Optimization for Control Engineering

Plan

- Introduction (Javier): optimality conditions
- Part 1 (Javier): first-order methods
- Part 2 (Diego): sequential quadratic programming and interior-point methods

Main references

- Beck, First-order Methods in Optimization, SIAM 2017
- Nocedal & Wright, Numerical Optimization, Springer 2006

Optimization model

Problem of the form

$$\begin{array}{ll} \min_{x} & f(x) \\ \text{s.t.} & x \in \mathcal{X}. \end{array}$$

We will concentrate on problems where $f:\mathbb{R}^n\to\mathbb{R}$ and $\mathcal{X}\subseteq\mathbb{R}^n$ is of the form

$$\mathcal{X} = \{x \in \mathbb{R}^n : c_i(x) = 0 \text{ for } i \in \mathcal{E} \text{ and } c_i(x) \ge 0 \text{ for } i \in \mathcal{I}\}$$

for some functions $c_i : \mathbb{R}^n \to \mathbb{R}, \ i \in \mathcal{E} \cup \mathcal{I}.$

In this case it is customary to write the above problem as follows

$$\min_{x} f(x)$$

s.t. $c_i(x) = 0, \ i \in \mathcal{E}$
 $c_i(x) \ge 0, \ i \in \mathcal{I}.$

Optimality conditions (unconstrained case)

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable. If x^* solves

 $\min_{x \in \mathbb{R}^n} f(x)$

then $\nabla f(x^{\star}) = 0$. The converse also holds if f is convex.

Next: how the above optimality conditions extend to the case when we have constraints.

Lagrangian function

The Lagrangian function of the problem

$$\min_{x} \quad f(x) \\ \text{s.t.} \quad c_i(x) = 0, \ i \in \mathcal{E} \\ c_i(x) \ge 0, \ i \in \mathcal{I}.$$

is

$$L(x,\lambda) = f(x) - \lambda^{\mathsf{T}} c(x).$$

Observe that the above problem can be recast as follows

 $\min_{x} \max_{\substack{\lambda \\ \lambda_{\mathcal{I}} \geq 0}} L(x,\lambda)$

Optimality conditions (equality constraints only)

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ and $c_i : \mathbb{R}^n \to \mathbb{R}, i \in \mathcal{E}$ are differentiable. Suppose x^* solves

$$\min_{x} \quad f(x)$$

s.t. $c_i(x) = 0, \ i \in \mathcal{E}$

and $\{\nabla c_i(x^*), i \in \mathcal{E}\}$ is linearly independent. Then there exists λ^* such that $\nabla L(x^*, \lambda^*) = 0$ or equivalently

$$\nabla f(x^{\star}) - \sum_{i \in \mathcal{E}} \lambda_i^{\star} \nabla c_i(x^{\star}) = 0$$
$$c_i(x^{\star}) = 0, \ i \in \mathcal{E}.$$

The converse also holds if f is convex and $c_i, i \in \mathcal{E}$ are affine.

Optimality conditions (equality & inequality constraints)

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ and $c_i: \mathbb{R}^n \to \mathbb{R}, i \in \mathcal{E} \cup \mathcal{I}$ are differentiable and consider the problem

$$\min_{x} \quad f(x) \\ \text{s.t.} \quad c_i(x) = 0, \ i \in \mathcal{E} \\ c_i(x) \ge 0, \ i \in \mathcal{I}.$$

Given a feasible point x^* , let $\mathcal{A}(x^*)$ denote the set of *active constraints* at x^* , that is,

$$\mathcal{A}(x^{\star}) := \mathcal{E} \cup \{ i \in \mathcal{I} : c_i(x^{\star}) = 0 \}.$$

Optimality conditions (equality & inequality constraints)

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ and $c_i: \mathbb{R}^n \to \mathbb{R}, i \in \mathcal{E} \cup \mathcal{I}$ are differentiable. Suppose x^* solves

$$\min_{x} f(x)$$

s.t. $c_i(x) = 0, i \in \mathcal{E}$
 $c_i(x) \ge 0, i \in \mathcal{I}$

and the set $\{\nabla c_i(x^\star), i \in \mathcal{A}(x^\star)\}$ is linearly independent. Then there exists λ^\star such that

$$\nabla f(x^{\star}) - \sum_{i \in \mathcal{A}(x^{\star})} \lambda_i^{\star} \nabla c_i(x^{\star}) = 0$$
$$c_i(x^{\star}) = 0, \ i \in \mathcal{E}$$
$$\lambda_i^{\star} \ge 0, \ c_i(x^{\star}) \ge 0, \ i \in \mathcal{I}$$
$$\lambda_i^{\star} c_i(x^{\star}) = 0, \ i \in \mathcal{I}.$$

The converse also holds if f and $-c_i, i \in \mathcal{I}$ are convex and $c_i, i \in \mathcal{E}$ are affine.

Special case: linear programming

Suppose $A \in \mathbb{R}^{m \times n}, c \in \mathbb{R}^n, b \in \mathbb{R}^m$ and consider a linear program in *standard form:*

$$\min_{x} c^{\mathsf{T}}x \\ \text{s.t.} \quad Ax = b \\ x \ge 0.$$

In this case x^\star is an optimal solution if and only if there exist $\lambda^\star\in\mathbb{R}^m,s^\star\in\mathbb{R}^n$ such that

$$A^{\mathsf{T}}\lambda^{\star} + s^{\star} = c$$

$$Ax^{\star} = b$$

$$x^{\star} \ge 0, \ s^{\star} \ge 0$$

$$x_{i}^{\star}s_{i}^{\star} = 0, \ i = 1, \dots, n.$$

Furthermore, the above holds if and only if $(\lambda^{\star}, s^{\star})$ solves the dual problem

$$\begin{array}{ll} \max_{\lambda,s} & b^{\mathsf{T}}\lambda \\ \mathrm{s.t.} & A^{\mathsf{T}}\lambda + s = c \\ & s \ge 0. \end{array}$$

Special case: quadratic programming (equality constraints)

Suppose $A\in\mathbb{R}^{m\times n},c\in\mathbb{R}^n,b\in\mathbb{R}^m,G\in\mathbb{R}^{n\times n}$ and consider the quadratic program

$$\min_{x} \quad \frac{1}{2}x^{\mathsf{T}}Gx + c^{\mathsf{T}}x$$

s.t.
$$Ax = b.$$

If x^{\star} is an optimal solution then there exist $\lambda^{\star} \in \mathbb{R}^m$ such that

$$Gx^{\star} - A^{\mathsf{T}}\lambda^{\star} = -c$$
$$Ax^{\star} = b.$$

The converse also holds when G is positive semidefinite.

Special case: quad programming (inequality constraints)

Suppose $A\in\mathbb{R}^{m\times n},c\in\mathbb{R}^n,b\in\mathbb{R}^m,G\in\mathbb{R}^{n\times n}$ and consider the quadratic program

$$\min_{x} \quad \frac{1}{2}x^{\mathsf{T}}Gx + c^{\mathsf{T}}x \\ \text{s.t.} \quad Ax \ge b.$$

If x^\star is an optimal solution then there exist $\lambda^\star \in \mathbb{R}^m$ such that

$$Gx^{\star} - A^{\mathsf{T}}\lambda^{\star} = -c$$
$$Ax^{\star} \ge b$$
$$\lambda^{\star} \ge 0$$
$$\lambda_i^{\star}(Ax^{\star} - b)_i = 0, i = 1, \dots, m.$$

The converse also holds when G is positive semidefinite.

Algorithms for optimization

Consider the problem

$$\begin{array}{ll} \min_{x} & f(x) \\ \text{s.t.} & x \in \mathcal{X}. \end{array} \tag{P}$$

Algorithm to "solve" (P):

- Construct a sequence x_k ∈ ℝⁿ, k = 0, 1, ... that hopefully converges to a solution to (P)
- Algorithm depends on what kind of "oracles" are available for f and $\mathcal X$ and the type of operations that are performed at each main iteration
- "Simple" algorithms perform low-cost operations (memory and computation) but are usually slow.

"Sophisticated" algorithms require more costly operations but are usually much faster. They also apply to a wider variety of problems.

Two main ideas

Consider the unconstrained problem

 $\min_x f(x).$

Gradient descent

Given x get a (hopefully better) new point x_+ via

$$\begin{aligned} x_+ &:= x - t \cdot \nabla f(x) \\ &= \operatorname*{argmin}_y \left\{ f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2t} \|y - x\|^2 \right\}. \end{aligned}$$

Newton's method

Given x get a (hopefully better) new point x_+ via

$$\begin{split} x_+ &:= x - \nabla^2 f(x)^{-1} \nabla f(x) \\ &= \operatorname*{argmin}_y \left\{ f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} \langle \nabla^2 f(x)(y - x), y - x \rangle \right\}. \end{split}$$

(First step requires $abla^2 f(x)$ non-singular and second one requires $abla^2 f(x)$ positive definite.)

Newton's method for root finding

Suppose $F:\mathbb{R}^n\to\mathbb{R}^n$ is differentiable and consider the system of n equations and n unknowns

$$F(x) = 0.$$

Newton's method

Given x get a (hopefully better) new point x_+ via

$$x_{+} := x - F'(x)^{-1}F(x).$$

The latter is the solution for the variable y of the linear system of equations

$$F(x) + F'(x)(y - x) = 0.$$

Main agenda

Part 1 (Javier)

Emphasis on unconstrained convex optimization. First-order methods: gradient descent and fast gradient descent.

Part 2 (Diego)

General constrained optimization. Sequential quadratic programming. Interior-point methods.

Gradient descent

Gradient descent (Cauchy 1847)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex differentiable function. Solve

$$\min_{x \in \mathbb{R}^n} f(x)$$

via

$$x_{k+1} := x_k - t_k \cdot \nabla f(x_k).$$

Common shorthand: drop indices and write main update as

$$x_+ = x - t \cdot \nabla f(x).$$

Observe

$$x - t \cdot \nabla f(x) = \underset{y}{\operatorname{argmin}} \left\{ f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2t} \|y - x\|^2 \right\}.$$

Throughout our discussion: $\|\cdot\| = \|\cdot\|_2$.

Gradient descent (continued)

 $\min_{x\in\mathbb{R}^n}\ f(x)$

via

Solve

$$\begin{aligned} x_{k+1} &:= x_k - t_k \cdot \nabla f(x_k) \\ &= \operatorname*{argmin}_{y} \left\{ f(x_k) + \langle \nabla f(x_k), y - x_k \rangle + \frac{1}{2t_k} \|y - x_k\|^2 \right\} \end{aligned}$$

Natural questions

- How to choose t_k ?
- Can we guarantee that the iterates x_k , k = 0, 1, ... and/or iterate values $f(x_k)$ converge? If so, how fast?

Choice of step-size in gradient descent

Common approach Pick t > 0 so that $x_+ = x - t \cdot \nabla f(x)$ satisfies

$$f(x_{+}) \leq \min_{y} \left\{ f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2t} \|y - x\|^{2} \right\}$$

= $f(x) - \frac{t}{2} \|\nabla f(x)\|^{2}$. (DC)

Backtracking

We usually want t as large as possible so that (DC) holds.

We can do that via "backtracking": pick initial t > 0 and scale it up or down until (DC) just holds.

Convergence of gradient descent

Notation & blanket assumption Let $\bar{f} := \min_{x \in \mathbb{R}^n} f(x)$ is finite and $\bar{X} := \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} f(x) \neq \emptyset$.

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. If the step-sizes satisfy (DC) then the iterates x_k , k = 0, 1, ... generated by the proximal gradient algorithm satisfy

$$f(x_k) - \bar{f} \le \frac{\operatorname{dist}(x_0, \bar{X})^2}{2\sum_{i=0}^{k-1} t_i}, \ k = 1, 2, \dots$$

In particular if $t_k \geq \frac{1}{L} > 0$ for some L > 0 then

$$f(x_k) - \bar{f} \le \frac{L \cdot \operatorname{dist}(x_0, \bar{X})^2}{2k}, \ k = 1, 2, \dots$$

Proof of convergence of gradient descent

Convex conjugate

Let $\phi: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$. Define $\phi^*: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ via

$$\phi^*(v) = \sup_{x \in \mathbb{R}^n} \{ \langle v, x \rangle - \phi(x) \}.$$

Lemma

Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. If the step-sizes satisfy (DC) then the gradient iterates satisfy

$$f(x_k) \le -f^*(v_k) - d_k^*(-v_k)$$

where
$$v_k := \frac{\sum_{i=0}^{k-1} t_i \nabla f(x_i)}{\sum_{i=0}^{k-1} t_i}$$
 and $d_k(x) := \frac{\|x - x_0\|^2}{2\sum_{i=0}^{k-1} t_i}$.

Proof of previous Theorem. For $\bar{x} \in \bar{X}$ we have

$$-f^*(v_k) - d_k^*(-v_k) \le -\langle v_k, \bar{x} \rangle + \bar{f} + \langle v_k, \bar{x} \rangle + d_k(\bar{x}) = \bar{f} + \frac{\|\bar{x} - x_0\|^2}{2\sum_{i=0}^{k-1} t_i}.$$

20 / 45

L-smoothness

When can we ensure that $t_k \ge 1/L$ for some constant L > 0?

L-smoothness

If $f: \mathbb{R}^n \to \mathbb{R}$ is convex, differentiable, and ∇f is *L*-Lipschitz continuous then f satisfies the following *L*-smoothness condition

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|^2$$

for all x, y.

In this case the (DC) condition holds for $t_k = \frac{1}{L}$ or possibly larger.

Lower bound for any gradient method

Suppose $f:\mathbb{R}^n\to\mathbb{R}$ is convex and differentiable and consider an algorithm such that

$$x_{k+1} \in x_0 + \operatorname{span}\{\nabla f(x_0), \dots, \nabla f(x_k)\}.$$

How good could that kind of algorithm be?

Theorem

For all $x_0 \in \mathbb{R}^n$ there exists a strictly convex and differentiable $f : \mathbb{R}^n \to \mathbb{R}$ with L-Lipschitz ∇f and such that

$$f(x_k) - \bar{f} \ge \frac{3L}{32(k+1)^2} \|x_0 - \bar{x}\|^2$$
 for $k \le n/2$.

Observe: for L-Lipschitz ∇f gradient descent iterates satisfy

$$f(x_k) - \bar{f} \le \frac{L}{2k} \|x_0 - \bar{x}\|^2.$$

Is it possible to do better?

Fast gradient descent

Fast gradient descent (Nesterov 1983)

Main idea

Generate two different sequences that have the same initial point

$$y_0 = x_0$$

and are updated via

$$x_{k+1} = y_k - t_k \cdot \nabla f(y_k)$$

and

$$y_{k+1} = x_{k+1} + \beta_k \cdot (x_{k+1} - x_k)$$

for some $\beta_k \ge 0, \ k = 0, 1, \ldots$

Observe

The sequence y_k , k = 0, 1, ... includes some "momentum".

Convergence of fast gradient descent

Recall notation & blanket assumption Let $\bar{f} := \min_{x \in \mathbb{R}^n} f(x)$ is finite and $\bar{X} := \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} f(x) \neq \emptyset$.

Theorem

Suppose $\beta_k = \frac{k}{k+3}$ and $t_k \ge 1/L$, k = 0, 1, 2, ... are non-increasing and satisfy (DC), that is,

$$f(x_{k+1}) \le f(y_k) - \frac{t_k}{2} \|\nabla f(y_k)\|^2.$$

Then the iterates generated by the fast gradient algorithm satisfy

$$f(x_k) - \bar{f} \le \frac{2L}{(k+1)^2} \cdot \operatorname{dist}(x_0, \bar{X})^2.$$

Another popular choice for β_k Take $\beta_k := \frac{\theta_{k+1}(1-\theta_k)}{\theta_k}$, where $\theta_0 = 1$ and $\theta_{k+1}^2 = \theta_k^2(1-\theta_{k+1})$.

Proof of convergence of fast gradient descent (simplified)

Consider the special case when $t_k = 1/L$ and β_k is chosen via θ_k .

In this case we can rewrite the updates as follows

$$y_k = (1 - \theta_k) \cdot x_k + \theta_k \cdot z_k$$
$$x_{k+1} = (1 - \theta_k) \cdot x_k + \theta_k \cdot z_{k+1}$$

where

$$z_{k+1} = z_k - \frac{1}{\theta_k L} \cdot \nabla f(y_k).$$

Properties of θ_k If $\theta_0 = 1$ and $\theta_{k+1}^2 = \theta_k^2(1 - \theta_{k+1}), \ k = 0, 1, \dots$ then

$$\sum_{i=0}^{k} \frac{1}{\theta_i} = \theta_k^2 \le \frac{4}{(k+2)^2}, \ k = 0, 1, \dots$$

Proof of convergence of fast gradient descent (simplified)

Lemma

Under the above assumptions the fast gradient iterates satisfy

$$f(x_k) \le -f^*(v_k) - d_k^*(-v_k)$$

where
$$v_k := heta_{k-1}^2 \cdot \sum_{i=0}^{k-1} rac{
abla f(y_i)}{ heta_i}$$
 and $d_k(x) := rac{L heta_{k-1}^2}{2} \|x - x_0\|^2$.

Proof of previous Theorem. For $\bar{x} \in \bar{X}$ we have

$$-f^{*}(v_{k}) - d_{k}^{*}(-v_{k}) \leq -\langle v_{k}, \bar{x} \rangle + \bar{f} + \langle v_{k}, \bar{x} \rangle + d_{k}(\bar{x})$$

$$= \bar{f} + \frac{L\theta_{k-1}^{2}}{2} \|\bar{x} - x_{0}\|^{2}$$

$$\leq \bar{f} + \frac{2L}{(k+1)^{2}} \|\bar{x} - x_{0}\|^{2}.$$

$$\mathsf{Recall}\ \phi^*(v) = \sup_x \{ \langle v, x \rangle - \phi(x) \}.$$

Examples

Least squares

Let $A \in \mathbb{R}^{m \times n}, \; b \in \mathbb{R}^m$ and consider the loss function

$$f(x) = \frac{1}{2} ||Ax - b||^2$$

Logistic regression Let $X \in \mathbb{R}^{N \times p}, \ y \in \{0,1\}^N$ and consider the *logistic loss* function

$$f(\beta) = -\sum_{i=1}^{N} \left\{ y_i \log\left(\frac{1}{1+e^{-X_i\beta}}\right) + (1-y_i) \log\left(1-\frac{1}{1+e^{-X_i\beta}}\right) \right\}$$
$$= -y^{\mathsf{T}} X\beta + \mathbf{1}^{\mathsf{T}} \log(1+e^{X\beta}).$$

See Python code: Algorithms.py, Functions.py, Example1.py

Proximal gradient methods

Projected gradient method

Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be a differentiable convex function and $\mathcal{X} \subseteq \operatorname{dom}(f)$ be a closed convex set. Solve

 $\min_{x \in \mathcal{X}} f(x)$

via

$$\begin{split} x_{k+1} &:= \operatorname{Proj}_{\mathcal{X}}(x_k - t_k \cdot \nabla f(x_k)) \\ &= \underset{y \in \mathcal{X}}{\operatorname{argmin}} \|y - (x_k - t_k \cdot \nabla f(x_k))\|^2 \\ &= \underset{y \in \mathcal{X}}{\operatorname{argmin}} \left\{ f(x_k) + \langle \nabla f(x_k), y - x_k \rangle + \frac{1}{2t_k} \|y - x_k\|^2 \right\} \end{split}$$

Projected gradient is a special case of proximal gradient (next).

Proximal gradient method (Lions & Mercier 1979)

a.k.a. forward-backward splitting

Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be differentiable and convex, and $\psi : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be closed and convex with $\operatorname{dom}(\psi) \subseteq \operatorname{dom}(f)$.

Solve

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) + \psi(x) \right\}$$

via

$$x_{k+1} := \mathsf{Prox}_{t_k}(x_k - t_k \cdot \nabla f(x_k))$$

where $Prox_t$ is the following *proximal map*

$$\mathsf{Prox}_t(x) := \operatorname*{argmin}_{y \in \mathbb{R}^n} \left\{ \frac{1}{2t} \|y - x\|^2 + \psi(y) \right\}.$$

Observe:

$$\begin{split} \operatorname{Prox}_t(x-t\cdot\nabla f(x)) &= \\ & \underset{y\in\mathbb{R}^n}{\operatorname{argmin}}\left\{f(x) + \langle \nabla f(x), y-x\rangle + \frac{1}{2t}\|y-x\|^2 + \psi(y)\right\}. \end{split}$$

Fast proximal gradient algorithm (Beck-Teboulle 2009, Nesterov 2013)

Again generate two sequences and incorporate momentum.

Solve

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) + \psi(x) \right\}$$

via

$$x_{k+1} = \mathsf{Prox}_{t_k}(y_k - t_k \cdot \nabla f(y_k))$$

and

$$y_{k+1} = x_{k+1} + \frac{\theta_{k+1}(1-\theta_k)}{\theta_k} \cdot (x_{k+1} - x_k)$$

where $\theta_0 = 1$ and $\theta_{k+1}^2 = \theta_k^2 (1 - \theta_{k+1}), \ k = 0, 1, ...$

Same convergence properties as fast gradient.

Example: ℓ_1 regularization

Consider the problem

$$\min_{x} f(x) + \lambda \|x\|_1.$$

This type of problem is the crux of lasso and compressive sensing.

For $\psi(x) = \lambda ||x||_1$ the proximal map is (componentwise)

$$\mathsf{Prox}_t(g)_i = \left\{ \begin{array}{rrr} g_i - \lambda t & \text{if} \quad g_i > \lambda t \\ 0 & \text{if} \quad |g_i| \leq \lambda t \\ g_i + \lambda t & \text{if} \quad g_i < -\lambda t \end{array} \right.$$

See Python code: Algorithms.py, Functions.py, Example2.py

OPTIONAL: strong convexity

Strong convexity

Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be convex and differentiable.

Definition

f is strongly convex with modulus $\mu>0$ if

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \|y - x\|^2$$

for all x, y.

Recall *f* is *L*-smooth if

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|^2$$

for all x, y.

Linear convergence of gradient descent

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ be μ -strongly convex and L-smooth. Then $\bar{f} := \min_{x \in \mathbb{R}^n} f(x) < \infty$ and f has a unique minimizer \bar{x} .

If the step-sizes satisfy $t_k \ge \frac{1}{L} > 0$ then the iterates generated by the gradient descent algorithm satisfy

$$f(x_k) - \bar{f} \le \left(1 - \frac{\mu}{L}\right)^k (f(x_0) - \bar{f}),$$

and

$$||x_k - \bar{x}||^2 \le \frac{L}{\mu} \left(1 - \frac{\mu}{L}\right)^k ||x_0 - \bar{x}||^2.$$

In particular, the algorithm finds $x \in \mathbb{R}^n$ with $f(x) - \bar{f} \leq \epsilon(f(x_0) - \bar{f})$ in $\mathcal{O}\left(\frac{L}{\mu} \cdot \log\left(\frac{1}{\epsilon}\right)\right)$ iterations.

Lower bound for any gradient method

Suppose $f:\mathbb{R}^n\to\mathbb{R}$ is convex and differentiable and consider an algorithm such that

$$x_{k+1} \in x_0 + \operatorname{span}\{\nabla f(x_0), \dots, \nabla f(x_k)\}.$$

How good could that kind of algorithm be?

Theorem

For all $x_0 \in \mathbb{R}^n$ there exists a μ -strongly convex, *L*-smooth, and differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ such that

$$f(x_k) - \bar{f} \ge \frac{\mu}{2} \left(\frac{\sqrt{L/\mu} - 1}{\sqrt{L/\mu} + 1} \right)^{2k} \|x_0 - \bar{x}\|^2 \text{ for } k \le n/2.$$

Fast (linear) gradient descent

Suppose f is $\mu\text{-strongly convex and }L\text{-smooth}.$ Generate two sequences that start at the same initial point $y_0=x_0$ and are updated via

$$x_{k+1} = x_k - \frac{1}{L} \cdot \nabla f(y_k)$$

$$y_{k+1} = x_{k+1} + \frac{1 - \sqrt{\mu/L}}{1 + \sqrt{\mu/L}} \cdot (x_{k+1} - x_k)$$

Theorem

The iterates generated by the above algorithm satisfy

$$f(x_k) - \bar{f} \le L \left(\frac{\sqrt{L/\mu} - 1}{\sqrt{L/\mu} + 1}\right)^k \|x_0 - \bar{x}\|^2.$$

OPTIONAL: conditional gradient method

Conditional gradient (Frank-Wolfe) method

Let $\mathcal{X} \subseteq \mathbb{R}^n$ be a closed convex set, $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be a differentiable convex function and suppose the following *linear* oracle is available:

$$g \mapsto \underset{y \in \mathcal{X}}{\operatorname{argmin}} \langle g, y \rangle.$$

Solve

 $\min_{x \in \mathcal{X}} f(x)$

via

$$\begin{split} s_k &:= \operatorname*{argmin}_{y \in \mathcal{X}} \langle \nabla f(x_k), y \rangle \\ x_{k+1} &:= x_k + \theta_k (s_k - x_k) \text{ for } \theta_k \in [0, 1] \end{split}$$

Observe

Conditional gradient relies on linear oracle (no projection) for \mathcal{X} .

Conditional gradient (Frank-Wolfe) method

Curvature constant (Jaggi 2013)

$$C_f := \sup_{\substack{x,s\in\mathcal{X}\\\theta\in(0,1]}} \frac{2}{\theta^2} \left(f(x+\theta(s-x)) - f(x) - \langle \nabla f(x), \theta(s-x) \rangle \right).$$

Theorem

Suppose $C_f < \infty$ and $\theta_k := \frac{2}{k+2}, \ k = 0, 1, \ldots$ Then the conditional gradient iterates satisfy

$$f(x_k) - \bar{f} \le \frac{2C_f}{k+2}.$$

OPTIONAL: subgradient methods

Subgradient method

Fact

Let $f:\mathbb{R}^n\to\mathbb{R}\cup\{\infty\}$ be a convex function. Then for all $x\in {\rm ri}({\rm dom}(f))$ there exists $g\in\mathbb{R}^n$ such that

$$f(y) \ge f(x) + \langle g, y - x \rangle \ \forall y \in \mathbb{R}^n.$$

Definition

Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$. The subdifferential of f at $x \in \text{dom}(f)$ is

$$\partial f(x) := \{ g \in \mathbb{R}^n : f(y) \ge f(x) + \langle g, y - x \rangle \ \forall y \in \mathbb{R}^n \}.$$

Fact

Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be a convex function. Then f is differentiable at $x \in int(dom(f))$ if and only if

$$\partial f(x) = \{\nabla f(x)\}.$$

Subgradient method

Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be a convex function and $\mathcal{X} \subseteq \operatorname{dom}(f)$ be a closed convex set. Solve

$$\min_{x \in \mathcal{X}} f(x)$$

via

$$x_{k+1} := \Pi_{\mathcal{X}}(x_k - t_k \cdot g_k), \text{ for } g_k \in \partial f(x_k).$$

Observe

Subgradient method subsumes projected gradient descent when f is convex and differentiable.

Proximal subgradient algorithm

Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ and $\psi : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be convex functions such that $\operatorname{dom}(\psi) \subseteq \operatorname{ri}(\operatorname{dom}(f))$. Let $\phi := f + \psi$.

Solve

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) + \psi(x) \right\} \iff \min_{x \in \mathbb{R}^n} \phi(x)$$

via

$$x_{k+1} := \operatorname{Prox}_{t_k}(x_k - t_k \cdot g_k), \text{ for } g_k \in \partial f(x_k)$$

Theorem

If ϕ is G-Lipschitz then the proximal subgradient iterates satisfy

$$\min_{i=0,1,\dots,k} \phi(x_i) - \bar{\phi} \le \frac{\operatorname{dist}(x_0, \bar{X})^2 + G^2 \sum_{i=0}^k t_i^2}{2 \sum_{i=0}^k t_i}$$