Elementary algorithms for convex optimization

Javier Pefia
Carnegie Mellon University

(joint work with Negar Soheili)

UN Encuentro de Matematicas
Universidad Nacional
July 2012

35

Preamble

Convex optimization:

inf
min f(x)

f convex function, @ convex set.

Main algorithmic approaches
@ First-order methods: gradient or subgradient descent.
@ Second-order methods: Newton’s method.

o First-order algorithms currently dominate research in
large-scale convex optimization.

Theme
@ Complexity analysis of first-order algorithms.

@ Concentrate on two classical elementary algorithms for linear
programming: The perceptron and von Neumann's algorithms.

N

35

Perceptron Algorithm

Algorithm to solve
ATy >0,

foragiven A:=[a; a - a, € R™"

Perceptron Algorithm (Rosenblatt, 1958)
o y:=0
e while ATy #0
y =y+ H%H’ where ajTy <0
end while

35

Perceptron Algorithm

Attractive features of the Perceptron Algorithm

@ Simple greedy iterations

@ Simple convergence analysis (Block-Novikoff, 1962):
Algorithm terminates in at most p(—i‘)Q iterations where

p(A) = thickness of {y : ATy > 0}.

@ Dunagan & Vempala 2004: Randomized re-scaled version that
terminates in O (n3 log (ﬁ)) elementary iterations with
high probability.

@ Belloni, Freund & Vempala 2007: Randomized re-scaled
perceptron for general conic systems with similar convergence.

35

Thickness parameter p(A)

Assume
@ A=[ay -+ ap|, where |g||=1,,=1,...,n
@ The problem ATy > 0 is feasible.

Definition

p(A) = max {r By, r) C{z:ATz> 0}}
llyll=1
= max min a;ry.
lyll=1 i

small p(A)

large p(A)

5/35

Main Theorem

Theorem (Soheili & P, 2011)

Smooth perceptron algorithm that terminates in at most

2y/2log(n) 1

p(A)

elementary iterations.

Remarks
@ Smooth version retains the algorithm'’s original simplicity.

@ Unlike Dunagan and Vempala's, our algorithm is deterministic.

@ Our iteration bound is weaker on p(A) but stronger on n and
involves no big constants.

@ Smooth perceptron for general conic systems ATy € K.

6

35

Classical Perceptron Algorithm

Classical Perceptron Algorithm

@ yp:=0
e for k=0,1,...
ajTyk ‘= min a;ryk
1
Yk+1 = Yk + a;
end for
Observe

aly :==minaly & a; = Ax(y), x(y) = argmin(ATy, x),
! XGAn

where A, := {x € R] : ||x||1 = 1}.

Hence in the above algorithm y, = Axx where xx > 0, ||xk||l1 = k.

35

Normalized Perceptron Algorithm

Recall x(y) := argmin(ATy, x).
XEA,

Normalized Perceptron Algorithm
@ yp: =0
° fork—O,l, .

0, = 1
Vi1 : (— 0k)yk + 0kAx(yvk)

end for

I|>

In this algorithm yx = Ax, for xx € A, = {x € R

Lolixll =1}

35

Smooth Perceptron Algorithm

Key step

Use a smooth version of

x(y) = argmin(ATy, x),
XEA,

namely,
exp(=ATy/n)
xu(y) =

" llexp(=ATy/u)ll
for some p > 0.

35

Smooth Perceptron Algorithm

Smooth Perceptron Algorithm
° yp = %Al; Ho = 2; Xo 1= X,0(Y0)

ofork_O,l, .

O = k+3

Va1 = (1= 0k)(yk + Ok Axk) + 02 Ax,, (vk)
pi1 = (1 — Ox) puk

Xk+1 7= (1 = Ok)xk + Orexpuyyy (Vi+1)

end for

Main loop in the normalized version:

fork_O,l,...

Ok k+1
Vi1 = (1 — 0k)yx + 0 Ax(yi)

end for

10/35

Perceptron algorithm as a subgradient algorithm

Let)
o(y) = — Iy + min (ATy, x).
2 xXEA, ’
Observe))
— in © 2 _ * 2
max §(y) = min S{|Ax||" = 5p(A)".

Perceptron update:

Y1 = Yk + Ok(—yk + Ax(yk))

is precisely a subgradient update for

max d(y).

y

11/35

Smooth perceptron algorithm as a gradient algorithm

Recall

8() =~ 4 min 4Ty
' 2 xEA, T
Let the smooth approximation ¢, of ¢ be defined as
2 .
ouly) = b+ min {(AT%X) +u d(X)}

— _% + (ATy, x,(y)) + ud(x.(y)),

n
where 1 > 0 and d(x) = ij log(x;) + log(n).
j=1

Smooth perceptron: gradient scheme for max ¢, (y).
y

12/35

Proof of Main Theorem

Apply Nesterov's excessive gap technique (Nesterov, 2005).

Claim

For all x € A, and y € R™ we have ¢(y) < 3[|Ax|.

Claim
For all y € R™ we have ¢(y) < ¢.(y) < ¢(y) + plog(n).

Lemma

The iterates x, € A, yxk € R™, k=0,1,... generated by the
Smooth Perceptron Algorithm satisfy the Excessive Gap Condition

1
SIAKI < 6, ().

13 /35

Proof of Main Theorem

Putting together the two claims and lemma we get

1 1
5P(A) < SIAX® < due(yi) < @) + pux log(n).

N

So 1
(yk) > EP(A)2 — pui log(n).

. . kK _ 4 4
In the algorithm py =2-3- 7+ 155 =) (k12) < (kr1)2-

Thus ¢(yx) > 0, and consequently ATy, > 0, as soon as

2y/2log(n) !

)

OJ

14 /35

Numerical Experiments

Recall:
‘ Classical Perceptron Smooth Perceptron
. 1 2/2log(n)
Complexity —— =1
p(A)? p(A)

This suggests relationship:

Y =24/2log(n) - X

between
Y = number of iterations in Smooth Perceptron algorithm
X = number iterations in Classical Perceptron algorithm.

15/35

Number of iterations for randomly generated instances

10° 10°
10°
. 10° '
10
10° 10* 10° 10* 10°

Ac R100x500 Ac R200x1000

16/35

CPU times for randomly generated instances

Ac R100x500 Ac R200x 1000

17/35

General conic feasibility problem

Assume K C R" is a regular closed convex cone with dual K*.
Given A € R™*" consider the problem
ATy € int(K*).

Cone of feasible solutions F := {y : ATy € K*}.

Interior separation oracle for F
If ATy & int(K*) find u € F*, u # 0 such that (u,y) < 0.

Assume
@ The problem ATy € int(K*) is feasible.

@ An interior separation oracle for F is available.
(This is the case if an interior separation oracle for K is available.)

18 /35

General perceptron algorithm

General Perceptron Algorithm (Belloni et al, 2007)
e y:=0
o while ATy & int(K*)
y:=y+u, where u€ F* |ju|=1, and uTy <0
end while

Thickness of cone F

Tr = max {r:B(y,r) C F}.
yll=1

Proposition (Belloni et al, 2007)

General perceptron algorithm terminates in at most T% iterations.

F

19/35

Smooth perceptron algorithm for conic systems

We need something like A, and x,(y) for general K.
Coefficient of linearity (Freund & Vera 1999)

Bk = max min (u,x).
lJull*=1xeK,|Ix[|=1

Since K C R" is a regular cone:

(i) 0 < Bk <1 and Bk =1 for a canonical norm in R".

(i) There exists 1 € K* such that ||1||* =1 and

(1,x).

min
xeK|x]|=1

20/35

Examples
In all of the following cases fx = 1:

T
o K:R’_:_7 HXH 227:1 ’Xi|7 1= [1 1] .

o K=S1, [[X]| =X 40iX), 1=1,.
. X0 n. = =
o K= Lyi= {x= 2] € R0 IRl), Il = bl + %12

Y.

@ A cartesian product of cones of the above three types
(with total norm = sum of individual norms).

35

Let A(K) :={xe K:(1,x) =1}

Assume
@ There is an oracle that for any g € R” finds

arg;nin {{g,x) +d(x): x € A(K)}

for a prox-function d : A(K) — R.

@ Assume d has strong convexity parameter 1 and min value 0.

Examples (for K = S7)

o d(X) = Ai(X)log(Ai(X)) + log(n)
i=1

1 1 1 1
e d(X)= Etrace(Xz) 5= EHXH% ~

Smooth perceptron algorithm

Let X := argmin,ca(k) d(x).

For p1> 0 let x, : R™ — R" be defined as

xu(y) = arg;nin {(ATy,X> +d(x):x € A(K)} .

Smooth Perceptron Algorithm
° yo = AZ; pio = 2[|AlI%; X0 1= X (0)
e for k=0, 1

Ok == k+3

Y1 = (1 — 0k) (v + Ok Axi) + 02 Ax,, (k)
1 = (1 — 0k)

X1 = (1= Ox)xic + HkXMk-H(.ykJrl)

end for

23 /35

Main Theorem (extended version)
Theorem (Soheili & P, 2012)

Smooth perceptron algorithm terminates in at most

2|Allv2D

p(A) !

elementary iterations.

Here p(A) :== max min (ATy,x)and D= max d(x).
oA ||yH=1><€A(K)< y:X) xeA(K) (x)
Remarks

@ General perceptron terminates in at most — iterations

F
(Belloni et al 2007).

@ Freund & Vera 1999 showed 77 > BK‘"Z%A)

@ For K =R’ and properly scaled A, we have 7 = %-

e C(A) = IAL — condition number for ATy € K (Renegar).

T op(A) T

24 /35

More numerical experiments

K =87, A:S" — R™ for randomly generated A.

Let:

Y = number of iterations in Smooth Perceptron algorithm
X = number iterations in Classical Perceptron algorithm.

m=15 n=20

10

10°

10°

10*

m =30, n=60

25 /35

More numerical experiments
K =81, A:S" — R™ for randomly generated A.

Let:
Y = CPU time taken by Smooth Perceptron algorithm
X = CPU time taken by Perceptron algorithm.

m =30, n=60

m=15 n=20
26 /35

What if ATy € int(K*) is infeasible?

In this case the alternative
Ax =0, x € A(K)
is feasible and

p(A) = max min (ATy, x) <0.
) ||}’|\=1><€A(K)<)

Recall
AK)={xe K:(1,x) =1}

27 /35

Geometric interpretation

Blue set: {Ax:x € A(K

p(A) >

Renegar’s condition number

28/35

Von Neumann Algorithm (K = R")

Algorithm to solve
Ax =0, x € A, (1)
Von Neumann Algorithm, 1948

@ xp = %1; Yo 1= Axp

e for k=0,1,...
if v := min,-al-Tyk > 0 then STOP; (1) is infeasible
L 1—v
M= P2

X1 = Mexk + (1 — Ae)x(yk)

Vi1 = Mk + (1 — M) Ax(yk)
end for

Main loop in the normalized perceptron:
for k=0,1,...
1
0= 57
Xe+1 = (1 — Op)xk + Orx(yk)
end for

29 /35

Von Neumann Algorithm (K = R")

Theorem (Dantzig, 1992)

If (1) is feasible, then the Von Neumann Algorithm finds an

A

2
e-solution to (1) in at most 52H iterations.

Theorem (Epelman & Freund, 2000)

If (1) is feasible and p(A) < 0, then the Von Neumann Algorithm
finds an e-solution to (1) in at most

c(a 1o (121)

€

iterations.

Recall C(A) = [|A]l/|o(A).

30/35

Von Neumann Algorithm (general K)

Assume K C R" is a regular closed convex cone with dual K*.

Given A € R™*" consider the alternative systems
ATy € int(K*) (D)

and
Ax =0, x € A(K). (P)

Assume
There is an oracle that for any y € R™ finds

x(y) = arg)r(’nin {(ATy,x> IX € A(K)} .

31/35

Von Neumann Algorithm (general K)

Von Neumann Algorithm (Epelman & Freund, 2000)
e xp € A(K) arbitrary; yp := Axp

e for k=0,1,...
if v ;= min (ATy,, x) > 0 then STOP; ATy, € int(K*).
xeA(K)
L 1—v
M= T ouT

X1 = Mexk + (1 — Ae)x(vk)
Vi1 = Mk + (1 — X) Ax(yk)

end for

32/35

Von Neumann Algorithm (general K)

Theorem (Epelman & Freund, 2000)
Assume |p(A)| > 0.

(a) If p(A) > 0 (i.e. (D) is feasible), then von Neumann's
Algorithm finds a solution to (D) in at most

C(A)?
iterations.

(b) IfIf p(A) > 0 (i.e., (P) is feasible), then von Neumann's
Algorithm finds an e-solution to (P) in at most

. |og<” ||>

iterations.

33/35

Smooth Perceptron/von Neumann Algorithm

Theorem (Soheili & P, 2012)

Smooth Perceptron/von Neumann Algorithm such that:
(a) If p(A) > 0, then algorithm finds a solution to (D) in at most

O (C(A) - log(C(A)))
elementary iterations.

(b) If p(A) < 0, then algorithm finds an e-solution to (P) in at

o (ctn-1og (141))

elementary iterations.

34 /35

Summary

@ Smooth versions of the perceptron and von Neumann'’s
algorithm improve condition-based complexity roughly from
C(A)? to C(A).

@ Smooth versions preserve most of the algorithms’ original
simplicity.

@ Similar results are likely to hold for other first-order
algorithms.

35/35

