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Compressive Sensing, Lecture 1

Consider the following two pictures

One of these is a raw jpg 2.7MB file. The other one is a
compressed jpg 300KB version.

Can you tell them apart?
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Wavelets and images

Compressibility corresponds to sparsity in a suitable basis.Wavelets and Images
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Compression

• Take original 1 megapixel image

• Compute all 1 million wavelet coefficients

• Keep only the 25K largest and set the others to zero

• Invert the wavelet transform

Wavelet Approximation
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• Within 2 digits (in MSE) with ≈ 2.5% of coeffs

• Original image = f , K-term approximation = fK

‖f − fK‖2 ≈ .01 · ‖f‖2

original image

Wavelet Approximation
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Conventional signal acquisition paradigm
Going against a long established tradition?

Acquire/Sample (A-to-D converter, digital camera)

Compress (signal dependent, nonlinear)

compress transmit/store

receive decompress

sample

sparse

wavelet
transform
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Fundamental question

Can we directly acquire just the useful part of the signal?

Question
If the signal is compressible, can it be acquired efficiently?
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Compressive sensing

• Term coined by Donoho

• Body of theory and algorithms for sparse signal acquisition
and recovery

• Seminal papers:
• Candès, Romberg and Tao (2006)
• Candès and Tao (2006)
• Donoho (2006)

• Hot area of research spanning information theory, signal
processing, statistics, mathematics, etc.

• Applications where measurements are
• slow or costly (MRI)
• missing or wasteful
• beyond other capabilities such as memory
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Plan

• Introduction to compressive sensing, undetermined systems of
equations, `1 minimization

• Main theoretical and computational techniques

• Matrix completion, undetermined linear matrix equations,
nuclear norm minimization.
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Undetermined systems of equations

Problem
Recover a signal x̄ ∈ Rn from m� n linear measurements

bk = 〈ak , x̄〉, k = 1, . . . ,m b = Ax̄

• In general this is impossible.

• Suppose we know that x̄ is sparse. Does that help?

Example

Suppose only one component of x̄ is different from zero.
Can we get by with fewer than n measurements?
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Possible approach to recover sparse x̄

Take m� n measurements b = Ax̄ and then solve

min ‖x‖0

Ax = b

Here ‖ · ‖0 stands for the `0 quasi-norm: ‖x‖0 = |{i : xi 6= 0}|.

Relevant questions

• Does this work (provided we take enough measurements)?

• Suppose x̄ is k-sparse, i.e., ‖x̄‖0 = k . How many
measurements suffice?

• How hard is it to solve the above `0-minimization problem?
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`0 versus `1-optimization

min ‖x‖0

Ax = b

computationally hard

min ‖x‖1

Ax = b

computationally tractable
(linear program)

• `1 norm is the convex envelope of the `0 quasi-norm.

• The `1 minimization problem is a convex relaxation of the `0

minimization problem.

• In many cases the above `1 minimization problem yields the
same solution as the `0 problem.
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A bit of history of `1 optimization

`1 minimization often finds the “right” answer

• Seismology

• Lasso regression

• Bandlimited deconvolution

• Total variation (TV) denoising

• Basis pursuit
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Acquiring a sparse signal

Suppose x̄ ∈ Rn is s-sparse.

• Take m random and nonadaptive measurements

bk = 〈ak , x̄〉, k = 1, . . . ,m  b = Ax̄

• Try to reconstruct x̄ via `1 minimization.

First fundamental result
If m & s · log n and the ak are suitably chosen, then the recovery is
exact.
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Nonadaptive sensing of compressible signals

Classical approach

• Measure the full signal x̄
(all coefficients)

• Store s largest coefficients

• Distorsion ‖x̄ − x̄s‖2

Compressive sensing

• Take m random
measurements

• Reconstruct x̂ via `1

minimization

Second fundamental result
If m & s · log n then

‖x̂ − x̄‖2 . ‖x̄ − x̄s‖2
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Optimality of compressive sensing

It is not possible to do better

• with fewer measurements

• with other reconstruction algorithms

Key features of compressive sensing

• Obtain compressible signals from few sensors

• Sensing is nonadaptive: no knowledge about the signal

• Simple acquisition followed by `1 decoder
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Next: formal statements

• Probabilistic approach
• Isotropy and incoherence
• Incoherent sampling theorems

• Deterministic approach
• Restricted isometry property
• Signal recovery theorem

• Robustness to noise

• Optimality
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Probabilistic approach: random sensing

Acquire x̄ ∈ Rn by measuring

bk = 〈ak , x̄〉, k = 1, . . . ,m  b = Ax̄

where ak are iid F for some distribution F in Cn.

Two key properties

• Isotropy: E(aa∗) = I

• Coherence measure µ(F ): smallest number such that

max
i=1,...,n

|〈a, ei 〉|2 ≤ µ(F ) with high probability

We want low coherence µ(F ).
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Coherence

Observe

• E(aa∗) = I implies µ(F ) ≥ 1.

• We would like µ(F ) to be as close as possible to 1 (incoherent
sensing).

Examples of isotropic incoherent sensing

• Gaussian sensing

• Binary sensing

• Partial Fourier transform

Notation: for a ∈ Cn and i = 1, . . . , n

a[i ] := 〈a, ei 〉.
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Isotropic incoherent sensing

Gaussian sensing

a ∼ N (0, I ), that is, a[1], . . . , a[n] are iid N (0, 1).

In this case µ(F ) = log n.

Binary sensing

a[1], . . . , a[n] are iid with distribution P(a[i ] = ±1) = 1/2.

In this case µ(F ) = 1.

Partial discrete Fourier transform

• Select k uniformly at random in {0, 1, . . . , n − 1}
• Set a[t] := e i2πkt/n, t = 0, 1 . . . , n − 1.

In this case µ(F ) = 1.
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An example of coherent sensing

Sample random components of x

• Select j uniformly at random in {1, . . . , n}
• Set a =

√
nej .

In this case
E(aa∗) = I

and
max

i=1,...,n
|a[i ]|2 = n.

For this type of sensing, how many samples do we need to recover
a 1-sparse vector with high probability?
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Incoherent sampling theorems

Compressive sampling approach

measure
bk = 〈ak , x̄〉, k = 1, . . . ,m  b = Ax̄

perform `1 recovery

x̂ := argmin
x
{‖x‖1 : Ax = b}

Theorem (Candès & Plan)

Assume x̄ is s-sparse. Then recovery is exact with probability at
least 1− 5/n − e−β provided that

m ≥ C0 · (1 + β) · µ(F ) · s · log n

for some constant C0.
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Related predecessors:

Theorem (Candès & Tao)

Assume x̄ is s-sparse and sample m Fourier coefficients selected at
random. Then recovery is exact with probability at least
1−O(n−β) provided that

m ≥ Cβ · s · log n

for some constant Cβ that depends only on the desired accuracy β.

This result is optimal: any reliable recovery method would require
at least s · log n samples.

Theorem (Candès & Tao)

Assume x̄ ∈ Rn is s-sparse, n is prime, and we sample m Fourier
coefficients. Then x̄ can be reconstructed from the m samples if
m ≥ 2s.
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Sampling of non-sparse signals

Given x ∈ Rn and s < n define

xs := argmin
‖z‖0≤k

‖z − x‖2

Theorem (Candès & Plan)

Let x ∈ Rn, β > 0 and s̄ be such that m ≥ Cβ · s̄ · log n. Then
with probability at least 1− 6/n − 6e−β the `1 solution x̂ satisfies

‖x̂ − x‖1 ≤ min
1≤s≤s̄

C · (1 + α) · ‖x − xs‖1

for some constant C and

α =

√
(1 + β)sµ(F ) log n log m log2 s

m
.
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Deterministic approach: restricted isometry

Restricted isometry property (RIP)

Given A ∈ Rm×n and k ∈ {1, . . . ,m}, the k-isometry constant δk
is the smallest δ ≥ 0 such that

(1− δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2

for all k-sparse x ∈ Rn.

If δk < 1, we say that A satisfies the RIP with constant δk .
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Signal recovery with a RIP matrix

Compressive sampling approach

measure
bk = 〈ak , x̄〉, k = 1, . . . ,m  b = Ax̄

perform `1 recovery

x̂ := argmin
x
{‖x‖1 : Ax = b}

Theorem (Candès, Romberg, Tao)

Assume δ2s ≤
√

2− 1. Then the solution x̂ satisfies

‖x̂ − x̄‖1 ≤ C · ‖x̄ − x̄s‖1

and

‖x̂ − x̄‖2 ≤ C · ‖x̄ − x̄s‖1√
s

for some constant C .
24 / 32



Matrices that satisfy RIP

With high probability an m × n matrix A satisfies the RIP in the
following cases:

• m & s log(n/s) and A is Gaussian

• m & s log(n/s) and A is binary

• m & s log4 n and A is partial DFT

• m & µ(F )s log4 n and rows of A are iid F .
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Sampling with noise

• Measurements in real life are generally noisy

• More appropriate model

b = Ax̄ + z

noise term z ∼ N (0, σ2I )

• Assume all columns of A have Euclidean norm equal to one.

• Modify `1 minimization to account for noise

Lasso

min
1

2
‖b − Ax‖2

2 + λ · σ · ‖x‖1

Dantzig selector

min ‖x‖1

‖A∗(b − Ax)‖∞ ≤ λ · σ
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Noise aware recovery (random sensing)

Theorem (Candès & Plan)

Let x̄ ∈ Rn, β > 0 and s̄ be such that m ≥ Cβ · s̄ · log n. Then
with probability at least 1− 6/n − 6e−β the solution x̂ to the
Lasso or the Dantzig selector with λ = 10

√
log n satisfies

‖x̂ − x̄‖1 ≤ min
1≤s≤s̄

C · (1 + α2) ·
(
‖x̄ − x̄s‖1 + sσ

√
log n

m

)

for some constant C .
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Optimality of Compressive Sensing

Back to Gaussian sensing

m Gaussian measurements and `1 decoding:

‖x̂ − x‖2 .
‖x − xs‖1√

s
, s ≈ m

log(n/m)
.

Question
Can we do better with other measurements or other algorithms?
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Signals with power law

Class of signals with power-law decay
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image sorted wavelet coefficients

Power law decay: |x |(1) ≥ |x |(2) ≥ · · · ≥ |x |(n)

|x |(k) ≤
C

kp

Model
`p ball Bp := {x : ‖x‖p ≤ 1}.
Discuss case p = 1 but same discussion applies to 0 ≤ p ≤ 1.
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Recovery of `1 ball B

Gaussian sensing

• Suppose unknown vector is in B
• Take m Gaussian measurements

‖x̂ − x‖2 .

√
log(n/m) + 1

m
.

Ideal sensing

Best we can hope from m linear measurements:

Em(B) = inf
D,E

sup
x∈B
‖x − D(F (x))‖.
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Gelfand widths

Theorem (Donoho)

dm(B) ≤ Em(B) ≤ C · dm(B),

where dm(B) is the m-width of B:

dm(B) := inf
V

{
sup
x∈B
‖PV x‖2 : codim(V ) < m

}

Theorem (Kashin, Garnaev-Gluskin)

For `1 ball

C1 ·
√

log(n/m) + 1

m
≤ dm(B) ≤ C2 ·

√
log(n/m) + 1

m
.

Compressive sensing achieves the limits of performance.
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