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Preamble: some motivation

2/40



Convex optimization

Problem of the form

min f(z)

where f: R" - R U {oco} and C C dom(f) are convex.

Many applications

e Classic:
o linear programming models for production, logistics, etc.
e quadratic programming models for portfolio construction
e integer programming and combinatorial optimization

e Modern:
e data science: support vector machines, regression, matrix

completion

@ imaging science: compressive sensing
e computational game theory: equilibria computation
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Incomplete & biased history

o Late 20th century (1980s-2000)

e interior-point (second-order) methods

e strong theory, successful code, high accuracy

o semidefinite & second-order programming

o elaborate algorithms and implementations for generic problems
e Early 21st century (2000—now)

o large-scale problems

e modest accuracy is often acceptable

e resurgence of first-order methods — topic of this talk

e simpler algorithms and implementations for specific problems
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Popular formats

Simple constraints

min f(z)
where C'is a “simple” set.
Composite minimization
min { f(z) + ¢ (x)}

r€eR™

where f, 1) are convex and 1 has some special structure.

Composite case subsumes the constrained case by taking ¢ := d¢

where
0 ifzeC

50(9”):{ 0o ifxgC.
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Iconic algorithms for min f(x)
xeC

Let Il : R™ — C denote the orthogonal projection onto C'.

Projected subgradient method (SG)
pick gr € Of(xr) and t >0
i1 = Lo (zp — tegr)

Projected gradient descent (GD)
pick tp >0
T = Ho(zp — 66V f(21))

Conditional gradient (CG)

sk = argmin(V f(xx), s)
seC

pick 6 € [0,1]
T+l = Tk + ek(sk — xk)
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Iconic algorithms for mli&n {f(z) +9¢(z)}
:L\e n
Suppose the following proximal mapping is computable for all t > 0
) 1
g = Prox;(g) := argmin {w(y) + oy = g||2}
yeR”

Observe: if ¢ = d¢ then Prox; = Il for all £ > 0.
Proximal gradient (PG)

pick t; >0

Th41 = PI’Oth (I‘k — thf(:Ck))

Fast proximal gradient (FPG)
pick tr > 0 and B
Yk = Tk + Bk — T-1)
Tt1 = Proxy, (yr — 6V f (yk))

(Nesterov (1984), Beck-Teboulle (2009), Nesterov (2013),...)
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Bregman proximal gradient for m}iRn {f(x)+¢(x)}
reR™

Suppose h is a convex and differentiable reference function and the
following proximal mapping is computable for all ¢ > 0

(9,7) = a;éggn {w(y) + (9, y) + %Dh(% fv)}

where Dy, (y, x) := h(y) — h(xz) — (Vh(x),y — x).

Bregman proximal gradient (BPG)

pick t; >0
. 1
s = argmin {0(s) + (VF(21).9) + 1Dl |
yeR™ k

Special case

When h(x) = ||x||3/2, the Bregman proximal gradient becomes the
previous (Euclidean) proximal gradient.
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Convergence properties

Under suitable assumptions of smoothness and choice of stepsizes:

Algorithm ‘ Convergence rate
SG O(1/Vk)
GD, CG, PG, BPG O(1/k)
FPG O(1/k?)

Question

So many algorithms and so many convergence results.
Could all of the above be “unified”?

Answer: YES, via perturbed Fenchel duality.
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Theme

@ A generic first-order meta-algorithm satisfies a perturbed
Fenchel duality property.

@ The first-order meta-algorithm includes as special cases:
conditional gradient, proximal gradient, fast and universal
proximal gradient, proximal subgradient.

@ The perturbed Fenchel duality property yields concise
derivations of the best-known convergence rates for each of
these algorithms.
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Perturbed Fenchel Duality
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The Fenchel conjugate

Suppose f: R™ — RU{oo}. The Fenchel conjugate of f is:

f*(u) = sup {(u, z) — f(x)}.

rER™

Fenchel-Young inequality
For all z,u € R

) + f(@) 2 (u, ),
and the equality holds if and only if u € df(x).

Recall
Of(x) ={ueR": f(y) > f(x) + (u,y — x) for all y € R"}.
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Fenchel duality

Fenchel duality
The Fenchel dual of mingern {f(x) +¢(x)} is
max {—f*(u) —97(-u)}

Weak duality
For all x,u € R"

f(@) + () + f7(u) + ¢*(—u) = 0.
Thus Z,u € R™ are e-optimal if

f(@) + (@) + (@) + ¢ (-u) <e
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Perturbed Fenchel duality

Gist of my story

First-order meta-algorithm generates x, ur € R™ such that

fxr) +b(ar) + [ (ur) + (O 4 di)" (—ur) < e

for some €, > 0 and di, : R™ — R both converging to zero.

Observe
For all x € R™ we have

S (ur) + (b + di)" (—ur) = —f(z) — p(x) — di(x)
and thus perturbed Fenchel duality implies that

flar) +P(ar) — (f(2) + ¢ (2)) < di(@) + e
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First-Order Meta-Algorithm
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First-order meta-algorithm
Want to solve mwln{f(x) +¢(x)}.

Key ingredient
Let h: R" — RU{oco} be a convex and differentiable reference
function. Let Dj, denote the Bregman distance

Dp(y,z) = h(y) — h(z) — (Vh(z),y — z).

Key assumption
The following proximal mapping is computable for all £ > 0:

(g,5-) — arg;nin {(g, s) +(s)+ %Dh(s, 3_)} )

Example
h(z) = ||z[|3/2 ~ Dn(y,z) = [ly — z[l5/2.
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First-order meta-algorithm

Want to solve chln{f(l') +¢(x)} < msz(m) for F:= f + 1.

First-order meta-algorithm
@ pick s_; € dom(v))
e for k=0,1,...
pick yi € dom(9f) and g € Of (yx)
pick tp > 0

pick s € argmin, { (gr. ) +(s) + £ Da(s, 55-1) |
end for

Key component
Flexibly-selected sequence y;, € dom(f).

Specific choices of y;: conditional gradient, Bregman proximal
(sub)gradient, fast and universal Bregman proximal gradient.
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Main Theorem

Let
. Zi’:ol tisi o Zf:_ol tigi _ Dp(s,s—1) , U
L L s B0 Ry s S T e S
Zi:o ti Zi:o ti Zi:o ti Zi:o ti
Theorem

The iterates generated by the above meta-algorithm satisfy

fxr) +Y(xr) + [ (ug) + (¢ + di)* (—ug)
< S (ti(Dp(wi, 84, 0:) + Dy(si,9i)) — D(si,5i-1))
B St
for (recall F = f + 1)

Flz+0(s—xz)—(1—-0)F(x) — GF(S)‘

Dp(x,s,0) = 7
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Convergence of Iconic First-Order Algorithms
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Conditional gradient
Want to solve mxm{f(x) + 1¢(z)}. Suppose f is differentiable and
g~ 0y (—g) = argmin{(g, z) + ¢(z)}
is computable.
Conditional gradient
@ pick xg € dom(f)

o for k=0,1,...
pick si € argmin, {(V f(zk),s) +¥(s)}
pick 0y € [0,1]
let zp 1 = (1 — Gk)a:k + 0.5y
end for

This is the first-order meta-algorithm for
$-1 = o, Yk = Tk, gk = Vf(2k), h =0,
— _t
and ¢, > 0 such that 6, = SE
(Mild assumption: 6y =1, and 6, € (0,1) for k > 1.)
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Conditional gradient
Main Theorem yields

Zi:ol tiD(xi, si,0;)

f(og) +Y(r) + f(ur) + 9" (—ug) < ST,

for

D(z,s,0) = Dp(x,s,0) + Ds(x, s)

_ Df(:c+¢9§s —x),x) Dy (2, 5,0).

Curvature condition (cf. Jaggi's curvature)
For some M >0 and v > 0 and all z,s € dom(%)) and 6 € [0, 1]

MO¥
< .
D(w,5.0) < T

This holds in particular when dom(v)) bounded and V f is v-Holder
continuous.
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Theorem

If the above curvature condition holds and 0;, = k-ﬁiu then

Fl) + (ae) + £ () + " (—u) < M <ki+11,,> -

Proof: Let gap(zy,ur) := f(xx) + (k) + f*(ur) + ™ (—up).
Main Theorem implies that gap(xo,ug) < D(xo, so,1) and
gap(xk—i-l? uk:-‘rl) < (1 - Gk)gap(:zk, ’LLk) + ek‘D(‘rka Sk, ek)

Curvature condition and induction show that

1+v v
<M[———| .
) 31 (1)

O

The above generalizes the O(1/k) convergence of conditional gradient.
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Bregman proximal gradient

Want to solve min{ f(z) + ¢(z)}. Suppose f is differentiable.

Bregman proximal gradient
e pick s_1 € dom(%))
e fork=0,1,...
pick tp > 0

pick s € argmin, {(Vf(sk_l), s) +(s) + iDh(s, sk_l)}
end for

This is the first-order meta-algorithm for

Yk = Sk—1, gk = V f(sk-1).
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Recall Main Theorem
Let

_ Xiotisi o Xiotig g Palsisoy) o b

Tk = —1, Uk = k=1, ° k(s) = E—1 ) k :
Zi:o ti Zi:o ti Zi:o ti Zz’:O ti

The iterates generated by the meta-algorithm satisfy

far) + (k) + F(ug) + (Y + di)* (—ug)
< S (ti(Dp(wi, 84,0:) + Dy(si,9i)) — Du(si,5i-1))
B Z;:ol t;
for (recall F' = f + )

Flx+0(s—z))—(1—-0)F(x) — 0F(s)

Dp(z,s,0) = 7 <0
For notational convenience let zy := s_; so that di(x) := %ﬁ‘”ﬁ’f’f)
=0 “?



Theorem

Suppose the stepsizes satisfy t; - D¢(s;, si—1) < Dpy(s4,5,-1). Then
for all t € R™

Dy (z, x0)
=1
D i—o ti

Proof: Above condition on stepsizes and Main Theorem imply that

fx) +(zg) — (f(z) + () <

f@r) +(zr) + f(ur) + (0 + di)*(—ux) < 0.

Thus for all z € R™
_ Dy(x,20)

fla) + o) = (f(2) +4(2)) < di(z) = SE Ty
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Smoothness and O(1/k) convergence of proximal gradient

Suppose X := argmin, {f(z) + ¥(x)} # 0.

Relative smoothness
We say that f is L-smooth relative to h on C'if for all z,y € C

It is easy to see that f is L-smooth relative to h if V f is
L-Lipschitz continuous and h(z) = ||z||3/2

When f is L-smooth relative to h on dom(v), we can guarantee
Dy¢(s4,8i-1) < %Dh(si,si_l) with t; > 1/L and recover the iconic
O(1/k) convergence rate for proximal gradient:

f(@e) + (k) — mzln{f(m) +(x)} < I%M_

26 /40



Fast and universal Bregman proximal gradient

Fast and universal Bregman proximal gradient
@ pick zg := s_1 € dom(¥))
o for k=0,1,...
let ¥y == (1 — Qk)fbk + 0511
pick tp > 0

pick si, € argmin, {<Vf(yk)a s) +1(5) + 7 Da(s, 8#1)}

let zp 1 := (1 — Qk).ilik + O sy
end for

This is the first-order meta-algorithm for

yr = (1 — Op)zg + Opsk—1, gk = VI (yk)-

27 /40



Convergence of fast Bregman proximal gradient

Theorem
Suppose the stepsizes satisfy

ti - (D(xs, 84,0;) + Dy (siy i) < Dp(siysi-1).
Then for all x € R™

Flaw) + v(a) — (@) - o) < 2tito)
Zi:O ti
Proof: Again condition on stepsizes and Main Theorem imply that
f(ar) +o(@r) + f(ue) + (¥ + di)" (—ug) < 0.
Thus for all x € R™
_ Dy(,z0)

flae) +9(er) = (f(2) +(2)) < di(z) = SETg
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Triangle scaling and O(1/k?*) convergence

Triangle scaling (cf. Hanzely et al (2018))
Suppose for some L > 0 and all z,s,s_ € C and 0 € [0, 1]

Di(1—0)z +0s,(1 —0)x +0s_) < L-0* Dy(s,s_)

Observe

Triangle scaling = Relative smoothness (take 6 = 1).
The converse holds when h(z) = ||z||3/2.

When triangle scaling condition holds, we can guarantee

ti - (D(w4, 84,0i) + Dy (s, yi)) < Dp(si, si—1) with t; > (i +1)/L
and thus

2L - Dh(Xa 'TO)

flzg) +¥(xg) — mxln{f(x) + 1/1(33)} < k(k+1)

Recover iconic O(1/k?) convergence: Nesterov (1984), Beck-Teboulle
(2009), Nesterov (2013), ...
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Convergence of universal Bregman proximal gradient

Smoothness-plus condition
Suppose v € [0,1] and M > 0 are such that for all z,s,s_ € C
and 0 € [0,1]

1+v

2M OV Dy (s,5-) 2
1+v '

D¢((1—=0)x+0s,(1 —0)x+0s_) <

Observe

Smothness-plus holds if h(z) = ||z||3/2 and V£ is v-Holder
continuous.
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Convergence of universal Bregman proximal gradient

Theorem

Let € > 0 be fixed. Suppose the Smoothness-plus condition holds
on dom(v)) and t; is the largest such that

ti - (D(xi, 8i,0:) + Dy (si,vi)) < Dp(si, si-1) + tie.

Then for all x € R™

Flew) +b(an) — (F(a) + p(a)) < 27 Dnl@,zo)

€ 14+v k 1+v

Proof: Main Theorem implies that

f(ze) + () — f(w) —(x) < di(x) +e= Di(z,20)

Zf:_ol t;
To finish: the Smoothness-plus condition yzields
1 Ok < 2M v

— - e 1+3v °
Zf:ol t; te—1 61+5k: T

Recover O(1/k~2") universal convergence by Nesterov (2015). 3140



Stronger Convergence Results for Conditional
Gradient
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Conditional gradient revisited

Want to solve min{ f(z) 4+ ¢ (z)}. Suppose f is differentiable and
the mapping

g — 0P (—g) = argmin{(g, z) + ¥(z)}
is computable.

Conditional gradient
@ pick zp € dom(f)
o for k=0,1,...
pick si € argmin, {(Vf(zk),s) + ¥ (s)} and 6 € [0,1]

let xpyq = (1 - Gk)xk + 0.5k
end for
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Growth property

Recall

gap(z,u) := f(z) + ¢(2) + f*(u) + ¢ (-u)
D¢(x+60(s—x),x)
0

Observe: for x € dom(v)), g := Vf(x), and s € 0¢*(—g)

gap(z,g) = (9,7 — s) + ¥(x) — Y(s).

D(z,s,0) = + Dy (x, s, 0).

Growth property

Suppose v > 0 and r € [0, 1]. Say that (D, gap) satisfies the
(v,r)-growth property if there exists M > 0 such that for all
x € dom(v)), g := Vf(x), and s € 0y*(—g)

v

” - gap(x,g)" for all 6 € [0, 1].

D(xz,s,0) <
1+
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Growth property: special cases

Case r =0
In this case the growth property is

v

Mo
D(x,s,0) <
1+v

for all 6 € [0, 1].

This is the same as the curvature condition discussed earlier. It
holds if V f is v-Holder continuous and dom(v)) is bounded.

Casev=1landr=1
In this case the growth property is

M6
D(z,s,0) < - gap(zx,g) for all 6 € [0, 1].

It holds if V f is Lipchitz continuous and 1) is strongly convex.

Other cases with v > 0, r € (0,1) when f is uniformly smooth

and ¢ is uniformly convex.
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Best duality gaps and line-search

Let zg, z1,... denote the iterates generated by the conditional
gradient algorithm. For £ =0,1,... let
bestgap,, := min gap(xg, ;)

by

where g; = Vf(x;) fori =0,1,....

Line-search procedure
Choose 8, € [0,1] via

O = agrg[mi?{(l —0) - gap(zk, gx) + 0 - D(wg, 5%, 0)}.
€1
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Growth property and convergence rates

Theorem

Suppose (D, gap) satisfy the (v, r)-growth and 6y, is as above.
For r =1 we have linear convergence

b t < b t 1-— i 1 ’
estgap estgap, . .
gapy = gapg v 1 i

For r € [0,1) we have an initial linear convergence regime

k
1%
best < best 1—-— k=0,1,2,...,k
€stgap, = esgapO( l/—|—1> ) y Ly 4y s VO

where kg is the smallest k such that bestga p,lc_r < M. Then for
k > ko we have a sublinear convergence regime

v

r=1 1-—-7r 1 r—1
bestgap;, < | bestgap,” + ST e - (k — ko) .
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Conclusions
Consider the problem m]iRn {f(z) + ()} where f,1) convex.
TER™

@ Perturbed Fenchel duality: first-order meta-algorithm
generates iterates that satisfy

flop) +(ar) + [ (ur) + (Y 4 di)" (—ug) < 0

@ Convergence of popular first-order methods readily follow:
O(1/k") for conditional gradient if curvature condition holds
O(1/k) for proximal gradient if relative smoothness holds
O(1/k?) for fast proximal gradient if triangle scaling holds
O(1/Vk) for subgradient if relative continuity holds (skipped)

@ Stronger convergence rates for conditional gradient if some
suitable growth property holds.

@ Above holds for more general problem m]%n {f(Az) +¢(z)}
zeR?
and its dual max {=f"(u) =™ (—A%u)}.
ue n
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Uniform smoothness and uniform convexity
Let ¢ € (1,2]. Say that f: R" — R U {oo} is g-uniformly smooth
if there exist L > 0 such that for all z,y € R™ and 6 € [0, 1]

f(a+ 60y —2)) > (1 6)f(x) + 0f(y) - 2’0(1 o

Let p > 2. Say that ¢ : R — R U {00} is p-uniformly convex if
there exist 1 > 0 such that for all z,y € R™ and 0 € [0, 1]

W@+ 0(y — 2)) < (1 - O)ib(x) + Ou(y) — geu —0)ly — z|”.

Facts
e If f is g-unif smooth and % is p-unif convex then (D, gap)
satisfies the (v, r)-growth property for v = ¢ — 1 and r = q/p.
e fis (v + 1)-uniformly smooth if V f is v-Hdlder continuous.
e f is g-unif smooth iff f* is p-unif convex for 1/p+1/q = 1.
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