality of compressive sensing

It is not possible to do better

- with fewer measurements
- with other reconstruction algorithms

Key features of compressive sensing

- Obtain compressible signals from few sensors
- Sensing is nonadaptive: no knowledge about the signal
- Simple acquisition followed by ℓ_1 decoder

Next: formal statements

- Probabilistic approach
 - Isotropy and incoherence
 - Incoherent sampling theorems
- Deterministic approach
 - Restricted isometry property
 - Signal recovery theorem
- Robustness to noise
- Optimality

Probabilistic approach: random sensing

Acquire $\bar{x} \in \mathbb{R}^n$ by measuring

$$b_k = \langle a_k, \bar{x} \rangle, \ k = 1, \dots, m \ \rightsquigarrow b = A \bar{x}$$

where a_k are iid F for some distribution F in \mathbb{C}^n .

Two key properties

- Isotropy: $\mathbb{E}(aa^*) = I$
- Coherence measure $\mu(F)$: smallest number such that

 $\max_{i=1,...,n} |\langle a,e_i
angle|^2 \leq \mu(F)$ with high probability

We want low coherence $\mu(F)$.

Coherence

Observe

- $\mathbb{E}(aa^*) = I$ implies $\mu(F) \ge 1$.
- We would like μ(F) to be as close as possible to 1 (incoherent sensing).

Examples of isotropic incoherent sensing

- Gaussian sensing
- Binary sensing
- Partial Fourier transform

Notation: for $a \in \mathbb{C}^n$ and $i = 1, \ldots, n$

$$a[i] := \langle a, e_i \rangle.$$

Isotropic incoherent sensing

Gaussian sensing $a \sim \mathcal{N}(0, I)$, that is, $a[1], \ldots, a[n]$ are iid $\mathcal{N}(0, 1)$. In this case $\mu(F) = \log n$.

Binary sensing $a[1], \ldots, a[n]$ are iid with distribution $\mathbb{P}(a[i] = \pm 1) = 1/2$. In this case $\mu(F) = 1$.

Partial discrete Fourier transform

- Select k uniformly at random in $\{0, 1, \dots, n-1\}$
- Set $a[t] := e^{i2\pi kt/n}, \ t = 0, 1..., n-1.$

In this case $\mu(F) = 1$.

An example of coherent sensing

Sample random components of x

• Select j uniformly at random in $\{1, \ldots, n\}$

• Set
$$a = \sqrt{n}e_j$$
.

In this case

$$\mathbb{E}(aa^*) = I$$

and

$$\max_{i=1,\ldots,n}|a[i]|^2=n.$$

For this type of sensing, how many samples do we need to recover a 1-sparse vector with high probability?

Incoherent sampling theorems

Compressive sampling approach

measure

$$b_k = \langle a_k, \bar{x} \rangle, \ k = 1, \dots, m \ \rightsquigarrow b = A \bar{x}$$

perform ℓ_1 recovery

$$\hat{x} := \underset{x}{\operatorname{argmin}} \{ \|x\|_1 : Ax = b \}$$

Theorem (Candès & Plan)

Assume \bar{x} is s-sparse. Then recovery is exact with probability at least $1-5/n-e^{-\beta}$ provided that

$$m \ge C_0 \cdot (1 + \beta) \cdot \mu(F) \cdot s \cdot \log n$$

for some constant C_0 .

Related predecessors:

Theorem (Candès & Tao)

Assume \bar{x} is s-sparse and sample *m* Fourier coefficients selected at random. Then recovery is exact with probability at least $1 - O(n^{-\beta})$ provided that

$$m \geq C_{\beta} \cdot s \cdot \log n$$

for some constant C_{β} that depends only on the desired accuracy β .

This result is optimal: any reliable recovery method would require at least $s \cdot \log n$ samples.

Theorem (Candès & Tao)

Assume $\bar{x} \in \mathbb{R}^n$ is s-sparse, n is prime, and we sample m Fourier coefficients. Then \bar{x} can be reconstructed from the m samples if $m \ge 2s$.

Sampling of non-sparse signals

Given $x \in \mathbb{R}^n$ and s < n define

$$x_s := \underset{\|z\|_0 \le k}{\operatorname{argmin}} \|z - x\|_2$$

Theorem (Candès & Plan)

Let $x \in \mathbb{R}^n$, $\beta > 0$ and \overline{s} be such that $m \ge C_\beta \cdot \overline{s} \cdot \log n$. Then with probability at least $1 - 6/n - 6e^{-\beta}$ the ℓ_1 solution \hat{x} satisfies

$$\|\hat{x} - x\|_1 \le \min_{1 \le s \le \overline{s}} C \cdot (1 + \alpha) \cdot \|x - x_s\|_1$$

for some constant C and

$$\alpha = \sqrt{\frac{(1+\beta)s\mu(F)\log n\log m\log^2 s}{m}}.$$

Deterministic approach: restricted isometry

Restricted isometry property (RIP)

Given $A \in \mathbb{R}^{m \times n}$ and $k \in \{1, ..., m\}$, the k-isometry constant δ_k is the smallest $\delta \geq 0$ such that

$$(1-\delta)\|x\|_2^2 \le \|Ax\|_2^2 \le (1+\delta)\|x\|_2^2$$

for all k-sparse $x \in \mathbb{R}^n$.

If $\delta_k < 1$, we say that A satisfies the RIP with constant δ_k .

Signal recovery with a RIP matrix

Compressive sampling approach

measure

$$b_k = \langle a_k, \bar{x} \rangle, \ k = 1, \dots, m \ \rightsquigarrow b = A \bar{x}$$

perform ℓ_1 recovery

$$\hat{x} := \operatorname*{argmin}_{x} \{ \|x\|_1 : Ax = b \}$$

Theorem (Candès, Romberg, Tao) Assume $\delta_{2s} \leq \sqrt{2} - 1$. Then the solution \hat{x} satisfies

$$\|\hat{x} - \bar{x}\|_1 \le C \cdot \|\bar{x} - \bar{x}_s\|_1$$

and

$$\|\hat{x} - \bar{x}\|_2 \le C \cdot \frac{\|\bar{x} - \bar{x}_s\|_1}{\sqrt{s}}$$

for some constant C.

Matrices that satisfy RIP

With high probability an $m \times n$ matrix A satisfies the RIP in the following cases:

- $m\gtrsim s\log(n/s)$ and A is Gaussian
- $m\gtrsim s\log(n/s)$ and A is binary
- $m \gtrsim s \log^4 n$ and A is partial DFT
- $m \gtrsim \mu(F) s \log^4 n$ and rows of A are iid F.

Sampling with noise

- Measurements in real life are generally noisy
- More appropriate model

$$b = A\bar{x} + z$$

noise term $z \sim \mathcal{N}(0, \sigma^2 I)$

- Assume all columns of A have Euclidean norm equal to one.
- Modify ℓ_1 minimization to account for noise

Lasso

$$\min \frac{1}{2} \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|_2^2 + \lambda \cdot \boldsymbol{\sigma} \cdot \|\boldsymbol{x}\|_1$$

Dantzig selector

min
$$\|x\|_1$$

 $\|A^*(b - Ax)\|_\infty \le \lambda \cdot \sigma$

Noise aware recovery (random sensing)

Theorem (Candès & Plan)

Let $\bar{x} \in \mathbb{R}^n$, $\beta > 0$ and \bar{s} be such that $m \ge C_{\beta} \cdot \bar{s} \cdot \log n$. Then with probability at least $1 - 6/n - 6e^{-\beta}$ the solution \hat{x} to the Lasso or the Dantzig selector with $\lambda = 10\sqrt{\log n}$ satisfies

$$\|\hat{x} - \bar{x}\|_1 \leq \min_{1 \leq s \leq \bar{s}} C \cdot (1 + \alpha^2) \cdot \left(\|\bar{x} - \bar{x}_s\|_1 + s\sigma \sqrt{\frac{\log n}{m}} \right)$$

for some constant C.

Optimality of Compressive Sensing

Back to Gaussian sensing

m Gaussian measurements and ℓ_1 decoding:

$$\|\hat{x}-x\|_2 \lesssim \frac{\|x-x_s\|_1}{\sqrt{s}}, \ s \approx \frac{m}{\log(n/m)}.$$

Question

Can we do better with other measurements or other algorithms?

Signals with power law

sorted wavelet coefficients

Power law decay: $|x|_{(1)} \ge |x|_{(2)} \ge \cdots \ge |x|_{(n)}$

$$|x|_{(k)} \leq \frac{C}{k^p}$$

Recovery of ℓ_1 ball $\mathcal B$

Gaussian sensing

- Suppose unknown vector is in $\ensuremath{\mathcal{B}}$
- Take *m* Gaussian measurements

$$\|\hat{x} - x\|_2 \lesssim \sqrt{rac{\log(n/m) + 1}{m}}.$$

Ideal sensing

Best we can hope from m linear measurements:

$$E_m(\mathcal{B}) = \inf_{D, E} \sup_{x \in \mathcal{B}} ||x - D(F(x))||.$$

Gelfand widths

Theorem (Donoho)

$$d_m(\mathcal{B}) \leq E_m(\mathcal{B}) \leq C \cdot d_m(\mathcal{B}),$$

where $d_m(\mathcal{B})$ is the m-width of \mathcal{B} :

$$d_m(\mathcal{B}) := \inf_V \left\{ \sup_{x \in \mathcal{B}} \| P_V x \|_2 : codim(V) < m \right\}$$

Theorem (Kashin, Garnaev-Gluskin) For ℓ_1 ball

$$C_1 \cdot \sqrt{rac{\log(n/m) + 1}{m}} \leq d_m(\mathcal{B}) \leq C_2 \cdot \sqrt{rac{\log(n/m) + 1}{m}}.$$

Compressive sensing achieves the limits of performance.

References for today's material

- Slides for this minicourse: http://andrew.cmu.edu/user/jfp/UNencuentro
- E. Candès & Y. Plan, "A probabilistic and RIPless theory of compressed sensing," *IEEE Trans. Inf. Theory,* vol 57, no. 11, pp. 7235–7254, Nov. 2011.
- E. Candès, J. Romberg, & T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," *IEEE Trans. Inf. Theory*, vol 52, no. 2, pp. 489–509, Feb. 2006.
- E. Candès & T. Tao, "Decoding by linear programming," *IEEE Trans. Inf. Theory*, vol 51, no. 12, pp. 4203–4215, Dec. 2005.
- D. Donoho, "Compressed sensing," *IEEE Trans. Inf. Theory*, vol 52, no. 4, pp. 1289–1306, April 2006.
- Papers on compressive sensing: http://dsp.rice.edu/cs