Elementary algorithms for convex optimization

Javier Peña Carnegie Mellon University

(joint work with Negar Soheili)

UN Encuentro de Matemáticas Universidad Nacional July 2012

Preamble

Convex optimization:

$$\min_{x \in Q} f(x)$$

f convex function, Q convex set.

Main algorithmic approaches

- First-order methods: gradient or subgradient descent.
- Second-order methods: Newton's method.
- First-order algorithms currently dominate research in large-scale convex optimization.

Theme

- Complexity analysis of first-order algorithms.
- Concentrate on two classical elementary algorithms for linear programming: The *perceptron* and *von Neumann's* algorithms.

Perceptron Algorithm

Algorithm to solve

$$A^{\mathsf{T}}y > 0$$
,

 $\text{for a given } A := \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \in \mathbb{R}^{m \times n}.$

Perceptron Algorithm (Rosenblatt, 1958)

- y := 0
- while $A^T y \not > 0$ $y := y + \frac{a_j}{\|a_j\|}, \text{ where } a_j^T y \le 0$ end while

Perceptron Algorithm

Attractive features of the Perceptron Algorithm

- Simple greedy iterations
- Simple convergence analysis (Block-Novikoff, 1962): Algorithm terminates in at most $\frac{1}{\rho(A)^2}$ iterations where

$$\rho(A) = \text{thickness of } \{y : A^{\mathsf{T}}y \ge 0\}.$$

- Dunagan & Vempala 2004: Randomized re-scaled version that terminates in $\mathcal{O}\left(n^3\log\left(\frac{1}{\rho(A)}\right)\right)$ elementary iterations with high probability.
- Belloni, Freund & Vempala 2007: Randomized re-scaled perceptron for general conic systems with similar convergence.

Thickness parameter $\rho(A)$

Assume

- $A = [a_1 \ \cdots \ a_n]$, where $||a_j|| = 1, j = 1, ..., n$.
- The problem $A^{\mathsf{T}}y > 0$ is feasible.

Definition

$$\rho(A) = \max_{\|y\|=1} \left\{ r : \mathbb{B}(y, r) \subseteq \{z : A^{\mathsf{T}}z \ge 0\} \right\}$$
$$= \max_{\|y\|=1} \min_{i} a_{i}^{\mathsf{T}}y.$$

Main Theorem

Theorem (Soheili & P, 2011)

Smooth perceptron algorithm that terminates in at most

$$\frac{2\sqrt{2\log(n)}}{\rho(A)}-1$$

elementary iterations.

Remarks

- Smooth version retains the algorithm's original simplicity.
- Unlike Dunagan and Vempala's, our algorithm is deterministic.
- Our iteration bound is weaker on $\rho(A)$ but stronger on n and involves no big constants.
- Smooth perceptron for general conic systems $A^Ty \in K$.

Classical Perceptron Algorithm

Classical Perceptron Algorithm

- $y_0 := 0$
- for $k = 0, 1, \dots$ $a_j^\mathsf{T} y_k := \min_i a_i^\mathsf{T} y_k$ $y_{k+1} := y_k + a_j$

end for

Observe

$$a_j^\mathsf{T} y := \min_i a_i^\mathsf{T} y \Leftrightarrow a_j = Ax(y), \ x(y) = \underset{x \in \Delta_n}{\operatorname{argmin}} \langle A^\mathsf{T} y, x \rangle,$$

where
$$\Delta_n := \{x \in \mathbb{R}^n_+ : \|x\|_1 = 1\}.$$

Hence in the above algorithm $y_k = Ax_k$ where $x_k \ge 0$, $||x_k||_1 = k$.

Normalized Perceptron Algorithm

Recall
$$x(y) := \underset{x \in \Delta_n}{\operatorname{argmin}} \langle A^{\mathsf{T}} y, x \rangle.$$

Normalized Perceptron Algorithm

- $y_0 := 0$
- for $k = 0, 1, \dots$ $\theta_k := \frac{1}{k+1}$ $y_{k+1} := (1 - \theta_k)y_k + \theta_k Ax(y_k)$ and for

end for

In this algorithm $y_k = Ax_k$ for $x_k \in \Delta_n = \{x \in \mathbb{R}^n_+ : ||x||_1 = 1\}$.

Smooth Perceptron Algorithm

Key step

Use a smooth version of

$$x(y) = \underset{x \in \Delta_n}{\operatorname{argmin}} \langle A^{\mathsf{T}} y, x \rangle,$$

namely,

$$x_{\mu}(y) := \frac{\exp(-A^{\mathsf{T}}y/\mu)}{\|\exp(-A^{\mathsf{T}}y/\mu)\|_{1}}$$

for some $\mu > 0$.

Smooth Perceptron Algorithm

Smooth Perceptron Algorithm

•
$$y_0 := \frac{1}{n}A\mathbf{1}; \ \mu_0 := 2; \ x_0 := x_{\mu_0}(y_0)$$

• for $k = 0, 1, \dots$
 $\theta_k := \frac{2}{k+3}$
 $y_{k+1} := (1 - \theta_k)(y_k + \theta_k A x_k) + \theta_k^2 A x_{\mu_k}(y_k)$
 $\mu_{k+1} := (1 - \theta_k)\mu_k$
 $x_{k+1} := (1 - \theta_k)x_k + \theta_k x_{\mu_{k+1}}(y_{k+1})$
end for

Main loop in the normalized version:

for
$$k = 0, 1, \dots$$

$$\theta_k := \frac{1}{k+1}$$

$$y_{k+1} := (1 - \theta_k)y_k + \theta_k Ax(y_k)$$

end for

Perceptron algorithm as a subgradient algorithm

Let

$$\phi(y) := -\frac{\|y\|^2}{2} + \min_{x \in \Delta_n} \langle A^\mathsf{T} y, x \rangle.$$

Observe

$$\max_{y} \phi(y) = \min_{x \in \Delta_n} \frac{1}{2} ||Ax||^2 = \frac{1}{2} \rho(A)^2.$$

Perceptron update:

$$y_{k+1} = y_k + \theta_k(-y_k + Ax(y_k))$$

is precisely a subgradient update for

$$\max_y \phi(y).$$

Smooth perceptron algorithm as a gradient algorithm

Recall

$$\phi(y) := -\frac{\|y\|^2}{2} + \min_{x \in \Delta_n} \langle A^\mathsf{T} y, x \rangle.$$

Let the *smooth* approximation ϕ_{μ} of ϕ be defined as

$$\phi_{\mu}(y) := -\frac{\|y\|^2}{2} + \min_{x \in \Delta_n} \left\{ \langle A^\mathsf{T} y, x \rangle + \mu \, d(x) \right\}$$
$$= -\frac{\|y\|^2}{2} + \langle A^\mathsf{T} y, x_{\mu}(y) \rangle + \mu \, d(x_{\mu}(y)),$$

where
$$\mu > 0$$
 and $d(x) = \sum_{j=1}^{n} x_j \log(x_j) + \log(n)$.

Smooth perceptron: gradient scheme for $\max_{\mathbf{y}} \phi_{\mu}(\mathbf{y})$.

Proof of Main Theorem

Apply Nesterov's excessive gap technique (Nesterov, 2005).

Claim

For all $x \in \Delta_n$ and $y \in \mathbb{R}^m$ we have $\phi(y) \leq \frac{1}{2} ||Ax||^2$.

Claim

For all $y \in \mathbb{R}^m$ we have $\phi(y) \le \phi_{\mu}(y) \le \phi(y) + \mu \log(n)$.

Lemma

The iterates $x_k \in \Delta_n$, $y_k \in \mathbb{R}^m$, k = 0, 1, ... generated by the Smooth Perceptron Algorithm satisfy the Excessive Gap Condition

$$\frac{1}{2}\|Ax_k\|^2 \leq \phi_{\mu_k}(y_k).$$

Proof of Main Theorem

Putting together the two claims and lemma we get

$$\frac{1}{2}\rho(A)^{2} \leq \frac{1}{2}||Ax_{k}||^{2} \leq \phi_{\mu_{k}}(y_{k}) \leq \phi(y_{k}) + \mu_{k}\log(n).$$

So

$$\phi(y_k) \geq \frac{1}{2}\rho(A)^2 - \mu_k \log(n).$$

In the algorithm $\mu_k = 2 \cdot \frac{1}{3} \cdot \frac{2}{4} \cdot \cdot \cdot \cdot \frac{k}{k+2} = \frac{4}{(k+1)(k+2)} < \frac{4}{(k+1)^2}$.

Thus $\phi(y_k) > 0$, and consequently $A^T y_k > 0$, as soon as

$$k \geq \frac{2\sqrt{2\log(n)}}{\rho(A)} - 1.$$

Numerical Experiments

Recall:

	Classical Perceptron	Smooth Perceptron
Complexity	1	$2\sqrt{2\log(n)}$
	$\overline{\rho(A)^2}$	$\frac{1}{\rho(A)}$

This suggests relationship:

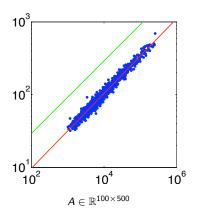
$$Y = 2\sqrt{2\log(n) \cdot X}$$

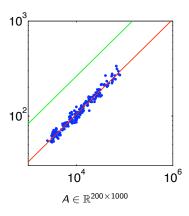
between

Y = number of iterations in Smooth Perceptron algorithm

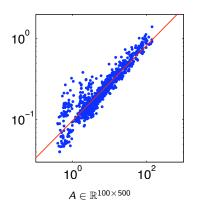
X = number iterations in Classical Perceptron algorithm.

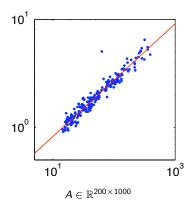
Number of iterations for randomly generated instances





CPU times for randomly generated instances





General conic feasibility problem

Assume $K \subseteq \mathbb{R}^n$ is a regular closed convex cone with dual K^* .

Given $A \in \mathbb{R}^{m \times n}$, consider the problem

$$A^{\mathsf{T}}y\in \mathrm{int}(K^*).$$

Cone of feasible solutions $\mathcal{F} := \{ y : A^T y \in K^* \}.$

Interior separation oracle for ${\cal F}$

If $A^{\mathsf{T}}y \not\in \operatorname{int}(K^*)$ find $u \in \mathcal{F}^*, \ u \neq 0$ such that $\langle u, y \rangle \leq 0$.

Assume

- The problem $A^Ty \in int(K^*)$ is feasible.
- An interior separation oracle for $\mathcal F$ is available. (This is the case if an interior separation oracle for K is available.)

General perceptron algorithm

General Perceptron Algorithm (Belloni et al, 2007)

- v := 0
- while $A^{\mathsf{T}}y \not\in \operatorname{int}(K^*)$ $y:=y+u, \text{ where } u \in \mathcal{F}^*, \ \|u\|=1, \text{ and } u^{\mathsf{T}}y \leq 0$ end while

Thickness of cone \mathcal{F}

$$au_{\mathcal{F}} := \max_{\|y\|=1} \left\{ r : \mathbb{B}(y, r) \subseteq \mathcal{F} \right\}.$$

Proposition (Belloni et al, 2007)

General perceptron algorithm terminates in at most $\frac{1}{\tau_F^2}$ iterations.

Smooth perceptron algorithm for conic systems

We need something like Δ_n and $x_\mu(y)$ for general K.

Coefficient of linearity (Freund & Vera 1999)

$$\beta_K := \max_{\|u\|^*=1} \min_{x \in K, \|x\|=1} \langle u, x \rangle.$$

Since $K \subseteq \mathbb{R}^n$ is a regular cone:

- (i) $0 < \beta_K \le 1$ and $\beta_K = 1$ for a canonical norm in \mathbb{R}^n .
- (ii) There exists $\mathbf{1} \in K^*$ such that $\|\mathbf{1}\|^* = 1$ and

$$\beta_{\mathcal{K}} = \min_{\mathbf{x} \in \mathcal{K}, \|\mathbf{x}\| = 1} \langle \mathbf{1}, \mathbf{x} \rangle.$$

Examples

In all of the following cases $\beta_K = 1$:

•
$$K = \mathbb{R}^n_+$$
, $||x|| = \sum_{i=1}^n |x_i|$, $\mathbf{1} = \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}^\mathsf{T}$.

•
$$K = \mathbb{S}_{+}^{n}$$
, $||X|| = \sum_{i=1}^{n} \sigma_{i}(X)$, $\mathbf{1} = I_{n}$.

$$\bullet \ K = \mathcal{L}_n := \left\{ x = \begin{bmatrix} x_0 \\ \bar{x} \end{bmatrix} \in \mathbb{R}^n : x_0 \ge \|\bar{x}\|_2 \right\}, \ \|x\| = |x_0| + \|\bar{x}\|_2,$$

$$\mathbf{1} = \begin{bmatrix} 1 \\ \mathbf{0} \end{bmatrix}.$$

 A cartesian product of cones of the above three types (with total norm = sum of individual norms).

Let
$$\Delta(K) := \{x \in K : \langle \mathbf{1}, x \rangle = 1\}.$$

Assume

ullet There is an oracle that for any $g\in\mathbb{R}^n$ finds

$$\underset{x}{\operatorname{argmin}} \left\{ \langle g, x \rangle + d(x) : x \in \Delta(K) \right\}$$

for a prox-function $d: \Delta(K) \to \mathbb{R}$.

• Assume d has strong convexity parameter 1 and min value 0.

Examples (for $K = \mathbb{S}_+^n$)

•
$$d(X) = \sum_{i=1}^{n} \lambda_i(X) \log(\lambda_i(X)) + \log(n)$$

•
$$d(X) = \frac{1}{2} \operatorname{trace}(X^2) - \frac{1}{2n} = \frac{1}{2} ||X||_F^2 - \frac{1}{2n}$$

Smooth perceptron algorithm

Let
$$\bar{x} := \operatorname{argmin}_{x \in \Delta(K)} d(x)$$
.

For $\mu > 0$ let $x_{\mu} : \mathbb{R}^m \to \mathbb{R}^n$ be defined as

$$x_{\mu}(y) := \operatorname*{argmin}_{x} \left\{ \langle A^{\mathsf{T}} y, x
angle + d(x) : x \in \Delta(\mathcal{K})
ight\}.$$

Smooth Perceptron Algorithm

•
$$y_0 := A\bar{x}$$
; $\mu_0 := 2||A||^2$; $x_0 := x_{\mu_0}(y_0)$

• for
$$k = 0, 1, \dots$$

$$\theta_k := \frac{2}{k+3}$$

$$y_{k+1} := (1 - \theta_k)(y_k + \theta_k A x_k) + \theta_k^2 A x_{\mu_k}(y_k)$$

$$\mu_{k+1} := (1 - \theta_k)\mu_k$$

$$x_{k+1} := (1 - \theta_k)x_k + \theta_k x_{\mu_{k+1}}(y_{k+1})$$

end for

Main Theorem (extended version)

Theorem (Soheili & P, 2012)

Smooth perceptron algorithm terminates in at most

$$\frac{2\|A\|\sqrt{2D}}{\rho(A)}-1$$

elementary iterations.

Here
$$\rho(A) := \max_{\|y\|=1} \min_{x \in \Delta(K)} \langle A^\mathsf{T} y, x \rangle$$
 and $D = \max_{x \in \Delta(K)} d(x)$.

Remarks

- General perceptron terminates in at most $\frac{1}{\tau_F^2}$ iterations (Belloni et al 2007).
- Freund & Vera 1999 showed $au_{\mathcal{F}} \geq \frac{eta_{\mathcal{K}} \cdot
 ho(\mathcal{A})}{\|\mathcal{A}\|}$
- For $K = \mathbb{R}^n_+$ and properly scaled A, we have $\tau_{\mathcal{F}} = \frac{\rho(A)}{\|A\|}$.
- $C(A) := \frac{\|A\|}{o(A)} = \text{condition number for } A^{\mathsf{T}}y \in K \text{ (Renegar)}.$

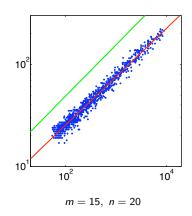
More numerical experiments

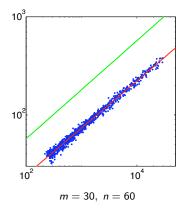
 $K = \mathbb{S}^n_+, \ A : \mathbb{S}^n \to \mathbb{R}^m$ for randomly generated A.

Let:

Y = number of iterations in Smooth Perceptron algorithm

X = number iterations in Classical Perceptron algorithm.





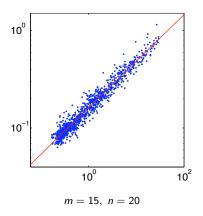
More numerical experiments

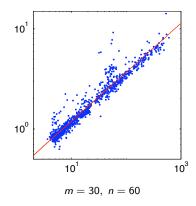
 $K = \mathbb{S}^n_+, \ A : \mathbb{S}^n \to \mathbb{R}^m$ for randomly generated A.

Let:

Y = CPU time taken by Smooth Perceptron algorithm

X = CPU time taken by Perceptron algorithm.





What if $A^Ty \in int(K^*)$ is infeasible?

In this case the alternative

$$Ax = 0, x \in \Delta(K)$$

is feasible and

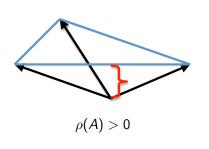
$$\rho(A) = \max_{||y||=1} \min_{x \in \Delta(K)} \langle A^{\mathsf{T}} y, x \rangle \leq 0.$$

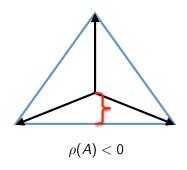
Recall

$$\Delta(K) = \{x \in K : \langle \mathbf{1}, x \rangle = 1\}.$$

Geometric interpretation

Blue set: $\{Ax : x \in \Delta(K)\}.$





Renegar's condition number

$$C(A) := \frac{\|A\|}{|\rho(A)|}.$$

Von Neumann Algorithm $(K = \mathbb{R}^n_+)$

Algorithm to solve

$$Ax = 0, x \in \Delta_n. \tag{1}$$

Von Neumann Algorithm, 1948

•
$$x_0 := \frac{1}{n} \mathbf{1}$$
; $y_0 := Ax_0$
• for $k = 0, 1, ...$
if $v_k := \min_i a_i^\mathsf{T} y_k > 0$ then STOP; (1) is infeasible
$$\lambda_k := \frac{1 - v_k}{\|y_k\|^2 - 2v_k + 1}$$

$$x_{k+1} := \lambda_k x_k + (1 - \lambda_k) x(y_k)$$

 $y_{k+1} := \lambda_k y_k + (1 - \lambda_k) A x(y_k)$ end for

Main loop in the normalized perceptron:

for
$$k = 0, 1, \dots$$

$$\theta_k := \frac{1}{k+1}$$

$$x_{k+1} := (1 - \theta_k)x_k + \theta_k x(y_k)$$
end for

Von Neumann Algorithm $(K = \mathbb{R}^n_+)$

Theorem (Dantzig, 1992)

If (1) is feasible, then the Von Neumann Algorithm finds an ϵ -solution to (1) in at most $\frac{\|A\|^2}{\epsilon^2}$ iterations.

Theorem (Epelman & Freund, 2000)

If (1) is feasible and $\rho(A) < 0$, then the Von Neumann Algorithm finds an ϵ -solution to (1) in at most

$$C(A)^2 \cdot \log\left(\frac{\|A\|}{\epsilon}\right)$$

iterations.

Recall $C(A) = ||A||/|\rho(A)|$.

Von Neumann Algorithm (general K)

Assume $K \subseteq \mathbb{R}^n$ is a regular closed convex cone with dual K^* .

Given $A \in \mathbb{R}^{m \times n}$, consider the alternative systems

$$A^{\mathsf{T}}y\in \mathsf{int}(K^*)\tag{D}$$

and

$$Ax = 0, x \in \Delta(K).$$
 (P)

Assume

There is an oracle that for any $y \in \mathbb{R}^m$ finds

$$x(y) := \underset{x}{\operatorname{argmin}} \left\{ \langle A^{\mathsf{T}} y, x \rangle : x \in \Delta(K) \right\}.$$

Von Neumann Algorithm (general K)

Von Neumann Algorithm (Epelman & Freund, 2000)

- $x_0 \in \Delta(K)$ arbitrary; $y_0 := Ax_0$
- for k = 0, 1, ... $\text{if } v_k := \min_{x \in \Delta(K)} \langle A^\mathsf{T} y_k, x \rangle > 0 \text{ then STOP; } A^\mathsf{T} y_k \in \text{int}(K^*).$ $\lambda_k := \frac{1 - v_k}{\|v_k\|^2 - 2v_k + 1}$ $x_{k+1} := \lambda_k x_k + (1 - \lambda_k) x(y_k)$ $y_{k+1} := \lambda_k y_k + (1 - \lambda_k) A x(y_k)$ end for

Von Neumann Algorithm (general K)

Theorem (Epelman & Freund, 2000)

Assume $|\rho(A)| > 0$.

(a) If $\rho(A) > 0$ (i.e., (D) is feasible), then von Neumann's Algorithm finds a solution to (D) in at most

$$C(A)^2$$

iterations.

(b) If If $\rho(A) > 0$ (i.e., (P) is feasible), then von Neumann's Algorithm finds an ϵ -solution to (P) in at most

$$C(A)^2 \cdot \log\left(\frac{\|A\|}{\epsilon}\right)$$

iterations.

Smooth Perceptron/von Neumann Algorithm

Theorem (Soheili & P, 2012)

Smooth Perceptron/von Neumann Algorithm such that:

(a) If $\rho(A) > 0$, then algorithm finds a solution to (D) in at most

$$\mathcal{O}\left(C(A) \cdot \log(C(A))\right)$$

elementary iterations.

(b) If $\rho(A) < 0$, then algorithm finds an ϵ -solution to (P) in at most

$$\mathcal{O}\left(C(A) \cdot \log\left(\frac{\|A\|}{\epsilon}\right)\right)$$

elementary iterations.

Summary

- Smooth versions of the perceptron and von Neumann's algorithm improve condition-based complexity roughly from $C(A)^2$ to C(A).
- Smooth versions preserve most of the algorithms' original simplicity.
- Similar results are likely to hold for other first-order algorithms.