Optimization for Control Engineering

Plan

e Introduction (Javier): optimality conditions

e Part 1 (Javier): first-order methods

e Part 2 (Diego): sequential quadratic programming and
interior-point methods

Main references

e Beck, First-order Methods in Optimization, SIAM 2017
e Nocedal & Wright, Numerical Optimization, Springer 2006
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Optimization model

Problem of the form

min f(x)

X

st. xzeX.
We will concentrate on problems where f : R — R and X C R"
is of the form

X={zeR":¢(x)=0foriec& andc¢j(x)>0foriecT}

for some functions ¢; : R" - R, i€ EUT.

In this case it is customary to write the above problem as follows

min f(x)
st. c(z)=0,ie&
ci(r) >0, i€l

)
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Optimality conditions (unconstrained case)

Suppose f: R™ — R is differentiable. If z* solves

min f(z)

then V f(z*) = 0. The converse also holds if f is convex.

Next: how the above optimality conditions extend to the case
when we have constraints.

45



Lagrangian function

The Lagrangian function of the problem

min f(z)
st. c(zx)=0,i€é&
ci(x) >0,iel.

L(z,\) = f(z) — ATe(z).

Observe that the above problem can be recast as follows

min max L(z, \)
x A

Az>0



Optimality conditions (equality constraints only)

Suppose f: R™ — R and ¢; : R® — R, i € £ are differentiable.
Suppose z* solves
min f(z)
x
st. c(z)=0,i€e&

and {Vc;(z*), i € £} is linearly independent. Then there exists \*
such that VL(z*, A\*) = 0 or equivalently

V(") =) AVe(a) =0
€€
ci(x*) =0, i €.

The converse also holds if f is convex and ¢;, ¢ € £ are affine.
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Optimality conditions (equality & inequality constraints)

Suppose f:R™ = R and ¢; : R" = R, i € £ UZ are differentiable
and consider the problem
mln ()
s.t. ci(z)

(z) =
ci(x) 2 ZEI.

Given a feasible point x*, let A(x*) denote the set of active
constraints at x*, that is,

A(z*) :=EU{i € T: ¢i(z*) = 0}.
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Optimality conditions (equality & inequality constraints)
Suppose f:R™ = R and ¢; : R* — R,i € £UZ are differentiable.
Suppose z* solves

and the set {Ve¢;(x*), i € A(z*)} i
Then there exists A* such that

> AVei(at) =0
i€ A(z*)
ci(x*)=0,i€é&
A >0, ¢i(x*)>0,i€Z
Nei(z¥)=0,ieT.

The converse also holds if f and —c¢;,7 € Z are convex and
¢, 1 € & are affine.



Special case: linear programming

Suppose A € R™*™ ¢ € R™, b € R™ and consider a linear program

in standard form: -

min c¢'zx

X

st. Ax =10
x > 0.

In this case z* is an optimal solution if and only if there exist
A* € R™, s* € R” such that

AT\ 455 =c
Ax* =D
>0, >0
sy =0,i=1,...,n.

Furthermore, the above holds if and only if (A*, s*) solves the dual

problem
max b\
A8
st. ATA+s=c¢
s> 0.



Special case: quadratic programming (equality constraints)

Suppose A € R™*" ¢ e R" b e R™ G € R"™"™ and consider the
quadratic program

min %wTGm +clz
X

s.t. Az =b.
If * is an optimal solution then there exist A* € R™ such that

Gz — AT\ = —¢
Az* =b.

The converse also holds when G is positive semidefinite.
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Special case: quad programming (inequality constraints)

Suppose A € R™*" ¢ e R™, b € R™, G € R™ "™ and consider the
quadratic program

min %xTG:J: +clz
X
s.t. Az >0b.

If * is an optimal solution then there exist A* € R™ such that

The converse also holds when G is positive semidefinite.
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Algorithms for optimization

Consider the problem

min f(z)
st. xzei. (P)

Algorithm to “solve” (P):

e Construct a sequence zp € R™, £k =0,1,... that hopefully
converges to a solution to (P)

e Algorithm depends on what kind of “oracles” are available for
f and X and the type of operations that are performed at
each main iteration

e “Simple” algorithms perform low-cost operations (memory
and computation) but are usually slow.

“Sophisticated” algorithms require more costly operations but
are usually much faster. They also apply to a wider variety of
problems.
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Two main ideas
Consider the unconstrained problem

IT%Eil’l f(x).

Gradient descent
Given z get a (hopefully better) new point 4 via

xyi=x—1t-Vf(x)

. 1
—argmin { 1(2) + (V4(2)y o) + 5y~ alP}.

Newton's method
Given z get a (hopefully better) new point x4 via

wy =2 =V f(x) 'V f(x)

—argmin { 1(2) + (VF(2)y o) + 5 (1@~ 2)y = o)}

Y

(First step requires VQf(z) non-singular and second one requires V2f(z) positive definite.)
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Newton's method for root finding

Suppose F': R™ — R" is differentiable and consider the system of
n equations and n unknowns

F(z)=0.

Newton's method
Given x get a (hopefully better) new point x4 via

ry =z — F'(z)" F(2).

The latter is the solution for the variable y of the linear system of
equations
F(z) + F'(z)(y — ) = 0.
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Main agenda

Part 1 (Javier)

Emphasis on unconstrained convex optimization. First-order
methods: gradient descent and fast gradient descent.

Part 2 (Diego)
General constrained optimization. Sequential quadratic
programming. Interior-point methods.
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Gradient descent
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Gradient descent (Cauchy 1847)

Let f: R™ — R be a convex differentiable function. Solve

min f(z)

via
Thy1 =2 — tg - Vf(ag).
Common shorthand: drop indices and write main update as

ry =z —1t-Vf(x).

Observe

o -9 5a) = angmin { ) + (V) o) + g5l P}

Yy

Throughout our discussion: || - || = || - [|2-

16
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Gradient descent (continued)

Solve

min f(z)

via
Ty 1= xf — tg - V f(2r)

= argmin {f(a:k) + (Vf(ar),y —xx) + %Hy - wk”Q}
Y k

Natural questions

e How to choose t;?

e Can we guarantee that the iterates xp, £k =0,1,... and/or
iterate values f(zy) converge? If so, how fast?
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Choice of step-size in gradient descent

Common approach
Pick ¢t > 0 so that 4 =z — t - Vf(x) satisfies

o) <min{ 10) + (VF)y =) + gl — ol
= (@) = IV @), (D<)

Backtracking
We usually want ¢ as large as possible so that (DC) holds.

We can do that via "backtracking”: pick initial £ > 0 and scale it
up or down until (DC) just holds.
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Convergence of gradient descent

Notation & blanket assumption

Let f := min f(x) is finite and X := argmin f(z) # 0.
zER™ reR™

Theorem
Let f : R™ — R be convex and differentiable. If the step-sizes

satisfy (DC) then the iterates xy, k = 0,1,... generated by the
proximal gradient algorithm satisfy

In particular iftk2%>0for some L > 0 then
~ L -dist(zg, X)?
Flaw) — F < ISQ(ZO’ k=19
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Proof of convergence of gradient descent
Convex conjugate

Let ¢ : R" — RU {oc}. Define ¢* : R” — RU {oo} via

¢*(v) = sup {(v,2) — $(2)}.

z€R™

Lemma
Let f : R™ — R be convex and differentiable. If the step-sizes
satisfy (DC) then the gradient iterates satisfy

fxr) < —f*(vg) — di(—vg)

k—1
Zi:() tivf(xi) and dk;(iv) o ||m*5130||2

where vy, 1= - = Ll
k Sico ti 250 ti

Proof of previous Theorem. For € X we have

' - el
22?;01 t;

=" (k) = di(=vi) < —(ui, T) + [+ (vg, T) + di(T) = [ +
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L-smoothness

When can we ensure that ¢t;, > 1/L for some constant L > 07

L-smoothness
If f:R™ — R is convex, differentiable, and V f is L-Lipschitz
continuous then f satisfies the following L-smoothness condition

F() < F(@)+ (Vi(@)y—2) + £y — 2l

for all x,y.

In this case the (DC) condition holds for t, = 1 or possibly larger.
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Lower bound for any gradient method

Suppose f : R™ — R is convex and differentiable and consider an
algorithm such that

Tpt1 € zo +span{V f(zo), ...,V f(zy)}.
How good could that kind of algorithm be?

Theorem
For all xg € R™ there exists a strictly convex and differentiable
f:R™ = R with L-Lipschitz V f and such that

7 3L _
f(a:k) - f > m”ﬂfo - $||2 for k < n/2.

Observe: for L-Lipschitz V f gradient descent iterates satisfy

Flow) — F < aeleo 2l

Is it possible to do better?



Fast gradient descent
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Fast gradient descent (Nesterov 1983)

Main idea
Generate two different sequences that have the same initial point

Yo = To
and are updated via
Thr1 =Yk — - V()

and
Ybr1 = Trp1 + Ok - (Th1 — Tp)
for some B >0, k=0,1,....

Observe
The sequence yi, k =0,1,... includes some “momentum”.
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Convergence of fast gradient descent

Recall notation & blanket assumption

Let f := min f(x) is finite and X := argmin f(z) # 0.
z€R™ xER"

Theorem
Suppose [, = kiﬁ andty > 1/L, k=0,1,2,... are
non-increasing and satisfy (DC), that is,

Flann) < S) = 19 F ol

Then the iterates generated by the fast gradient algorithm satisfy

flzy) — fT < (]Cj_Ll)Z : diSt(xo,X)Q.

Another popular choice for
Take (3 := 2LG=0) where 6y = 1 and 67, | = 63(1 — 6341).
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Proof of convergence of fast gradient descent (simplified)
Consider the special case when t;, = 1/L and S is chosen via 6.

In this case we can rewrite the updates as follows

U= (1= 0k) - zp + 0 - 2
Tpr1 = (1= 0k) - 2 + Ok - 2611

where )
2yl = 2k — 0L Vf(ye)-

Properties of 6,
If 6o =1 and GI%H = 92(1 —0k11), k=0,1,... then

k

1 4

— ———, k=0,1,....
goe k+2)27 ) Ly
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Proof of convergence of fast gradient descent (simplified)

Lemma
Under the above assumptions the fast gradient iterates satisfy

fxr) < —f*(vg) — di(—vg)

L6?

where vy = 07_ - S-870 YIWD and dy () = ZEL |l — |2,

Proof of previous Theorem. For z € X we have

—f* () — di(—v) < —(ox, Z) + F + (vk, T) + di(T)

_ Lg?

=f+ k -1z - ol®
- 2L

< = 2

Recall ¢*(v) = sup, {{v,z) — ¢(x)}.
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Examples

Least squares
Let A € R™*™ b e R™ and consider the loss function

1
fl@) = 54z - b,

Logistic regression
Let X € R¥*P_ 4 € {0,1}" and consider the logistic loss function

F(B) = — ZN: {yl log (1+€1_Xﬂ> + (1 —y;)log (1 — 1+61_X6>}

i=1
= —yTXB+ 1" log(1 + ¥P).

See Python code: Algorithms.py, Functions.py,
Examplel.py
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Proximal gradient methods
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Projected gradient method

Let f: R" — R U {oo} be a differentiable convex function and
X C dom(f) be a closed convex set. Solve

min f(z)

via
Tpt1 = Projy(zr — tr - Vf(zk))

= argmin|ly — (z, — t - Vf (1))

yeX
. 1
— argmin {fm) (Y Fl@r),y = on) + 5y = mr?}
yeX k

Projected gradient is a special case of proximal gradient (next).

30 /45



Proximal gradient method (Lions & Mercier 1979)

a.k.a. forward-backward splitting
Let f: R" — R U {oo} be differentiable and convex, and

1 : R™ - R U {oo} be closed and convex with dom(v)) C dom(f).

Solve

min {f(z) + ¢ (2)}

zeR?
via
Tpy1 = Prox, (x —tr - V f(xg))
where Prox; is the following proximal map
Prox:(z) := argmin {2175”.@ —z|* + w(y)} )
yeR”
Observe:

Proxi(z —t- Vf(x)) =

argmin { 1(2) + (V1(0).y — ) + lly = ol + 600 |

yER™
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Fast proximal gradient algorithm
(Beck-Teboulle 2009, Nesterov 2013)

Again generate two sequences and incorporate momentum.

Solve
min {/(@) + ¥(2))
via
Try1 = Proxg, (yx — tr - V£ (yr))
and

Or1+1(1 — 0O)
O

where g = 1 and 07, = 07(1 — 0py1), k=0,1,....

Yk4+1 = Th41 + (Xpg1 — 1)

Same convergence properties as fast gradient.
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Example: ¢; regularization

Consider the problem

min f(x) + Allzq.

This type of problem is the crux of lasso and compressive sensing.

For ¢(x) = Al|z||1 the proximal map is (componentwise)

gi— M if gi> At
Prox:(g)i = 0 if Jgi| <M
gt M if g < -\t

See Python code: Algorithms.py, Functions.py,
Example2.py
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OPTIONAL: strong convexity
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Strong convexity
Let f: R™ - RU{oo} be convex and differentiable.

Definition
f is strongly convex with modulus p > 0 if

) = f(@) + (Vf(@),y - 2) + Slly - all
for all z,y.

Recall
f is L-smooth if

F() < F@)+ (Vi(@)y—2) + 5y — 2l

for all z,y.
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Linear convergence of gradient descent

Theorem
Let f: R"™ — R be p-strongly convex and L-smooth. Then
f= m]iRn f(x) < oo and f has a unique minimizer .

TER™

If the step-sizes satisfy tj, > % > () then the iterates generated by
the gradient descent algorithm satisfy

Fa) ~ F< (1= 2" (o) - ),

and I N
Jow =2l < (1= 7)o = 7l

In particular, the algorithm finds x € R™ with

flx)—f<el(f(xo)— f)in O (% -log (%)) iterations.
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Lower bound for any gradient method

Suppose f : R™ — R is convex and differentiable and consider an
algorithm such that

Tpt1 € xo +span{V f(zo), ...,V f(zy)}.
How good could that kind of algorithm be?

Theorem
For all xg € R"™ there exists a p-strongly convex, L-smooth, and
differentiable function f : R™ — R such that

2k
- A/ L/u—1
f(l’k)—fzg(\/%H) lzo — Z||* for k <n/2.
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Fast (linear) gradient descent

Suppose f is u-strongly convex and L-smooth. Generate two
sequences that start at the same initial point yy = ¢ and are
updated via

1
Th+l = Tp = 7 ° V f(yr)

1
Yk+1 = Th+1 + 1

Theorem
The iterates generated by the above algorithm satisfy

k
L(VL/"‘1> o — 2.

flzg) = f m

IN
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OPTIONAL: conditional gradient method
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Conditional gradient (Frank-Wolfe) method

Let X C R" be a closed convex set, f: R” — R U {oo} be a
differentiable convex function and suppose the following linear
oracle is available:

g — argmin(g,y).

yeX
Solve
min f(z)
via
s = argmin(V f(zx), y)
yeX
Tpt1 := T + O (s — xy) for O € [0, 1]

Observe

Conditional gradient relies on linear oracle (no projection) for X.
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Conditional gradient (Frank-Wolfe) method

Curvature constant (Jaggi 2013)

Cy:= sup —
f T,s€X 02
0€(0,1]

Theorem
Suppose Cy < oo and 0, := 1%2’ k=0,1,.... Then the
conditional gradient iterates satisfy

QCf

f(xk)_]?g m

’ (f(z+0(s —x)) = f(x) = (Vf(2),0(s — 2))).
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OPTIONAL: subgradient methods
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Subgradient method

Fact
Let f: R - R U {oo} be a convex function. Then for all
x € ri(dom(f)) there exists g € R™ such that

fly) > f(x)+{g,y — ) Vy € R™.

Definition
Let f: R" - RU{oco}. The subdifferential of f at x € dom(f) is

Of(x) :={g eR": f(y) = f(x) + (9,y —x) Yy eR"}.

Fact
Let f: R - R U {oo} be a convex function. Then f is
differentiable at = € int(dom(f)) if and only if

Of (x) = {Vf(x)}.
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Subgradient method

Let f: R - R U {oo} be a convex function and X C dom(f) be
a closed convex set. Solve

min f(z)
via
Tht1 = Hx(l'k — T - gk), for g € af(l'k)
Observe

Subgradient method subsumes projected gradient descent when f
is convex and differentiable.
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Proximal subgradient algorithm

Let f: R" - RU{oo} and ¢ : R” — RU {00} be convex
functions such that dom(¢) C ri(dom(f)). Let ¢ := f + 9.

Solve
min {f(2) + (@)} + min o)
via
Tyl = PrOth(l’k — 1 - gk), for gi € 6f(xk)
Theorem

If ¢ is G-Lipschitz then the proximal subgradient iterates satisfy

_ dist(zo, X)2+ G2YF 12
. min ¢(.’IJ2) _¢§ 18 (Jfo ) : E’L—O 1
i=0,1,....k 2> ot
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