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Some motivation
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Convex optimization

Problem of the form

min. f ()

where Q C R™ and f: QQ — R are convex.

Many applications

@ Classic:

e linear programming models for production, logistics, etc.
e quadratic programming models for portfolio construction
e integer programming and combinatorial optimization

e Modern:

e data science: support vector machines, regression, matrix
completion

@ imaging science: compressive sensing

e computational game theory

Recall: Q@ C R™ and f : Q — R are convex if for all z, y € Q and X € [0, 1]
Az + (1 =Ny €Q and f(Ax + (1 — AN)y) < Af(z) + (1 = N)f(y)

37



Incomplete & biased history of algorithms for convex opt

o Late 20th century (1980s-2000)

e interior-point (second-order) methods
e strong theory, successful implementations, high accuracy

e semidefinite & second-order programming
e Early 21st century (2000—now)
o large-scale problems

e modest accuracy is often acceptable

e resurgence of first-order methods: the topic of this talk
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Preamble: some iconic algorithms
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Unconstrained convex minimization

Suppose f : R™ — R is convex and differentiable and consider the

problem
min f(z)
Gradient descent (GD)
pick t; >0

Tpy1 = T — tV f(Tk)

Accelerated gradient (AG)

pick 8, >0, t; >0
Y = 2 + Br(xk — xp—1)
Try1 = Yk — 6V f(Yr)
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Composite convex minimization
Consider the problem

min {f(z) + ¢ ()}

z€eR™

where f: R™ — R U {oo} is differentiable and convex, and
¥ : R" = RU{oo} is closed and convex with dom(v)) C dom(f).

Let Prox; be the following proximal map

1
Prox;(x) := argmin {Hz —z|?+ 1/1(,2)} .
z€RM 2t

Observe: if 1) = g then
min {/(a) + ¥(2)} ¢ min f(2)

and for all ¢ > 0

Prox;(x) = Projg(x) = argmin ||z — z.
2€Q



Proximal gradient and accelerated proximal gradient

Consider the problem

min {f(z) + ¢ (x)}.

FASING

Proximal gradient (PG)

pick tp >0

Lh+1 = PI’Oth (xk — thf(SCk))
Accelerated proximal gradient (APG)

pick B >0, tx >0
yr = ok + Bk — T—1)
Tpy1 = Proxg, (yx — teV f (yr))
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Choice of stepsize
Consider the generic update

2y = Prox(y —tV f(y)).

Observe
Prox;(y — tV f(y))

= argmin { £5) + (V0. =) + lle — ol 4002}

zER™

It makes sense to choose ¢ so that z4 = Prox:(y —tV f(y)) satisfies

Flee) +9(a4) < F) + VW) 21 = 0+ ooy = P+ 9(a4)

or equivalently

Fle) = )~ (V)25 — 1) < e — ol



Bregman distance and L-smoothness

The latter condition can be restated as

1
Dy(zy,y) < ﬂ||z+ —yl?
where Dy is the following Bregman distance generated by f

Di(z,y) := f(2) = f(y) = (Vf(y), 2 —y).

L-smoothness
We say that f is L-smooth if for all z,y € dom(f)

L
Dy(zy) < 5z - ylI*.

In this case the condition at the top holds for ¢ = 1/L.
Fact: f is L-smooth if V f is L-Lipschitz.
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Convergence of PG
PG: solve min,{f(z) + ¢(x)} via

Tpy1 = Proxg, (z — eV f(xr)).

Theorem
If the stepsizes ty, satisfy

1
Dy(@irzk) < gp-flon = i
then for all & € argmin{f(z) + ¢ (z)} the PG iterates satisfy

- llzo — 2] —53”2
fzr) +¥(zg) — (f(@) + (7)) < 221 T )

In particular, if each t;, > 1/L > 0 then

L |lwo — ||

Flaw) + 0n) = (F(&) + () < =
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Convergence of APG

APG: solve min,{f(z) + ¥ (x)} via

Yk = T + Br(xk — Tp—1)
Tpy1 = Proxg, (yx — teV f (yr))

Theorem (Beck & Teboulle 2009, Nesterov 2013)

Suppose 5, = ],:—jr% and the stepsizes tj, satisfy ty, > 1/L > 0 and

1
D¢(xpt1,Yk) < = |Tht1 — yil|%.
2t

Then for all z € argmin,{f(x)+ 1 (z)} the APG iterates satisfy

2L - ||zo — 7|2

fxg) +9(zg) — (f(2) +9(2)) < &+ 1)?
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Main story: Bregman proximal methods
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Proximal map again

Observe
Prox:(z — tV f(z))

= argmin { (o) + (V1 (a).y =) + lly =l + 000

= argmin { (V(@).3) + 0(0) + gl — P}
yER

Also get O(1/k) and O(1/k?) convergence of proximal gradient
methods when f is L-smooth:

L
Dy(y, ) < S lly — =l
The above can be relaxed and extended.

14 /37



Bregman proximal map

Let h : R™ — R be a differentiable convex reference function.

The Bregman distance associated to h is
Dp(y, ) := h(y) — h(z) — (Vh(z),y — x).
This distance defines the following Bregman proximal map
. 1
g = argmin § (9,y) + ¥(y) + T Dn(y, x)
yeRn t

The previous Euclidean proximal map corresponds to the squared
Euclidean norm reference function
2
_
2

2
— X
S

h(z) 5

Most of what we discussed for Euclidean proximal methods extends
to Bregman proximal methods.
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Bregman proximal gradient

Consider the problem

min {f(z) + ¢ (2)},

reR”™

and suppose h : R” — R U {oo} is a reference function.

Bregman proximal gradient (BPG)
pick tx >0

Tpr1 = argmin {(Vf(mk), 2y +(z) + %Dh(z, l‘k)}
zeR™ k
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Why use Bregman proximal methods?

@ The Bregman proximal template provides a lot more flexibility.

@ The additional freedom to choose h can facilitate the
computation of the proximal mapping. For instance for
x € Ap_y:={x € R} :|z|; =1} the map

g — argmin{(g,y) + Dx(y,z)}
yeAnfl

is more easily computable for h(z) = Y1 | z; log(z;).
@ The usual L-smoothness assumption for convergence can be
replaced by a relative L-smoothness that holds more broadly.

Example: D-optimal design problem (min-vol enclosing ellipsoid)

min —log(det(HXHT))

TEAL_1

where X = Diag(z) and H € R™*" with m < n.
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Example: Poisson linear inverse problem

min DKL(b, Al‘)

xERi
where b € R’ | and A € R"*" with m > n and Dk (-,-) is the
Kullback-Leibler divergence, that is, the Bregman distance
associated to x — Y " | z;log(z;).

We could tackle the above two problems via Euclidean proximal
methods. However, they are more amenable to Bregman proximal
methods with the Burg entropy reference function

hz) = = log(x:).
=1
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Accelerated Bregman proximal gradient (ABPG)
(Gutman-P 2018)

Generate sequences x, Yk, 21 for Kk =0,1,... as follows:
pick t > 0
: 1
211 = argmin {(Vf(yk),z> + ¥(2) + — Dp(z, zk)}
2ERN 123
Tpol = Zﬁzo tizit1
1= "=
Zi:[) ti
Vi1 = Zf:o LiZit1 + 1 2641
+1 = k41
Zi:O ti

Related work by Hanzely-Richtarik-Xiao (2018).
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Fenchel duality

Convex conjugate
For ¢ : R" — R let ¢* : R"” - RU {0} be defined via

¢*(u) = sup {{u,x) — p(x)}.

zeR™
Observe: ¢* is always convex, even when ¢ is not.

Consider the primal problem
win {f(z) + ()},
The corresponding Fenchel dual problem is

mac {— £ (u) — " (~u)}.
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Fenchel duality

Recall: ¢*(u) = sup,{(u,x) — ¢(z)}.

Weak duality
For all z € R™ and u € R"

flx) +v(x) > —f*(u) — " (—u).

Proof.
f(@) + f*(w) + () + ¥ (—u) = (v, z) + (—u,z) = 0. O
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Fenchel duality

Recall: ¢*(u) = sup,{(u,z) — ¢(z)}.

An approach to show convergence
Suppose an algorithm generates sequences xy, vy, wy such that

f(@g) + (k) < —f(vp) — " (wi) — di(—ve — wp)
for some sequence of “distance” functions dj : R™ — R.

Then for all z € argmin_{f(z) + ¢ (z)} we have

f(@r) + ¥(2k)
< —(Uk,i’> + f(i’) - <wk,§:) + 1/1(f) + <”Uk + wk,ir) + dk(f)
= f(Z) +(Z) + di(T).

Thatis, f(zk) +(xr) — (f(Z) + P(2)) < di(2).
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A key lemma

Suppose yi, 2 € ri(dom(h)) Ndom(v), gr := V f(yk), and t >0
satisfy

. 1
Zg+1 = argmin {(gk, z) +(2) + —Dul(z, Zk)}
z€ER™ tk

for k=0,1,2,....

Via the optimality conditions rewrite above as
|
gk + g, + E(Vh(zkﬂ) — Vh(z)) =0

for some g}f € 0Y(2k41)-
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A key lemma

Let i i .
._ >iotigi o > icotig;

Uk - 77 wk - ki.
Zizo ti

k
Yoot
Lemma

Suppose yi, zk, gr, g}f, t;. and v, wy are as above. Then

S o ti(f(zig1) + ¥(2i41) — Dy(zis1,9:) + Dilzis1, 2)

Zf:o ti
_ Tt ) e
Z?:o ti ’ / /
< —f (o) — " (w) — dj,(—vk — wg)
where )
di(z) == — Dy (z, z0).
i=0 "
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Bregman proximal gradient (BPG)

In this case

iy = argmin {(Vf(xk), 2) 4+ () + tiDh(z, mk)}
zER™ k

Theorem (Gutman-P 2018)
Suppose each t; is such that

1
Dy(xip1,2;) < ?Dh(xz’—f—laxi)' (DQ)

(2

Then for T € argmin{ f(x) 4+ ¢(x)} the BPG iterates satisfy
z€R™

F(@hi1) + D(@psr) — (F@) + (&) < = Dy, 20).

i:Otl
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Proof of Theorem.
In this case we can apply Lemma to x = y = 2z and get

S o ti(f(@is) + Y(@is1) — Dy(@igr, 1)) + Dpl@isn, 1)
Yot

< —f*(ok) — 0" (wi) — di(~vp — w)

Next, (DC) implies f(ziy1) + ¥ (zit1) < f(xi) + ¢ (x;) and
f(@re1) + Y(@pe1) < —f(on) — ¥ (wi) — di(—vi — wg).
To finish, observe that for all Z € argmin,cpn{f(z)+ ¥(x)}

— (k) — " (wr) — dj(—vk — wi)

= f(2) +¥(2) + di(@)
= J(2) + (&) + < Da(#.20).
=0 "
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Relative smoothness

Suppose f, h are convex and differentiable on ). We say that f is
L-smooth relative to h on Q if for all z,y € Q

(Nguyen 2012, Bauschke et al. 2017, Lu et al. 2018)

If fis L-smooth relative to A on dom(%)) then (DC) holds for
t;=1/L,i=0,1,...,k — 1 and BPG iterates satisfy

LDh(.i’,xQ)

f(r) +9(or) — (f(2) + (7)) < -
)

Recover results by Bauschke-Bolte-Teboulle (2017) and by
Lu-Freund-Nesterov (2018).

This extends the O(1/k) convergence rate of PG.
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Accelerated Bregman proximal gradient (ABPG)

Generate sequences xy, Y, 21 as follows:

2411 = argmin {(Vf(yk),z> +(z) + tlth(z, zk)}

z€R™
k
Zi:o tizi+1
Thtl = —=p .
Zi:[) ti
k
Yerl = Y ieo tizit1 + thr12e41
+1 = E+1 :
> imo ti
By letting ), := —* - the last two equations can be rewritten as
1=0 "7

Tpy1 = (1 = Op)zp + Op2zi i

Y1 = (1 — Ok1)Tht1 + Okr12641

0 1-6
:xk+l+W($k+l_1~k>
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Accelerated Bregman proximal gradient (ABPG)
Theorem (Gutman-P 2018)

Suppose each t; and 6; are such that
0;
Dy(wiy1,yi) — (1= 0;)Dy(xi,y:) < ;Dh(zi-i-l, z;).  (ADC)

Then for & € X = argmin{f(z) + ¢ (x)} the ABPG iterates satisfy
rcRn?

k) + Vo) = (U0 + ¥(0) < g Do)

i=0 Ui

Proof.

Similar to previous one for BPG: use lemma & Fenchel duality. [J

Compare (ADC) condition for ABPG with (DC) condition for BPG:

1
Dy (g1, x;) < ;Dh(iﬂwhxi)- (DQ)
3
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Relative smoothness revisited

How much can we accelerate?

Choose ti > 0 or equivalently 8 = Z,f’“ — as large as possible so
i=0 "
that (ADC) holds. How large can we choose it?

(L,~) relative smoothness

Say that f is (L, ~)-smooth relative to h on Q if for all
x,y,2,2 € Q and 0 € [0,1]

Dy((1 = )z + 02, (1 — )z + 02) < LO'Dy(Z, 2).
Observe

In Euclidean case L-relative smoothness yields (L, 2)-relative
smoothness. In general this does not hold but “almost” ...
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Accelerated Bregman proximal gradient

Theorem (Gutman-P 2018)
Suppose f is (L,~y)-smooth relative to h on ri(dom(h)) N dom(z))
for some L > 0 and ~v > 0.

Then the stepsizes t;, can be chosen judiciously so that the ABPG
iterates satisfy

f(@rs1) + (zpr) — (F(2) +¢(2)) < (k ¥

>7LDh(X, o).

Recover iconic O(1/k?) rate when h(z) = %||z||> and f is
L-smooth.
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Accelerated Bregman proximal gradient

For implementation purposes: pick ) = —t —as large as
i=0 "1

possible so that (ADC) holds. Pick 6, of the form

_ Tk
k+ v

O

via backtracking on 7. If all vz >~ > 0 then we get
gl
_ _ v >
Fone) + blown) - (@) +0(@) < (1) LDAX.a0),

If we can do the above with v = 2 we recover O(1/k?) rate. This
happens when h(z) = 3 ||z|%.
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Numerical experiments

BPG-LS and ABPG-LS implementations
@ Line-search to choose ¢, in BPG so that (DC) holds.
o Likewise for to and 6y € (0,1) in ABPG to ensure (ADC).

o Pick 6 € (0,1) of the form 0y = £ .

ABPG: use educated guess for to and 6, = 2/(k + 2).

Problem instances
o D-optimal design: mingea, , —log(det(HXHT))

o Poisson linear inverse: mingegn Dkr(b, Az)

In both cases use reference function

h(z) =— Zlog(xi).
i=1

Bregman proximal mappings are easily computable in both cases.
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Figure: Suboptimality gap for 100 x 250 and 200 x 300 random instances
of D-optimal design.
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Figure: Suboptimality gap for 250 x 100 and 300 x 200 random instances
of the Poisson linear inverse problem.
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Figure: Sequence {v; : k=1,2,...} in ABPG-LS for typical instances

of D-design optimal problem.
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Figure: Sequence {v4: k=1,2,...}
of Poisson linear inverse problem.
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ABPG-LS for typical instances
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Conclusions

@ Analysis of Bregman proximal methods via Fenchel duality.
Key observation: algorithms generate xj, v, wy such that

f(@rg1) + ¥(zp1) < = (vk) — Y™ (wi) — di(—vk — wg).

@ Other related developments that we did not discuss:

e Proximal subgradient method when f is non-differentiable
e Linear convergence via restarting
e Analogous results for conditional gradient

e Current/future work

Saddle-point problems

Stochastic first-order methods

More computational experiments

Role of v in accelerated Bregman proximal methods
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