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Medelĺın, October 2019

1 / 37



Some motivation
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Convex optimization
Problem of the form

min
x∈Q

f(x)

where Q ⊆ Rn and f : Q→ R are convex.

Many applications

Classic:

linear programming models for production, logistics, etc.
quadratic programming models for portfolio construction
integer programming and combinatorial optimization

Modern:

data science: support vector machines, regression, matrix
completion
imaging science: compressive sensing
computational game theory

———————————————————————–
Recall: Q ⊆ Rn and f : Q→ R are convex if for all x, y ∈ Q and λ ∈ [0, 1]

λx + (1− λ)y ∈ Q and f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)
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Incomplete & biased history of algorithms for convex opt

Late 20th century (1980s–2000)

interior-point (second-order) methods

strong theory, successful implementations, high accuracy

semidefinite & second-order programming

Early 21st century (2000–now)

large-scale problems

modest accuracy is often acceptable

resurgence of first-order methods: the topic of this talk
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Preamble: some iconic algorithms
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Unconstrained convex minimization

Suppose f : Rn → R is convex and differentiable and consider the
problem

min
x∈Rn

f(x)

Gradient descent (GD)

pick tk > 0

xk+1 = xk − tk∇f(xk)

Accelerated gradient (AG)

pick βk ≥ 0, tk > 0

yk = xk + βk(xk − xk−1)

xk+1 = yk − tk∇f(yk)
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Composite convex minimization
Consider the problem

min
x∈Rn

{f(x) + ψ(x)}

where f : Rn → R ∪ {∞} is differentiable and convex, and
ψ : Rn → R ∪ {∞} is closed and convex with dom(ψ) ⊆ dom(f).

Let Proxt be the following proximal map

Proxt(x) := argmin
z∈Rn

{
1

2t
‖z − x‖2 + ψ(z)

}
.

Observe: if ψ = δQ then

min
x∈Rn
{f(x) + ψ(x)} ⇔ min

x∈Q
f(x)

and for all t > 0

Proxt(x) = ProjQ(x) = argmin
z∈Q

‖z − x‖.
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Proximal gradient and accelerated proximal gradient

Consider the problem

min
x∈Rn

{f(x) + ψ(x)}.

Proximal gradient (PG)

pick tk > 0

xk+1 = Proxtk(xk − tk∇f(xk))

Accelerated proximal gradient (APG)

pick βk ≥ 0, tk > 0

yk = xk + βk(xk − xk−1)

xk+1 = Proxtk(yk − tk∇f(yk))
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Choice of stepsize
Consider the generic update

z+ = Proxt(y − t∇f(y)).

Observe

Proxt(y − t∇f(y))

= argmin
z∈Rn

{
f(y) + 〈∇f(y), z − y〉+

1

2t
‖z − y‖2 + ψ(z)

}
.

It makes sense to choose t so that z+ = Proxt(y− t∇f(y)) satisfies

f(z+) + ψ(z+) ≤ f(y) + 〈∇f(y), z+ − y〉+
1

2t
‖z+ − y‖2 + ψ(z+)

or equivalently

f(z+)− f(y)− 〈∇f(y), z+ − y〉 ≤
1

2t
‖z+ − y‖2.
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Bregman distance and L-smoothness

The latter condition can be restated as

Df (z+, y) ≤ 1

2t
‖z+ − y‖2

where Df is the following Bregman distance generated by f

Df (z, y) := f(z)− f(y)− 〈∇f(y), z − y〉.

L-smoothness

We say that f is L-smooth if for all z, y ∈ dom(f)

Df (z, y) ≤ L

2
‖z − y‖2.

In this case the condition at the top holds for t = 1/L.

Fact: f is L-smooth if ∇f is L-Lipschitz.
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Convergence of PG
PG: solve minx{f(x) + ψ(x)} via

xk+1 = Proxtk(xk − tk∇f(xk)).

Theorem

If the stepsizes tk satisfy

Df (xk+1, xk) ≤
1

2tk
‖xk+1 − xk‖2

then for all x̄ ∈ argminx{f(x) + ψ(x)} the PG iterates satisfy

f(xk) + ψ(xk)− (f(x̄) + ψ(x̄)) ≤ ‖x0 − x̄‖2

2
∑k−1

i=0 ti
.

In particular, if each tk ≥ 1/L > 0 then

f(xk) + ψ(xk)− (f(x̄) + ψ(x̄)) ≤ L · ‖x0 − x̄‖2

2k
.
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Convergence of APG

APG: solve minx{f(x) + ψ(x)} via

yk = xk + βk(xk − xk−1)

xk+1 = Proxtk(yk − tk∇f(yk))

Theorem (Beck & Teboulle 2009, Nesterov 2013)

Suppose βk = k−1
k+2 and the stepsizes tk satisfy tk ≥ 1/L > 0 and

Df (xk+1, yk) ≤
1

2tk
‖xk+1 − yk‖2.

Then for all x̄ ∈ argminx{f(x) + ψ(x)} the APG iterates satisfy

f(xk) + ψ(xk)− (f(x̄) + ψ(x̄)) ≤ 2L · ‖x0 − x̄‖2

(k + 1)2
.
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Main story: Bregman proximal methods
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Proximal map again

Observe

Proxt(x− t∇f(x))

= argmin
y∈Rn

{
f(x) + 〈∇f(x), y − x〉+

1

2t
‖y − x‖2 + ψ(y)

}
= argmin

y∈Rn

{
〈∇f(x), y〉+ ψ(y) +

1

2t
‖y − x‖2

}
.

Also get O(1/k) and O(1/k2) convergence of proximal gradient
methods when f is L-smooth:

Df (y, x) ≤ L

2
‖y − x‖2.

The above can be relaxed and extended.
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Bregman proximal map
Let h : Rn → R be a differentiable convex reference function.

The Bregman distance associated to h is

Dh(y, x) := h(y)− h(x)− 〈∇h(x), y − x〉.

This distance defines the following Bregman proximal map

g 7→ argmin
y∈Rn

{
〈g, y〉+ ψ(y) +

1

t
Dh(y, x)

}
The previous Euclidean proximal map corresponds to the squared
Euclidean norm reference function

h(x) =
‖x‖2

2
 Dh(y, x) =

‖y − x‖2

2
.

Most of what we discussed for Euclidean proximal methods extends
to Bregman proximal methods.
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Bregman proximal gradient

Consider the problem

min
x∈Rn

{f(x) + ψ(x)},

and suppose h : Rn → R ∪ {∞} is a reference function.

Bregman proximal gradient (BPG)

pick tk > 0

xk+1 = argmin
z∈Rn

{
〈∇f(xk), z〉+ ψ(z) +

1

tk
Dh(z, xk)

}
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Why use Bregman proximal methods?

The Bregman proximal template provides a lot more flexibility.

The additional freedom to choose h can facilitate the
computation of the proximal mapping. For instance for
x ∈ ∆n−1 := {x ∈ Rn+ : ‖x‖1 = 1} the map

g 7→ argmin
y∈∆n−1

{〈g, y〉+Dh(y, x)}

is more easily computable for h(x) =
∑n

i=1 xi log(xi).

The usual L-smoothness assumption for convergence can be
replaced by a relative L-smoothness that holds more broadly.

Example: D-optimal design problem (min-vol enclosing ellipsoid)

min
x∈∆n−1

− log(det(HXHT))

where X = Diag(x) and H ∈ Rm×n with m < n.
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Example: Poisson linear inverse problem

min
x∈Rn+

DKL(b, Ax)

where b ∈ Rn++ and A ∈ Rm×n+ with m > n and DKL(·, ·) is the
Kullback-Leibler divergence, that is, the Bregman distance
associated to x 7→

∑n
i=1 xi log(xi).

We could tackle the above two problems via Euclidean proximal
methods. However, they are more amenable to Bregman proximal
methods with the Burg entropy reference function

h(x) = −
n∑
i=1

log(xi).
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Accelerated Bregman proximal gradient (ABPG)
(Gutman-P 2018)

Generate sequences xk, yk, zk for k = 0, 1, . . . as follows:

pick tk > 0

zk+1 = argmin
z∈Rn

{
〈∇f(yk), z〉+ ψ(z) +

1

tk
Dh(z, zk)

}
xk+1 =

∑k
i=0 tizi+1∑k
i=0 ti

yk+1 =

∑k
i=0 tizi+1 + tk+1zk+1∑k+1

i=0 ti

Related work by Hanzely-Richtarik-Xiao (2018).

19 / 37



Fenchel duality

Convex conjugate

For φ : Rn → R let φ∗ : Rn → R ∪ {∞} be defined via

φ∗(u) = sup
x∈Rn
{〈u, x〉 − φ(x)}.

Observe: φ∗ is always convex, even when φ is not.

Consider the primal problem

min
x
{f(x) + ψ(x)}.

The corresponding Fenchel dual problem is

max
u
{−f∗(u)− ψ∗(−u)}.
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Fenchel duality

Recall: φ∗(u) = supx{〈u, x〉 − φ(x)}.

Weak duality

For all x ∈ Rn and u ∈ Rn

f(x) + ψ(x) ≥ −f∗(u)− ψ∗(−u).

Proof.

f(x) + f∗(u) + ψ(x) + ψ∗(−u) ≥ 〈u, x〉+ 〈−u, x〉 = 0.
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Fenchel duality

Recall: φ∗(u) = supx{〈u, x〉 − φ(x)}.

An approach to show convergence

Suppose an algorithm generates sequences xk, vk, wk such that

f(xk) + ψ(xk) ≤ −f∗(vk)− ψ∗(wk)− d∗k(−vk − wk)

for some sequence of “distance” functions dk : Rn → R.

Then for all x̄ ∈ argminx{f(x) + ψ(x)} we have

f(xk) + ψ(xk)

≤ −〈vk, x̄〉+ f(x̄)− 〈wk, x̄〉+ ψ(x̄) + 〈vk + wk, x̄〉+ dk(x̄)

= f(x̄) + ψ(x̄) + dk(x̄).

That is, f(xk) + ψ(xk)− (f(x̄) + ψ(x̄)) ≤ dk(x̄).
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A key lemma

Suppose yk, zk ∈ ri(dom(h)) ∩ dom(ψ), gk := ∇f(yk), and tk > 0
satisfy

zk+1 = argmin
z∈Rn

{
〈gk, z〉+ ψ(z) +

1

tk
Dh(z, zk)

}
for k = 0, 1, 2, . . . .

Via the optimality conditions rewrite above as

gk + gψk +
1

tk
(∇h(zk+1)−∇h(zk)) = 0

for some gψk ∈ ∂ψ(zk+1).
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A key lemma
Let

vk :=

∑k
i=0 tigi∑k
i=0 ti

, wk :=

∑k
i=0 tig

ψ
i∑k

i=0 ti
.

Lemma

Suppose yk, zk, gk, g
ψ
k , tk and vk, wk are as above. Then∑k

i=0 ti(f(zi+1) + ψ(zi+1)−Df (zi+1, yi)) +Dh(zi+1, zi)∑k
i=0 ti

= −
∑k
i=0 ti(f

∗(gi) + ψ∗(gψi ))∑k
i=0 ti

− d∗k(−vk − wk)

≤ −f∗(vk)− ψ∗(wk)− d∗k(−vk − wk)

where

dk(z) :=
1∑k
i=0 ti

Dh(z, z0).
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Bregman proximal gradient (BPG)

In this case

xk+1 = argmin
z∈Rn

{
〈∇f(xk), z〉+ ψ(z) +

1

tk
Dh(z, xk)

}

Theorem (Gutman-P 2018)

Suppose each ti is such that

Df (xi+1, xi) ≤
1

ti
Dh(xi+1, xi). (DC)

Then for x̄ ∈ argmin
x∈Rn

{f(x) + ψ(x)} the BPG iterates satisfy

f(xk+1) + ψ(xk+1)− (f(x̄) + ψ(x̄)) ≤ 1∑k
i=0 ti

Dh(x̄, x0).
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Proof of Theorem.

In this case we can apply Lemma to xk = yk = zk and get∑k
i=0 ti(f(xi+1) + ψ(xi+1)−Df (xi+1, xi)) +Dh(xi+1, xi)∑k

i=0 ti

≤ −f∗(vk)− ψ∗(wk)− d∗k(−vk − wk)

Next, (DC) implies f(xi+1) + ψ(xi+1) ≤ f(xi) + ψ(xi) and

f(xk+1) + ψ(xk+1) ≤ −f∗(vk)− ψ∗(wk)− d∗k(−vk − wk).

To finish, observe that for all x̄ ∈ argminx∈Rn{f(x) + ψ(x)}

−f∗(vk)− ψ∗(wk)− d∗k(−vk − wk)
≤ −〈vk, x̄〉+ f(x̄)− 〈wk, x̄〉+ ψ(x̄) + 〈vk + wk, x̄〉+ dk(x̄)

= f(x̄) + ψ(x̄) + dk(x̄)

= f(x̄) + ψ(x̄) +
1∑k
i=0 ti

Dh(x̄, x0).
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Relative smoothness

Suppose f, h are convex and differentiable on Q. We say that f is
L-smooth relative to h on Q if for all x, y ∈ Q

Df (y, x) ≤ LDh(y, x).

(Nguyen 2012, Bauschke et al. 2017, Lu et al. 2018)

If f is L-smooth relative to h on dom(ψ) then (DC) holds for
ti = 1/L, i = 0, 1, . . . , k − 1 and BPG iterates satisfy

f(xk) + ψ(xk)− (f(x̄) + ψ(x̄)) ≤ LDh(x̄, x0)

k
.

Recover results by Bauschke-Bolte-Teboulle (2017) and by
Lu-Freund-Nesterov (2018).

This extends the O(1/k) convergence rate of PG.
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Accelerated Bregman proximal gradient (ABPG)
Generate sequences xk, yk, zk as follows:

zk+1 = argmin
z∈Rn

{
〈∇f(yk), z〉+ ψ(z) +

1

tk
Dh(z, zk)

}
xk+1 =

∑k
i=0 tizi+1∑k
i=0 ti

yk+1 =

∑k
i=0 tizi+1 + tk+1zk+1∑k+1

i=0 ti
.

By letting θk := tk∑k
i=0 ti

the last two equations can be rewritten as

xk+1 = (1− θk)xk + θkzk+1

yk+1 = (1− θk+1)xk+1 + θk+1zk+1

= xk+1 +
θk+1(1− θk)

θk
(xk+1 − xk)
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Accelerated Bregman proximal gradient (ABPG)

Theorem (Gutman-P 2018)

Suppose each ti and θi are such that

Df (xi+1, yi)− (1− θi)Df (xi, yi) ≤
θi
ti
Dh(zi+1, zi). (ADC)

Then for x̄ ∈ X̄ := argmin
x∈Rn

{f(x) +ψ(x)} the ABPG iterates satisfy

f(xk+1) + ψ(xk+1)− (f(x̄) + ψ(x̄)) ≤ 1∑k
i=0 ti

Dh(x̄, x0).

Proof.

Similar to previous one for BPG: use lemma & Fenchel duality.

———————————————————————————
Compare (ADC) condition for ABPG with (DC) condition for BPG:

Df (xi+1, xi) ≤
1

ti
Dh(xi+1, xi). (DC)
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Relative smoothness revisited

How much can we accelerate?

Choose tk > 0 or equivalently θk = tk∑k
i=0 ti

as large as possible so

that (ADC) holds. How large can we choose it?

(L, γ) relative smoothness

Say that f is (L, γ)-smooth relative to h on Q if for all
x, y, z, z̃ ∈ Q and θ ∈ [0, 1]

Df ((1− θ)x+ θz̃, (1− θ)x+ θz) ≤ LθγDh(z̃, z).

Observe

In Euclidean case L-relative smoothness yields (L, 2)-relative
smoothness. In general this does not hold but “almost”...
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Accelerated Bregman proximal gradient

Theorem (Gutman-P 2018)

Suppose f is (L, γ)-smooth relative to h on ri(dom(h)) ∩ dom(ψ)
for some L > 0 and γ > 0.

Then the stepsizes tk can be chosen judiciously so that the ABPG
iterates satisfy

f(xk+1) + ψ(xk+1)− (f(x̄) + ψ(x̄)) ≤
(

γ

k + γ

)γ
LDh(X̄, x0).

Recover iconic O(1/k2) rate when h(x) = 1
2‖x‖

2 and f is
L-smooth.
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Accelerated Bregman proximal gradient

For implementation purposes: pick θk = tk∑k
i=0 ti

as large as

possible so that (ADC) holds. Pick θk of the form

θk =
γk

k + γk

via backtracking on γk. If all γk ≥ γ > 0 then we get

f(xk+1) + ψ(xk+1)− (f(x̄) + ψ(x̄)) ≤
(

γ

k + γ

)γ
LDh(X̄, x0).

If we can do the above with γ = 2 we recover O(1/k2) rate. This
happens when h(x) = 1

2‖x‖
2.
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Numerical experiments

BPG-LS and ABPG-LS implementations

Line-search to choose tk in BPG so that (DC) holds.

Likewise for t0 and θk ∈ (0, 1) in ABPG to ensure (ADC).

Pick θk ∈ (0, 1) of the form θk = γk
k+γk

.

ABPG: use educated guess for t0 and θk = 2/(k + 2).

Problem instances

D-optimal design: minx∈∆n−1 − log(det(HXHT))

Poisson linear inverse: minx∈Rn+ DKL(b, Ax)

In both cases use reference function

h(x) = −
n∑
i=1

log(xi).

Bregman proximal mappings are easily computable in both cases.
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Figure: Suboptimality gap for 100× 250 and 200× 300 random instances
of D-optimal design.

Figure: Suboptimality gap for 250× 100 and 300× 200 random instances
of the Poisson linear inverse problem.
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Figure: Sequence {γk : k = 1, 2, . . . } in ABPG-LS for typical instances
of D-design optimal problem.

Figure: Sequence {γk : k = 1, 2, . . . } in ABPG-LS for typical instances
of Poisson linear inverse problem.
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Conclusions

Analysis of Bregman proximal methods via Fenchel duality.
Key observation: algorithms generate xk, vk, wk such that

f(xk+1) + ψ(xk+1) ≤ −f∗(vk)− ψ∗(wk)− d∗k(−vk − wk).

Other related developments that we did not discuss:

Proximal subgradient method when f is non-differentiable
Linear convergence via restarting
Analogous results for conditional gradient

Current/future work

Saddle-point problems
Stochastic first-order methods
More computational experiments
Role of γ in accelerated Bregman proximal methods

36 / 37



Main references

Bauschke, Bolte, Teboulle (2017), “A descent lemma beyond
Lipschitz gradient continuity: first-order methods revisited and
applications”

Lu, Freund, Nesterov (2018), “Relatively smooth convex
optimization by first-order methods, and applications”

Gutman and Peña (2018), “Convergence rates of proximal gradient
methods via the convex conjugate”

Hanzely, Richtarik, Xiao (2018), “Accelerated Bregman proximal
gradient methods for relatively smooth convex optimization”

Gutman and Peña (2018), “A unified framework for Bregman
proximal methods: subgradient, gradient, and accelerated gradient
schemes”

Teboulle (2018), “A simplified view of first-order methods for
optimization”

37 / 37


