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Preamble: some motivation
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Convex optimization

Problem of the form
min
x∈C

f(x)

where f : Rn → R ∪ {∞} and C ⊆ dom(f) are convex.

Many applications

Classic:

linear programming models for production, logistics, etc.
quadratic programming models for portfolio construction
integer programming and combinatorial optimization

Modern:

data science: support vector machines, regression, matrix
completion
imaging science: compressive sensing
computational game theory: equilibria computation
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Incomplete & biased history

Late 20th century (1980s–2000)

interior-point (second-order) methods

strong theory, successful code, high accuracy

semidefinite & second-order programming

elaborate algorithms and implementations for generic problems

Early 21st century (2000–now)

large-scale problems

modest accuracy is often acceptable

resurgence of first-order methods – topic of this talk

simpler algorithms and implementations for specific problems
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Popular formats

Simple constraints

min
x∈C

f(x)

where C is a “simple” set.

Composite minimization

min
x∈Rn
{f(x) + ψ(x)}

where f, ψ are convex and ψ has some special structure.

Composite case subsumes the constrained case by taking ψ := δC
where

δC(x) =

{
0 if x ∈ C
∞ if x 6∈ C.
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Iconic algorithms for min
x∈C

f(x)

Let ΠC : Rn → C denote the orthogonal projection onto C.

Projected subgradient method (SG)

pick gk ∈ ∂f(xk) and tk > 0

xk+1 = ΠC(xk − tkgk)

Projected gradient descent (GD)

pick tk > 0

xk+1 = ΠC(xk − tk∇f(xk))

Conditional gradient (CG)

sk = argmin
s∈C

〈∇f(xk), s〉

pick θk ∈ [0, 1]

xk+1 = xk + θk(sk − xk)
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Iconic algorithms for min
x∈Rn
{f(x) + ψ(x)}

Suppose the following proximal mapping is computable for all t > 0

g 7→ Proxt(g) := argmin
y∈Rn

{
ψ(y) +

1

2t
‖y − g‖2

}
Observe: if ψ = δC then Proxt = ΠC for all t > 0.

Proximal gradient (PG)

pick tk > 0

xk+1 = Proxtk(xk − tk∇f(xk))

Fast proximal gradient (FPG)

pick tk > 0 and βk

yk = xk + βk(xk − xk−1)
xk+1 = Proxtk(yk − tk∇f(yk))

(Nesterov (1984), Beck-Teboulle (2009), Nesterov (2013),...)
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Bregman proximal gradient for min
x∈Rn
{f(x) + ψ(x)}

Suppose h is a convex and differentiable reference function and the
following proximal mapping is computable for all t > 0

(g, x) 7→ argmin
y∈Rn

{
ψ(y) + 〈g, y〉+

1

t
Dh(y, x)

}
where Dh(y, x) := h(y)− h(x)− 〈∇h(x), y − x〉.

Bregman proximal gradient (BPG)

pick tk > 0

xk+1 = argmin
y∈Rn

{
ψ(y) + 〈∇f(xk), y〉+

1

tk
Dh(y, xk)

}

Special case

When h(x) = ‖x‖22/2, the Bregman proximal gradient becomes the
previous (Euclidean) proximal gradient.
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Convergence properties

Under suitable assumptions of smoothness and choice of stepsizes:

Algorithm Convergence rate

SG O(1/
√
k)

GD, CG, PG, BPG O(1/k)
FPG O(1/k2)

Question

So many algorithms and so many convergence results.
Could all of the above be “unified”?

Answer: YES, via perturbed Fenchel duality.
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Theme

A generic first-order meta-algorithm satisfies a perturbed
Fenchel duality property.

The first-order meta-algorithm includes as special cases:
conditional gradient, proximal gradient, fast and universal
proximal gradient, proximal subgradient.

The perturbed Fenchel duality property yields concise
derivations of the best-known convergence rates for each of
these algorithms.
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Perturbed Fenchel Duality
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The Fenchel conjugate

Suppose f : Rn → R ∪ {∞}. The Fenchel conjugate of f is:

f∗(u) = sup
x∈Rn
{〈u, x〉 − f(x)}.

Fenchel-Young inequality

For all x, u ∈ Rn
f∗(u) + f(x) ≥ 〈u, x〉,

and the equality holds if and only if u ∈ ∂f(x).

Recall

∂f(x) = {u ∈ Rn : f(y) ≥ f(x) + 〈u, y − x〉 for all y ∈ Rn}.
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Fenchel duality

Fenchel duality

The Fenchel dual of minx∈Rn {f(x) + ψ(x)} is

max
u∈Rn

{−f∗(u)− ψ∗(−u)}

Weak duality

For all x, u ∈ Rn

f(x) + ψ(x) + f∗(u) + ψ∗(−u) ≥ 0.

Thus x̄, ū ∈ Rn are ε-optimal if

f(x̄) + ψ(x̄) + f∗(ū) + ψ∗(−ū) ≤ ε.
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Perturbed Fenchel duality

Gist of my story

First-order meta-algorithm generates xk, uk ∈ Rn such that

f(xk) + ψ(xk) + f∗(uk) + (ψ + dk)
∗(−uk) ≤ εk

for some εk ≥ 0 and dk : Rn → R+ both converging to zero.

Observe

For all x ∈ Rn we have

f∗(uk) + (ψ + dk)
∗(−uk) ≥ −f(x)− ψ(x)− dk(x)

and thus perturbed Fenchel duality implies that

f(xk) + ψ(xk)− (f(x) + ψ(x)) ≤ dk(x) + εk.
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First-Order Meta-Algorithm
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First-order meta-algorithm
Want to solve min

x
{f(x) + ψ(x)}.

Key ingredient

Let h : Rn → R ∪ {∞} be a convex and differentiable reference
function. Let Dh denote the Bregman distance

Dh(y, x) = h(y)− h(x)− 〈∇h(x), y − x〉.

Key assumption

The following proximal mapping is computable for all t > 0:

(g, s−) 7→ argmin
s

{
〈g, s〉+ ψ(s) +

1

t
Dh(s, s−)

}
.

Example

h(x) = ‖x‖22/2 Dh(y, x) = ‖y − x‖22/2.
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First-order meta-algorithm

Want to solve min
x
{f(x) + ψ(x)} ⇔ min

x
F (x) for F := f + ψ.

First-order meta-algorithm

pick s−1 ∈ dom(ψ)

for k = 0, 1, . . .
pick yk ∈ dom(∂f) and gk ∈ ∂f(yk)
pick tk > 0

pick sk ∈ argmins

{
〈gk, s〉+ ψ(s) + 1

tk
Dh(s, sk−1)

}
end for

Key component

Flexibly-selected sequence yk ∈ dom(f).

Specific choices of yk: conditional gradient, Bregman proximal
(sub)gradient, fast and universal Bregman proximal gradient.
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Main Theorem
Let

xk :=

∑k−1
i=0 tisi∑k−1
i=0 ti

, uk :=

∑k−1
i=0 tigi∑k−1
i=0 ti

, dk(s) :=
Dh(s, s−1)∑k−1

i=0 ti
, θk :=

tk∑k
i=0 ti

.

Theorem

The iterates generated by the above meta-algorithm satisfy

f(xk) + ψ(xk) + f∗(uk) + (ψ + dk)
∗(−uk)

≤
∑k−1

i=0 (ti(DF (xi, si, θi) +Df (si, yi))−Dh(si, si−1))∑k−1
i=0 ti

for (recall F = f + ψ)

DF (x, s, θ) :=
F (x+ θ(s− x))− (1− θ)F (x)− θF (s)

θ
.
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Convergence of Iconic First-Order Algorithms
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Conditional gradient
Want to solve min

x
{f(x) + ψ(x)}. Suppose f is differentiable and

g 7→ ∂ψ∗(−g) = argmin{〈g, x〉+ ψ(x)}
is computable.

Conditional gradient

pick x0 ∈ dom(f)

for k = 0, 1, . . .
pick sk ∈ argmins {〈∇f(xk), s〉+ ψ(s)}
pick θk ∈ [0, 1]
let xk+1 := (1− θk)xk + θksk

end for

This is the first-order meta-algorithm for

s−1 = x0, yk = xk, gk = ∇f(xk), h ≡ 0,

and tk > 0 such that θk = tk∑k
i=1 ti

.

(Mild assumption: θ0 = 1, and θk ∈ (0, 1) for k ≥ 1.)
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Conditional gradient
Main Theorem yields

f(xk) + ψ(xk) + f∗(uk) + ψ∗(−uk) ≤
∑k−1

i=0 tiD(xi, si, θi)∑k−1
i=0 ti

for

D(x, s, θ) = DF (x, s, θ) +Df (x, s)

=
Df (x+ θ(s− x), x)

θ
+ Dψ(x, s, θ).

Curvature condition (cf. Jaggi’s curvature)

For some M > 0 and ν > 0 and all x, s ∈ dom(ψ) and θ ∈ [0, 1]

D(x, s, θ) ≤ Mθν

1 + ν
.

This holds in particular when dom(ψ) bounded and ∇f is ν-Hölder
continuous.
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Theorem

If the above curvature condition holds and θk = 1+ν
k+1+ν then

f(xk) + ψ(xk) + f∗(uk) + ψ∗(−uk) ≤M
(

1 + ν

k + 1 + ν

)ν
.

Proof: Let gap(xk, uk) := f(xk) + ψ(xk) + f∗(uk) + ψ∗(−uk).

Main Theorem implies that gap(x0, u0) ≤ D(x0, s0, 1) and

gap(xk+1, uk+1) ≤ (1− θk)gap(xk, uk) + θkD(xk, sk, θk)

Curvature condition and induction show that

gap(xk, uk) ≤M
(

1 + ν

k + 1 + ν

)ν
.

The above generalizes the O(1/k) convergence of conditional gradient.
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Bregman proximal gradient

Want to solve min
x
{f(x) + ψ(x)}. Suppose f is differentiable.

Bregman proximal gradient

pick s−1 ∈ dom(ψ)

for k = 0, 1, . . .
pick tk > 0

pick sk ∈ argmins

{
〈∇f(sk−1), s〉+ ψ(s) + 1

tk
Dh(s, sk−1)

}
end for

This is the first-order meta-algorithm for

yk = sk−1, gk = ∇f(sk−1).
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Recall Main Theorem
Let

xk :=

∑k−1
i=0 tisi∑k−1
i=0 ti

, uk :=

∑k−1
i=0 tigi∑k−1
i=0 ti

, dk(s) :=
Dh(s, s−1)∑k−1

i=0 ti
, θk :=

tk∑k
i=0 ti

.

The iterates generated by the meta-algorithm satisfy

f(xk) + ψ(xk) + f∗(uk) + (ψ + dk)
∗(−uk)

≤
∑k−1

i=0 (ti(DF (xi, si, θi) +Df (si, yi))−Dh(si, si−1))∑k−1
i=0 ti

for (recall F = f + ψ)

DF (x, s, θ) :=
F (x+ θ(s− x))− (1− θ)F (x)− θF (s)

θ
≤ 0.

For notational convenience let x0 := s−1 so that dk(x) := Dh(x,x0)∑k−1
i=0 ti

.
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Theorem

Suppose the stepsizes satisfy ti ·Df (si, si−1) ≤ Dh(si, si−1). Then
for all x ∈ Rn

f(xk) + ψ(xk)− (f(x) + ψ(x)) ≤ Dh(x, x0)∑k−1
i=0 ti

Proof: Above condition on stepsizes and Main Theorem imply that

f(xk) + ψ(xk) + f∗(uk) + (ψ + dk)
∗(−uk) ≤ 0.

Thus for all x ∈ Rn

f(xk) + ψ(xk)− (f(x) + ψ(x)) ≤ dk(x) =
Dh(x, x0)∑k−1

i=0 ti
.
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Smoothness and O(1/k) convergence of proximal gradient

Suppose X̄ := argminx{f(x) + ψ(x)} 6= ∅.

Relative smoothness

We say that f is L-smooth relative to h on C if for all x, y ∈ C

Df (y, x) ≤ L ·Dh(y, x).

It is easy to see that f is L-smooth relative to h if ∇f is
L-Lipschitz continuous and h(x) = ‖x‖22/2

When f is L-smooth relative to h on dom(ψ), we can guarantee
Df (si, si−1) ≤ 1

ti
Dh(si, si−1) with ti ≥ 1/L and recover the iconic

O(1/k) convergence rate for proximal gradient:

f(xk) + ψ(xk)−min
x
{f(x) + ψ(x)} ≤ L ·Dh(X̄, x0)

k
.
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Fast and universal Bregman proximal gradient

Fast and universal Bregman proximal gradient

pick x0 := s−1 ∈ dom(ψ)

for k = 0, 1, . . .
let yk := (1− θk)xk + θksk−1
pick tk > 0

pick sk ∈ argmins

{
〈∇f(yk), s〉+ ψ(s) + 1

tk
Dh(s, sk−1)

}
let xk+1 := (1− θk)xk + θksk

end for

This is the first-order meta-algorithm for

yk = (1− θk)xk + θksk−1, gk = ∇f(yk).
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Convergence of fast Bregman proximal gradient

Theorem

Suppose the stepsizes satisfy

ti · (D(xi, si, θi) +Df (si, yi)) ≤ Dh(si, si−1).

Then for all x ∈ Rn

f(xk) + ψ(xk)− f(x)− ψ(x) ≤ Dh(x, x0)∑k−1
i=0 ti

.

Proof: Again condition on stepsizes and Main Theorem imply that

f(xk) + ψ(xk) + f∗(uk) + (ψ + dk)
∗(−uk) ≤ 0.

Thus for all x ∈ Rn

f(xk) + ψ(xk)− (f(x) + ψ(x)) ≤ dk(x) =
Dh(x, x0)∑k−1

i=0 ti
.
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Triangle scaling and O(1/k2) convergence

Triangle scaling (cf. Hanzely et al (2018))

Suppose for some L > 0 and all x, s, s− ∈ C and θ ∈ [0, 1]

Df ((1− θ)x+ θs, (1− θ)x+ θs−) ≤ L · θ2 ·Dh(s, s−)

Observe

Triangle scaling ⇒ Relative smoothness (take θ = 1).
The converse holds when h(x) = ‖x‖22/2.

When triangle scaling condition holds, we can guarantee
ti · (D(xi, si, θi) +Df (si, yi)) ≤ Dh(si, si−1) with ti ≥ (i+ 1)/L
and thus

f(xk) + ψ(xk)−min
x
{f(x) + ψ(x)} ≤ 2L ·Dh(X̄, x0)

k(k + 1)
.

Recover iconic O(1/k2) convergence: Nesterov (1984), Beck-Teboulle

(2009), Nesterov (2013), ...
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Convergence of universal Bregman proximal gradient

Smoothness-plus condition

Suppose ν ∈ [0, 1] and M > 0 are such that for all x, s, s− ∈ C
and θ ∈ [0, 1]

Df ((1− θ)x+ θs, (1− θ)x+ θs−) ≤ 2Mθ1+νDh(s, s−)
1+ν
2

1 + ν
.

Observe

Smothness-plus holds if h(x) = ‖x‖22/2 and ∇f is ν-Hölder
continuous.
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Convergence of universal Bregman proximal gradient

Theorem

Let ε > 0 be fixed. Suppose the Smoothness-plus condition holds
on dom(ψ) and ti is the largest such that

ti · (D(xi, si, θi) +Df (si, yi)) ≤ Dh(si, si−1) + tiε.

Then for all x ∈ Rn

f(xk) + ψ(xk)− (f(x) + ψ(x)) ≤ 2M
2

1+νDh(x, x0)

ε
1−ν
1+ν k

1+3ν
1+ν

+ ε.

Proof: Main Theorem implies that

f(xk) + ψ(xk)− f(x)− ψ(x) ≤ dk(x) + ε =
Dh(x, x0)∑k−1

i=0 ti
+ ε.

To finish: the Smoothness-plus condition yields
1∑k−1
i=0 ti

=
θk−1
tk−1

≤ 2M
2

1+ν

ε
1−ν
1+ν k

1+3ν
1+ν

.

Recover O(1/k
1+3ν

2 ) universal convergence by Nesterov (2015).
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Stronger Convergence Results for Conditional
Gradient
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Conditional gradient revisited

Want to solve min
x
{f(x) + ψ(x)}. Suppose f is differentiable and

the mapping

g 7→ ∂ψ∗(−g) = argmin{〈g, x〉+ ψ(x)}

is computable.

Conditional gradient

pick x0 ∈ dom(f)

for k = 0, 1, . . .
pick sk ∈ argmins {〈∇f(xk), s〉+ ψ(s)} and θk ∈ [0, 1]
let xk+1 := (1− θk)xk + θksk

end for
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Growth property
Recall

gap(x, u) := f(x) + ψ(x) + f∗(u) + ψ∗(−u)

D(x, s, θ) :=
Df (x+ θ(s− x), x)

θ
+ Dψ(x, s, θ).

Observe: for x ∈ dom(ψ), g := ∇f(x), and s ∈ ∂ψ∗(−g)

gap(x, g) = 〈g, x− s〉+ ψ(x)− ψ(s).

Growth property

Suppose ν > 0 and r ∈ [0, 1]. Say that (D, gap) satisfies the
(ν, r)-growth property if there exists M > 0 such that for all
x ∈ dom(ψ), g := ∇f(x), and s ∈ ∂ψ∗(−g)

D(x, s, θ) ≤ Mθν

1 + ν
· gap(x, g)r for all θ ∈ [0, 1].
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Growth property: special cases

Case r = 0

In this case the growth property is

D(x, s, θ) ≤ Mθν

1 + ν
for all θ ∈ [0, 1].

This is the same as the curvature condition discussed earlier. It
holds if ∇f is ν-Hölder continuous and dom(ψ) is bounded.

Case ν = 1 and r = 1

In this case the growth property is

D(x, s, θ) ≤ Mθ

2
· gap(x, g) for all θ ∈ [0, 1].

It holds if ∇f is Lipchitz continuous and ψ is strongly convex.

Other cases with ν > 0, r ∈ (0, 1) when f is uniformly smooth
and ψ is uniformly convex.
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Best duality gaps and line-search

Let x0, x1, . . . denote the iterates generated by the conditional
gradient algorithm. For k = 0, 1, . . . let

bestgapk := min
i=0,1,...,k

gap(xk, gi)

where gi = ∇f(xi) for i = 0, 1, . . . .

Line-search procedure

Choose θk ∈ [0, 1] via

θk := argmin
θ∈[0,1]

{(1− θ) · gap(xk, gk) + θ ·D(xk, sk, θ)}.
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Growth property and convergence rates

Theorem

Suppose (D, gap) satisfy the (ν, r)-growth and θk is as above.
For r = 1 we have linear convergence

bestgapk ≤ bestgap0

(
1− ν

ν + 1
· 1

M
1
ν

)k
.

For r ∈ [0, 1) we have an initial linear convergence regime

bestgapk ≤ bestgap0

(
1− ν

ν + 1

)k
, k = 0, 1, 2, . . . , k0

where k0 is the smallest k such that bestgap1−r
k ≤M . Then for

k ≥ k0 we have a sublinear convergence regime

bestgapk ≤
(

bestgap
r−1
ν

k0
+

1− r
ν + 1

· 1

M
1
ν

· (k − k0)
) ν
r−1

.
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Conclusions
Consider the problem min

x∈Rn
{f(x) + ψ(x)} where f, ψ convex.

Perturbed Fenchel duality: first-order meta-algorithm
generates iterates that satisfy

f(xk) + ψ(xk) + f∗(uk) + (ψ + dk)
∗(−uk) ≤ δk

Convergence of popular first-order methods readily follow:

O(1/kν) for conditional gradient if curvature condition holds
O(1/k) for proximal gradient if relative smoothness holds
O(1/k2) for fast proximal gradient if triangle scaling holds
O(1/

√
k) for subgradient if relative continuity holds (skipped)

Stronger convergence rates for conditional gradient if some
suitable growth property holds.

Above holds for more general problem min
x∈Rn

{f(Ax) + ψ(x)}
and its dual max

u∈Rn
{−f∗(u)− ψ∗(−A∗u)}.
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Uniform smoothness and uniform convexity
Let q ∈ (1, 2]. Say that f : Rn → R ∪ {∞} is q-uniformly smooth
if there exist L > 0 such that for all x, y ∈ Rn and θ ∈ [0, 1]

f(x+ θ(y − x)) ≥ (1− θ)f(x) + θf(y)− L

q
θ(1− θ)‖y − x‖q.

Let p ≥ 2. Say that ψ : Rn → R ∪ {∞} is p-uniformly convex if
there exist µ > 0 such that for all x, y ∈ Rn and θ ∈ [0, 1]

ψ(x+ θ(y − x)) ≤ (1− θ)ψ(x) + θψ(y)− µ

p
θ(1− θ)‖y − x‖p.

Facts

If f is q-unif smooth and ψ is p-unif convex then (D, gap)
satisfies the (ν, r)-growth property for ν = q − 1 and r = q/p.

f is (ν + 1)-uniformly smooth if ∇f is ν-Hölder continuous.

f is q-unif smooth iff f∗ is p-unif convex for 1/p+ 1/q = 1.
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