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Goals:

• Basic theory of semidefinite and second-order programming

• Some applications

• Acquaintance with some popular solvers

• Current challenges/trends

Course outline:

• SDP: generalization of linear programming (LP)

• Examples of SDP applications

• SDP theory: duality, complementarity

• Second-order programming (SOCP)

• SOCP/LP/SDP conic programming

• Examples of SOCP/LP/SDP applications

• Solvers: SeDuMi, SDPT3

• Polynomials and sum-of-squares (SOS), copositive matrices

• Symmetric, homogeneous, hyperbolic cones

Brief and incomplete history of SDP

• Eigenvalue optimization, LMI problems (1960s – 1970s)

• Lovász theta function (1979) in information theory

• Interior-point algorithms for SDP by Alizadeh, and by
Nesterov & Nemirovski (1980s, 1990s)

• Intense development of theory, algorithms, applications
(1990s)

• Extension to symmetric cones, development of
general-purpose solvers (1990s)

• Currently: homogeneous, hyperbolic, polynomial
programming. Solution to large problems.

Preamble: Some stuff about symmetric matrices

Rn : n-dim Euclidean vector space
Rn×n: n× n matrices with entries in R

Sn: n× n symm matrices with entries in R

On: n× n orthogonal matrices

Thm (spectral decomposition). If X ∈ Sn then there exist
λ(X) = (λ1(X), . . . , λn(X)) ∈ Rn and Q ∈ On such that

X = QDiag(λ(X))QT.

Defn: Let X ∈ Sn be given.
X is positive semidefinite if λ(X) ≥ 0 denoted as X $ 0
X is positive definite if λ(X) > 0, denoted as X % 0



Prop. Let X ∈ Sn. Then

X $ 0 ⇔ λmin(X) ≥ 0
⇔ ∃R ∈ Sn s.t. X = R2

⇔ ∃L ∈ Rn×n s.t. X = LLT

⇔ ∀u ∈ Rn uTXu ≥ 0.

Prop.

(a) If M ∈ Rm×n then ‖M‖2 = λmax(MTM) = λmax(MMT).

(b) If M ∈ Sn then ‖M‖ = |λmax(M)|.

Positive semidefinite cone:

Sn
+ := {X ∈ Sn : X $ 0} .

SDP as a generalization of linear programming (LP)

LP:

max
y

bTy

s.t. y1a1 + · · · + ymam ≤ c,

where c, a1, . . . , am ∈ Rn, b ∈ Rm are given and y ∈ Rm.

SDP:

max
y

bTy

s.t. y1A1 + · · · + ymAm ' C

where C, A1, . . . , Am ∈ Sn, b ∈ Rm are given and y ∈ Rm.

Here M ' N ⇔ N −M $ 0.

Examples of SDP.

Example 1 (eigenvalue optimization): Suppose
A0, A1, . . . Am ∈ Sn and want to solve

min
y

λmax(A0 + y1A1 + · · · + ymAm).

Can reformulate as

min t
s.t. A0 + y1A1 + · · · + ymAm ' tI

Example 2 (norm minimization): Suppose
A0, A1, . . . Am ∈ Rp×q and want to solve

min
y
‖A(y)‖,

for A(y) := A0 + y1A1 + · · · + ymAm.

Can reformulate as

min t

s.t.

[
tI A(y)

A(y)T tI

]
$ 0

The formulation relies on the following lemma.

Schur Complement Lemma: Suppose B, D are symmetric
and B % 0. Then[

B C
CT D

]
$ 0 ⇔ D − CTB−1C $ 0.



LP primal and dual forms

Recall that the dual of

max bTy
s.t. y1a1 + · · · + ymam ≤ c

is

min cTx
s.t. aT

i x = bi, i = 1, . . . , m
x ≥ 0.

The dual can be seen as the “best” upper bound on the primal
problem obtained by combining the primal constraints.

Can do something similar for SDP.

Endow Sn with the following inner product: for X, S ∈ Sn

X • S := trace(XS)

Recall: for X ∈ Rn×n

trace(X) =
n∑

i=1
λi(X)

= coefficient of − λn−1 in det(λI −X)

=
n∑

i=1
Xii.

Notice: If X ∈ Sn
+ then trace(X) ≥ 0.

Frobenius norm ‖X‖F := (X • X)1/2.

Fact: For U, V, W ∈ Rn×n, trace(UV W ) = trace(V WU).

SDP primal and dual forms

The dual of

max bTy
s.t. y1A1 + · · · + ymAm ' C

is

min C • X
s.t. Ai • X = bi, i = 1, . . . , m

X $ 0.

More examples/applications of SDP

Example 3 (positive polynomials).

p(t) = p1 + p2t + · · · + p2d+1t2d satisfies p(t) ≥ 0 ∀t ∈ R if and
only if ∃X ∈ Sd+1

+ such that

pi =
∑

j+k=i+1
Xjk, i = 1, . . . ,2d + 1.

The equivalence relies on the following classical result.

Markov-Lucacs Thm. Let p(t) be a 2d-degree polynomial.
Then

p(t) ≥ 0 ∀t ∈ R ⇔ p(t) = q(t)2 + r(t)2

for some d-degree polynomials q(t), r(t).



Equivalence SDP/SOS:

Suppose q(t) = q1 + q2t + · · · + qd+1td. Can write q(t) as

[
q1 · · · qd+1

] 
1
t
...
td

 .

Therefore

p(t) = q(t)2 ⇔
[
p1 · · · p2d+1

]  1
...

t2d

 =
[
1 · · · td

]
qqT

1
...
td

 .

Hence p(t) ≥ 0 ∀t ∈ R iff p(t) is SOS iff for some X $ 0

[
p1 · · · p2d+1

]  1
...

t2d

 =
[
1 · · · td

]
X

1
...
td


But latter identity is the same as

pi =
∑

j+k=i+1
Xjk, i = 1, . . . ,2d + 1.

It follows that given a 2d-degree polynomial p(t) the problem of
computing

p∗ := min
t

p(t)

can be formulated as an SDP. (How?)

Example 4 (Lovász’s theta function): Let G = (N, E) be an
undirected graph, where N = {1, . . . , n} . Put:

ω(G): clique number of G

χ(G): chromatic number of G.

Notice that ω(G) ≤ χ(G).

Define

ϑ(Ḡ) := max eeT • X
I • X = 1
Xij = 0, ij .∈ E
X $ 0.

Thm (Lovász): ω(G) ≤ ϑ(Ḡ) ≤ χ(G).

Proof of ω(G) ≤ ϑ(Ḡ).

Assume K is a clique in G. Let χK ∈ {0,1}n be the “indicator”
vector of S. Consider

X :=
1

|K| χKχT
K.

Observe that X is feasible for the SDP and

eeT • X = eTXe =
(eTχK)2

|K| =
|K|2
|K| = |K|.

Thus ϑ(G) ≥ |K|. !



Example 5 (Max-cut): Let G = (N, E) be an undirected
graph, where N = {1, . . . , n}. Assume have edge-weights
w = (wij) ∈ RE

+. For K ⊆ N , δ(K) := {ij ∈ E : i ∈ K, j .∈ K}.

MAX-CUT problem:

max
K⊆N

∑
ij∈δ(K)

wij

Can formulate MAX-CUT as

max 1
4

n∑
i,j=1

wij(1− xixj)

s.t. xi ∈ {−1,1}, i ∈ N.

Putting X = xxT, can reformulate the latter as

max 1
4

n∑
i,j=1

wij(1−Xij)

s.t. Xii = 1, i ∈ N
X $ 0
X rank-one.

SDP relaxation

max 1
4

n∑
i,j=1

wij(1−Xij)

s.t. Xii = 1, i ∈ N
X $ 0.

Thm (Goemans & Williamson): 0.87856 ≤ MAX-CUT
SDP ≤ 1.

α = 0.87856 := min
t∈[−1,1]

2 arccos(t)

π(1− t)
.

Proof. Let X be feasible for the SDP relaxation. Then
X = V TV for some V =

[
v1 · · · vn

]
∈ Rn×n, where each

‖vi‖ = 1.

Construct a cut as follows: Pick v ∈ Rn, ‖v‖ = 1 uniformly at
random and put

K :=
{
i ∈ N : vTvi ≥ 0

}
.

It turns out that the expected value of this cut is

W [X] =
1

2

n∑
i,j=1

wij arccosXij

π
≥ α

4

n∑
i,j=1

wij(1−Xij).

It follows that MAX-CUT ≥ αSDP.

The inequality MAX-CUT ≤ SDP is immediate. !

Example 6

max xTQx
s.t. xi ∈ {−1,1}, i = 1, . . . , n.

SDP relaxation

max Q • X
s.t. Xii = 1, i = 1, . . . , n

X $ 0.

Thm (Nesterov). If Q $ 0 then

2

π
≤ OPT

SDP
≤ 1.

There are more schemes to get SDP-relaxations of
combinatorial problems.



Duality and complementarity

Recall LP duality: For conciseness put

A :=
[
a1 · · · am

]T
.

Primal-dual pair

(P)
min cTx
s.t. Ax = b

x ≥ 0,
(D)

max bTy
s.t. ATy + s = c

s ≥ 0.

Prop (weak duality). If x is (P)-feas, and (y, s) is (D)-feasible
then

bTy ≤ cTx.

Thm (strong duality). If either (P) or (D) is feasible and
bounded, then both have optimal solutions. In that case x and
(y, s) solve (P) and (D) respectively iff

bTy = cTx ⇔ xTs = 0.

Prop (complementarity). Let x, s ∈ Rn
+. Then

xTs = 0 ⇔ xisi = 0, i = 1, . . . , n.

Given x, s ∈ Rn define x ◦ s ∈ Rn as

(x ◦ s)i = xisi, i = 1, . . . , n.

Can recast (P) and (D) as

ATy + s = c
Ax = b

x ◦ s = 0
x, s ≥ 0.

Simplex method: maintain first three conditions; aim for the
last one.

Interior-point methods: maintain first two and last one, aim for
the third one.

Similar duality results for SDP?

For conciseness let A : Sn → Rm be the mapping

X 2→
[
A1 • X · · · Am • X

]T
.

The adjoint is A∗ : Rm → Sn is defined by

y 2→ y1A1 + · · · + ymAm.

Consider the SDP primal-dual pair.

(P)
min C • X
s.t. AX = b

X $ 0,
(D)

max bTy
s.t. A∗y + S = C

S $ 0.



Prop (weak duality). If X is (P)-feas, and (y, S) is
(D)-feasible then

bTy ≤ C • X.

Proof.

C • X − bTy = (A∗y + S) • X − (AX)Ty = S • X.

Because S ∈ Sn
+, can put S = LLT for some L ∈ Rn×n.

Hence, since X ∈ Sn
+

S • X = trace(LLTX) = trace(LTXL) ≥ 0.

!

Strong duality may not necessarily hold...

Example 7. Consider the SDP

min X12

s.t.

 0 X12 0
X12 X22 0
0 0 1 + X12

 $ 0

and its dual

max y1

s.t.

−y2
1+y1

2 −y3
1+y1

2 0 −y4
−y3 −y4 −y1

 $ 0.

Primal optimal value is 0;
dual optimal value is −1.

Other pathologies may occur: inf/sup may not be attained.
One of the problems may be feasible and bounded while the
other is infeasible.
Example 8. Consider the SDP

min X12

s.t.

[
0 X12

X12 X22

]
$ 0

and its dual
max 0

s.t.

[−y1 1/2
1/2 0

]
$ 0.

Primal optimal value is 0; dual is infeasible.
Example 9.

min X11

s.t.

[
X11 1
1 X22

]
$ 0.

Optimal value is 0, but it is not attained.

Crux of strong duality in LP:
Farkas Lemma: Assume A ∈ Rm×n, b ∈ Rm. Then either

∃x s.t. Ax = b, x ≥ 0

or

∃y s.t. ATy ≥ 0, bTy < 0

but not both.

For SDP:
Asymptotic Farkas Lemma: Assume A ∈ L(Sn,Rm), b ∈ Rm.
Then either

b ∈ {AX : X $ 0}
or

∃y s.t. A∗y $ 0, bTy < 0

but not both.



Get strong duality under additional assumptions:

(P) strongly feasible if b ∈ int {AX : X $ 0} .
(D) strongly feasible if C ∈ int {A∗y + S : S $ 0} .

Usual assumption: A surjective, i.e., A1, . . . , Am linearly
independent.

Under such assumption (P) strongly feasible iff
∃X % 0 s.t. AX = b.

Strong Duality Thm. Assume (P) and (D) are strongly
feasible. Then both (P) and (D) have optimal solutions. In
that case X and (y, S) are optimal sols to (P) and (D)
respectively iff

bTy = C • X ⇔ X • S = 0.

Strong Duality Thm follows from Asymptotic Farkas Lemma
and the following lemma.

Lemma. If A∗z ∈ Sn
++ for some z ∈ Rm then

ASn
+ := {AX : X $ 0} is closed.

SDP Complementarity

Prop (complementarity). Let X, S ∈ Sn
+. Then X • S = 0 iff

XS = 0 iff there exists Q ∈ On, λ, ω ∈ Rn
+ such that

X = QDiag(λ)QT, S = QDiag(ω)QT,
λiωi = 0, i = 1, . . . , n.

Hence under the strong feasibility assumptions can recast (P)
and (D) as

A∗y + S = C
AX = b
XS = 0

X, S $ 0.
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