
Optimization for Control Engineering

Plan

• Introduction (Javier): optimality conditions

• Part 1 (Javier): first-order methods

• Part 2 (Diego): sequential quadratic programming and
interior-point methods

Main references

• Beck, First-order Methods in Optimization, SIAM 2017

• Nocedal & Wright, Numerical Optimization, Springer 2006

1 / 45

Optimization model

Problem of the form
min
x

f(x)

s.t. x ∈ X .

We will concentrate on problems where f : Rn → R and X ⊆ Rn
is of the form

X = {x ∈ Rn : ci(x) = 0 for i ∈ E and ci(x) ≥ 0 for i ∈ I}

for some functions ci : Rn → R, i ∈ E ∪ I.

In this case it is customary to write the above problem as follows

min
x

f(x)

s.t. ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I.

2 / 45

Optimality conditions (unconstrained case)

Suppose f : Rn → R is differentiable. If x? solves

min
x∈Rn

f(x)

then ∇f(x?) = 0. The converse also holds if f is convex.

Next: how the above optimality conditions extend to the case
when we have constraints.

3 / 45

Lagrangian function

The Lagrangian function of the problem

min
x

f(x)

s.t. ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I.

is
L(x, λ) = f(x)− λTc(x).

Observe that the above problem can be recast as follows

min
x

max
λ

λI≥0

L(x, λ)

4 / 45

Optimality conditions (equality constraints only)

Suppose f : Rn → R and ci : Rn → R, i ∈ E are differentiable.
Suppose x? solves

min
x

f(x)

s.t. ci(x) = 0, i ∈ E

and {∇ci(x?), i ∈ E} is linearly independent. Then there exists λ?

such that ∇L(x?, λ?) = 0 or equivalently

∇f(x?)−
∑
i∈E

λ?i∇ci(x?) = 0

ci(x
?) = 0, i ∈ E .

The converse also holds if f is convex and ci, i ∈ E are affine.

5 / 45

Optimality conditions (equality & inequality constraints)

Suppose f : Rn → R and ci : Rn → R, i ∈ E ∪ I are differentiable
and consider the problem

min
x

f(x)

s.t. ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I.

Given a feasible point x?, let A(x?) denote the set of active
constraints at x?, that is,

A(x?) := E ∪ {i ∈ I : ci(x
?) = 0}.

6 / 45

Optimality conditions (equality & inequality constraints)
Suppose f : Rn → R and ci : Rn → R, i ∈ E ∪ I are differentiable.
Suppose x? solves

min
x

f(x)

s.t. ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I

and the set {∇ci(x?), i ∈ A(x?)} is linearly independent.
Then there exists λ? such that

∇f(x?)−
∑

i∈A(x?)

λ?i∇ci(x?) = 0

ci(x
?) = 0, i ∈ E

λ?i ≥ 0, ci(x
?) ≥ 0, i ∈ I

λ?i ci(x
?) = 0, i ∈ I.

The converse also holds if f and −ci, i ∈ I are convex and
ci, i ∈ E are affine.

7 / 45

Special case: linear programming
Suppose A ∈ Rm×n, c ∈ Rn, b ∈ Rm and consider a linear program
in standard form:

min
x

cTx

s.t. Ax = b
x ≥ 0.

In this case x? is an optimal solution if and only if there exist
λ? ∈ Rm, s? ∈ Rn such that

ATλ? + s? = c

Ax? = b

x? ≥ 0, s? ≥ 0

x?i s
?
i = 0, i = 1, . . . , n.

Furthermore, the above holds if and only if (λ?, s?) solves the dual
problem

max
λ,s

bTλ

s.t. ATλ+ s = c
s ≥ 0. 8 / 45

Special case: quadratic programming (equality constraints)

Suppose A ∈ Rm×n, c ∈ Rn, b ∈ Rm, G ∈ Rn×n and consider the
quadratic program

min
x

1
2x

TGx+ cTx

s.t. Ax = b.

If x? is an optimal solution then there exist λ? ∈ Rm such that

Gx? −ATλ? = −c
Ax? = b.

The converse also holds when G is positive semidefinite.

9 / 45

Special case: quad programming (inequality constraints)

Suppose A ∈ Rm×n, c ∈ Rn, b ∈ Rm, G ∈ Rn×n and consider the
quadratic program

min
x

1
2x

TGx+ cTx

s.t. Ax ≥ b.

If x? is an optimal solution then there exist λ? ∈ Rm such that

Gx? −ATλ? = −c
Ax? ≥ b
λ? ≥ 0

λ?i (Ax
? − b)i = 0, i = 1, . . . ,m.

The converse also holds when G is positive semidefinite.

10 / 45

Algorithms for optimization
Consider the problem

min
x

f(x)

s.t. x ∈ X .
(P)

Algorithm to “solve” (P):

• Construct a sequence xk ∈ Rn, k = 0, 1, . . . that hopefully
converges to a solution to (P)

• Algorithm depends on what kind of “oracles” are available for
f and X and the type of operations that are performed at
each main iteration

• “Simple” algorithms perform low-cost operations (memory
and computation) but are usually slow.

“Sophisticated” algorithms require more costly operations but
are usually much faster. They also apply to a wider variety of
problems.

11 / 45

Two main ideas
Consider the unconstrained problem

min
x
f(x).

Gradient descent
Given x get a (hopefully better) new point x+ via

x+ := x− t · ∇f(x)

= argmin
y

{
f(x) + 〈∇f(x), y − x〉+

1

2t
‖y − x‖2

}
.

Newton’s method
Given x get a (hopefully better) new point x+ via

x+ := x−∇2f(x)−1∇f(x)

= argmin
y

{
f(x) + 〈∇f(x), y − x〉+

1

2
〈∇2f(x)(y − x), y − x〉

}
.

(First step requires ∇2f(x) non-singular and second one requires ∇2f(x) positive definite.) 12 / 45

Newton’s method for root finding

Suppose F : Rn → Rn is differentiable and consider the system of
n equations and n unknowns

F (x) = 0.

Newton’s method
Given x get a (hopefully better) new point x+ via

x+ := x− F ′(x)−1F (x).

The latter is the solution for the variable y of the linear system of
equations

F (x) + F ′(x)(y − x) = 0.

13 / 45

Main agenda

Part 1 (Javier)

Emphasis on unconstrained convex optimization. First-order
methods: gradient descent and fast gradient descent.

Part 2 (Diego)

General constrained optimization. Sequential quadratic
programming. Interior-point methods.

14 / 45

Gradient descent

15 / 45

Gradient descent (Cauchy 1847)

Let f : Rn → R be a convex differentiable function. Solve

min
x∈Rn

f(x)

via
xk+1 := xk − tk · ∇f(xk).

Common shorthand: drop indices and write main update as

x+ = x− t · ∇f(x).

Observe

x− t · ∇f(x) = argmin
y

{
f(x) + 〈∇f(x), y − x〉+

1

2t
‖y − x‖2

}
.

Throughout our discussion: ‖ · ‖ = ‖ · ‖2.

16 / 45

Gradient descent (continued)

Solve
min
x∈Rn

f(x)

via

xk+1 := xk − tk · ∇f(xk)

= argmin
y

{
f(xk) + 〈∇f(xk), y − xk〉+

1

2tk
‖y − xk‖2

}

Natural questions

• How to choose tk?

• Can we guarantee that the iterates xk, k = 0, 1, . . . and/or
iterate values f(xk) converge? If so, how fast?

17 / 45

Choice of step-size in gradient descent

Common approach

Pick t > 0 so that x+ = x− t · ∇f(x) satisfies

f(x+) ≤ min
y

{
f(x) + 〈∇f(x), y − x〉+

1

2t
‖y − x‖2

}
= f(x)− t

2
‖∇f(x)‖2. (DC)

Backtracking

We usually want t as large as possible so that (DC) holds.

We can do that via “backtracking”: pick initial t > 0 and scale it
up or down until (DC) just holds.

18 / 45

Convergence of gradient descent

Notation & blanket assumption

Let f̄ := min
x∈Rn

f(x) is finite and X̄ := argmin
x∈Rn

f(x) 6= ∅.

Theorem
Let f : Rn → R be convex and differentiable. If the step-sizes
satisfy (DC) then the iterates xk, k = 0, 1, . . . generated by the
proximal gradient algorithm satisfy

f(xk)− f̄ ≤
dist(x0, X̄)2

2
∑k−1

i=0 ti
, k = 1, 2,

In particular if tk ≥ 1
L > 0 for some L > 0 then

f(xk)− f̄ ≤
L · dist(x0, X̄)2

2k
, k = 1, 2,

19 / 45

Proof of convergence of gradient descent

Convex conjugate

Let φ : Rn → R ∪ {∞}. Define φ∗ : Rn → R ∪ {∞} via

φ∗(v) = sup
x∈Rn
{〈v, x〉 − φ(x)}.

Lemma
Let f : Rn → R be convex and differentiable. If the step-sizes
satisfy (DC) then the gradient iterates satisfy

f(xk) ≤ −f∗(vk)− d∗k(−vk)

where vk :=
∑k−1
i=0 ti∇f(xi)∑k−1

i=0 ti
and dk(x) := ‖x−x0‖2

2
∑k−1
i=0 ti

.

Proof of previous Theorem. For x̄ ∈ X̄ we have

−f∗(vk)− d∗k(−vk) ≤ −〈vk, x̄〉+ f̄ + 〈vk, x̄〉+ dk(x̄) = f̄ +
‖x̄− x0‖2

2
∑k−1

i=0 ti
.

20 / 45

L-smoothness

When can we ensure that tk ≥ 1/L for some constant L > 0?

L-smoothness
If f : Rn → R is convex, differentiable, and ∇f is L-Lipschitz
continuous then f satisfies the following L-smoothness condition

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2

for all x, y.

In this case the (DC) condition holds for tk = 1
L or possibly larger.

21 / 45

Lower bound for any gradient method
Suppose f : Rn → R is convex and differentiable and consider an
algorithm such that

xk+1 ∈ x0 + span{∇f(x0), . . . ,∇f(xk)}.

How good could that kind of algorithm be?

Theorem
For all x0 ∈ Rn there exists a strictly convex and differentiable
f : Rn → R with L-Lipschitz ∇f and such that

f(xk)− f̄ ≥
3L

32(k + 1)2
‖x0 − x̄‖2 for k ≤ n/2.

Observe: for L-Lipschitz ∇f gradient descent iterates satisfy

f(xk)− f̄ ≤
L

2k
‖x0 − x̄‖2.

Is it possible to do better?
22 / 45

Fast gradient descent

23 / 45

Fast gradient descent (Nesterov 1983)

Main idea
Generate two different sequences that have the same initial point

y0 = x0

and are updated via

xk+1 = yk − tk · ∇f(yk)

and
yk+1 = xk+1 + βk · (xk+1 − xk)

for some βk ≥ 0, k = 0, 1,

Observe
The sequence yk, k = 0, 1, . . . includes some “momentum”.

24 / 45

Convergence of fast gradient descent

Recall notation & blanket assumption

Let f̄ := min
x∈Rn

f(x) is finite and X̄ := argmin
x∈Rn

f(x) 6= ∅.

Theorem
Suppose βk = k

k+3 and tk ≥ 1/L, k = 0, 1, 2, . . . are
non-increasing and satisfy (DC), that is,

f(xk+1) ≤ f(yk)−
tk
2
‖∇f(yk)‖2.

Then the iterates generated by the fast gradient algorithm satisfy

f(xk)− f̄ ≤
2L

(k + 1)2
· dist(x0, X̄)2.

Another popular choice for βk
Take βk :=

θk+1(1−θk)
θk

, where θ0 = 1 and θ2k+1 = θ2k(1− θk+1).

25 / 45

Proof of convergence of fast gradient descent (simplified)

Consider the special case when tk = 1/L and βk is chosen via θk.

In this case we can rewrite the updates as follows

yk = (1− θk) · xk + θk · zk
xk+1 = (1− θk) · xk + θk · zk+1

where

zk+1 = zk −
1

θkL
· ∇f(yk).

Properties of θk
If θ0 = 1 and θ2k+1 = θ2k(1− θk+1), k = 0, 1, . . . then

k∑
i=0

1

θi
= θ2k ≤

4

(k + 2)2
, k = 0, 1,

26 / 45

Proof of convergence of fast gradient descent (simplified)

Lemma
Under the above assumptions the fast gradient iterates satisfy

f(xk) ≤ −f∗(vk)− d∗k(−vk)

where vk := θ2k−1 ·
∑k−1

i=0
∇f(yi)
θi

and dk(x) :=
Lθ2k−1

2 ‖x− x0‖2.

Proof of previous Theorem. For x̄ ∈ X̄ we have

−f∗(vk)− d∗k(−vk) ≤ −〈vk, x̄〉+ f̄ + 〈vk, x̄〉+ dk(x̄)

= f̄ +
Lθ2k−1

2
‖x̄− x0‖2

≤ f̄ +
2L

(k + 1)2
‖x̄− x0‖2.

—————————————————————–
Recall φ∗(v) = supx{〈v, x〉 − φ(x)}.

27 / 45

Examples

Least squares

Let A ∈ Rm×n, b ∈ Rm and consider the loss function

f(x) =
1

2
‖Ax− b‖2.

Logistic regression

Let X ∈ RN×p, y ∈ {0, 1}N and consider the logistic loss function

f(β) = −
N∑
i=1

{
yi log

(
1

1 + e−Xiβ

)
+ (1− yi) log

(
1− 1

1 + e−Xiβ

)}
= −yTXβ + 1T log(1 + eXβ).

See Python code: Algorithms.py, Functions.py,

Example1.py
28 / 45

Proximal gradient methods

29 / 45

Projected gradient method

Let f : Rn → R ∪ {∞} be a differentiable convex function and
X ⊆ dom(f) be a closed convex set. Solve

min
x∈X

f(x)

via

xk+1 := ProjX (xk − tk · ∇f(xk))

= argmin
y∈X

‖y − (xk − tk · ∇f(xk))‖2

= argmin
y∈X

{
f(xk) + 〈∇f(xk), y − xk〉+

1

2tk
‖y − xk‖2

}
Projected gradient is a special case of proximal gradient (next).

30 / 45

Proximal gradient method (Lions & Mercier 1979)
a.k.a. forward-backward splitting

Let f : Rn → R ∪ {∞} be differentiable and convex, and
ψ : Rn → R ∪ {∞} be closed and convex with dom(ψ) ⊆ dom(f).

Solve
min
x∈Rn

{f(x) + ψ(x)}

via
xk+1 := Proxtk(xk − tk · ∇f(xk))

where Proxt is the following proximal map

Proxt(x) := argmin
y∈Rn

{
1

2t
‖y − x‖2 + ψ(y)

}
.

Observe:

Proxt(x− t · ∇f(x)) =

argmin
y∈Rn

{
f(x) + 〈∇f(x), y − x〉+

1

2t
‖y − x‖2 + ψ(y)

}
.

31 / 45

Fast proximal gradient algorithm
(Beck-Teboulle 2009, Nesterov 2013)

Again generate two sequences and incorporate momentum.

Solve
min
x∈Rn

{f(x) + ψ(x)}

via
xk+1 = Proxtk(yk − tk · ∇f(yk))

and

yk+1 = xk+1 +
θk+1(1− θk)

θk
· (xk+1 − xk)

where θ0 = 1 and θ2k+1 = θ2k(1− θk+1), k = 0, 1,

Same convergence properties as fast gradient.

32 / 45

Example: `1 regularization

Consider the problem

min
x
f(x) + λ‖x‖1.

This type of problem is the crux of lasso and compressive sensing.

For ψ(x) = λ‖x‖1 the proximal map is (componentwise)

Proxt(g)i =

gi − λt if gi > λt

0 if |gi| ≤ λt
gi + λt if gi < −λt

See Python code: Algorithms.py, Functions.py,

Example2.py

33 / 45

OPTIONAL: strong convexity

34 / 45

Strong convexity

Let f : Rn → R ∪ {∞} be convex and differentiable.

Definition
f is strongly convex with modulus µ > 0 if

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2

for all x, y.

Recall
f is L-smooth if

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2

for all x, y.

35 / 45

Linear convergence of gradient descent

Theorem
Let f : Rn → R be µ-strongly convex and L-smooth. Then
f̄ := min

x∈Rn
f(x) <∞ and f has a unique minimizer x̄.

If the step-sizes satisfy tk ≥ 1
L > 0 then the iterates generated by

the gradient descent algorithm satisfy

f(xk)− f̄ ≤
(

1− µ

L

)k
(f(x0)− f̄),

and

‖xk − x̄‖2 ≤
L

µ

(
1− µ

L

)k
‖x0 − x̄‖2.

In particular, the algorithm finds x ∈ Rn with

f(x)− f̄ ≤ ε(f(x0)− f̄) in O
(
L
µ · log

(
1
ε

))
iterations.

36 / 45

Lower bound for any gradient method

Suppose f : Rn → R is convex and differentiable and consider an
algorithm such that

xk+1 ∈ x0 + span{∇f(x0), . . . ,∇f(xk)}.

How good could that kind of algorithm be?

Theorem
For all x0 ∈ Rn there exists a µ-strongly convex, L-smooth, and
differentiable function f : Rn → R such that

f(xk)− f̄ ≥
µ

2

(√
L/µ− 1√
L/µ+ 1

)2k

‖x0 − x̄‖2 for k ≤ n/2.

37 / 45

Fast (linear) gradient descent

Suppose f is µ-strongly convex and L-smooth. Generate two
sequences that start at the same initial point y0 = x0 and are
updated via

xk+1 = xk −
1

L
· ∇f(yk)

yk+1 = xk+1 +
1−

√
µ/L

1 +
√
µ/L

· (xk+1 − xk)

Theorem
The iterates generated by the above algorithm satisfy

f(xk)− f̄ ≤ L

(√
L/µ− 1√
L/µ+ 1

)k
‖x0 − x̄‖2.

38 / 45

OPTIONAL: conditional gradient method

39 / 45

Conditional gradient (Frank-Wolfe) method

Let X ⊆ Rn be a closed convex set, f : Rn → R ∪ {∞} be a
differentiable convex function and suppose the following linear
oracle is available:

g 7→ argmin
y∈X

〈g, y〉.

Solve
min
x∈X

f(x)

via

sk := argmin
y∈X

〈∇f(xk), y〉

xk+1 := xk + θk(sk − xk) for θk ∈ [0, 1]

Observe
Conditional gradient relies on linear oracle (no projection) for X .

40 / 45

Conditional gradient (Frank-Wolfe) method

Curvature constant (Jaggi 2013)

Cf := sup
x,s∈X
θ∈(0,1]

2

θ2
(f(x+ θ(s− x))− f(x)− 〈∇f(x), θ(s− x)〉) .

Theorem
Suppose Cf <∞ and θk := 2

k+2 , k = 0, 1, Then the
conditional gradient iterates satisfy

f(xk)− f̄ ≤
2Cf
k + 2

.

41 / 45

OPTIONAL: subgradient methods

42 / 45

Subgradient method

Fact
Let f : Rn → R ∪ {∞} be a convex function. Then for all
x ∈ ri(dom(f)) there exists g ∈ Rn such that

f(y) ≥ f(x) + 〈g, y − x〉 ∀y ∈ Rn.

Definition
Let f : Rn → R ∪ {∞}. The subdifferential of f at x ∈ dom(f) is

∂f(x) := {g ∈ Rn : f(y) ≥ f(x) + 〈g, y − x〉 ∀y ∈ Rn}.

Fact
Let f : Rn → R ∪ {∞} be a convex function. Then f is
differentiable at x ∈ int(dom(f)) if and only if

∂f(x) = {∇f(x)}.

43 / 45

Subgradient method

Let f : Rn → R ∪ {∞} be a convex function and X ⊆ dom(f) be
a closed convex set. Solve

min
x∈X

f(x)

via
xk+1 := ΠX (xk − tk · gk), for gk ∈ ∂f(xk).

Observe
Subgradient method subsumes projected gradient descent when f
is convex and differentiable.

44 / 45

Proximal subgradient algorithm

Let f : Rn → R ∪ {∞} and ψ : Rn → R ∪ {∞} be convex
functions such that dom(ψ) ⊆ ri(dom(f)). Let φ := f + ψ.

Solve
min
x∈Rn

{f(x) + ψ(x)} ⇔ min
x∈Rn

φ(x)

via

xk+1 := Proxtk(xk − tk · gk), for gk ∈ ∂f(xk)

Theorem
If φ is G-Lipschitz then the proximal subgradient iterates satisfy

min
i=0,1,...,k

φ(xi)− φ̄ ≤
dist(x0, X̄)2 +G2

∑k
i=0 t

2
i

2
∑k

i=0 ti

45 / 45

