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Abstract

This paper describes an algorithm to extract adaptive and quality quadrilateral/hexahedral meshes directly
from volumetric data. First, a bottom-up surface topology preserving octree-based algorithm is applied to
select a starting octree level. Then the dual contouring method is used to extract a preliminary uniform
quad/hex mesh, which is decomposed into finer quads/hexes adaptively without introducing any hanging
nodes. The positions of all boundary vertices are recalculated to approximate the boundary surface more
accurately. Mesh adaptivity can be controlled by a feature sensitive error function, the regions that users
are interested in, or finite element calculation results. Finally, a relaxation based technique is deployed to
improve mesh quality. Several demonstration examples are provided from a wide variety of application
domains. Some extracted meshes have been extensively used in finite elementsimulations.

Key words: quadrilateral/hexahedral mesh, topology preservation, mesh adaptivity,mesh quality.

1 Introduction

Unstructured quadrilateral/hexahedral mesh generation attracts many researchers’ interest because
of its important applications in finite element simulations. However, it still remains a challenging
and open problem to generate adaptive and quality quad/hex meshes directly from volumetric data,
such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and Signed Distance
Function (SDF) data.

The volumetric dataV is a sequence of sampled functional values on rectilinear grids, and can be
written asV = {F(i, j,k)|i, j,k are indices inx,y,z coordinates in a rectilinear grid}. An isosurface
or a level set corresponding to the isovalueα is defined asSF(α) = {(x,y,z)|F(x,y,z) = α}, and an
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Fig. 1. Adaptive quadrilateral and hexahedral meshes of a biomolecule mAChE. (a) - the quadrilateral mesh
of the molecular surface; (b) - the wireframe of the adaptive quadrilateral mesh of the molecular surface;
(c) - the adaptive hexahedral mesh of the interior volume; (d) - the adaptive hexahedral mesh of the exterior
volume between the molecular surface and an outer sphere. Finer meshes are generated in the region of the
cavity, while coarser meshes are kept in other areas. The cavity is shownin the red boxes.

interval volume between two isosurfacesSF(α1), SF(α2) is defined asIF(α1,α2) = {(x,y,z)|α1 ≤
F(x,y,z) ≤ α2}. In this paper, we present an approach to extract adaptive and quality quadrilat-
eral meshes for an isosurfaceSF(α) with correct topology, and hexahedral meshes for an interval
volumeIF(α1,α2) with isosurfaces as boundaries. In certain finite element simulations, both in-
terior and exterior hexahedral meshes are required, for example, the interior mesh of the volume
inside the solvent accessibility surface of the biomolecule mouse acetylcholinesterase (mAChE)
[31] [30], and the exterior mesh between the solvent accessibility surface and an outer bounding
sphere. Since the most important part in the geometric structure of mAChE is the cavity, we need to
generate finer mesh for it (Figure 1). Our approach can also generate adaptive and quality interior
and exterior hexahedral meshes.

The main steps to extract adaptive and quality quadrilateral and hexahedral meshes from volumet-
ric data are as follows:

(1) The selection of a starting octree level for uniform meshgeneration with correct topology.
(2) Crack-free and adaptive quad/hex meshing without any hanging nodes.
(3) Quality improvement.

In order to generate uniform quadrilateral and hexahedral meshes with correct topology, we select
a suitable starting octree level using a bottom-up surface topology preserving octree-based algo-
rithm. An approach provided in [15] is used to check whether afine isosurface is topologically
equivalent to a coarse one or not. Generally correct topology is guaranteed in the uniform mesh.

The dual contouring method [15] proposes an algorithm to extract a uniform quadrilateral mesh
for an isosurface by analyzing eachsign change edge, whose two ending points lie in different
sides of the isosurface. In the octree-based data structure, each sign change edge is shared by four
octree leaves, and one minimizer point is obtained for each leaf cell by minimizing a predefined
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quadratic error function (QEF) [14]. The QEF is defined as follows:

QEF [x] = ∑
i
(ni · (x− pi))

2 (1)

wherepi, ni represent the position and unit normal vectors of the intersection point respectively.
Figure 2 shows one 2D example. The four minimizer points construct a quad, and the union of all
the generated quads provides an approximation to this isosurface.

n2

n1

P1

P2

Fig. 2. The quadratic error function (QEF) and the minimizer point in 2D. Thered curve is an isocontour,
and the green point is the minimizer point calculated in Equation 1. (p1, n1) and (p2, n2) represent the
position and unit normal vectors of the two intersection points.

Starting from a uniform quadrilateral mesh, we use templates to refine each quad adaptively. The
position of each vertex is recalculated by moving it toward the isosurface along its normal direc-
tion, which is represented by trilinear interpolation functions within octree leaf cells. The dual
contouring isosurface extraction method has been extendedto uniform hexahedral mesh genera-
tion [38] [39]. In this paper, predefined three dimensional templates are used to generate adaptive
hexahedral meshes.

The mesh adaptivity can be controlled according to various requirements by a feature sensitive er-
ror function [38] [39], areas that users are interested in, or results from finite element calculations.
Users can also design an error function to control the mesh adaptivity according to their specific
requirements.

Generally, the extracted quadrilateral and hexahedral meshes can not be used for finite element
calculations directly since some elements have poor quality. We choose corresponding metrics to
measure the quality of quadrilateral and hexahedral meshesrespectively, and deploy a relaxation
based technique to improve mesh quality. Several of our generated meshes have been used in finite
element simulations.

The remainder of this paper is organized as follows: Section2 reviews the related work on quadri-
lateral/hexahedral mesh generation; Section 3 describes how to choose the starting octree level;
Sections 4 and 5 explain the detailed algorithm for extracting adaptive quadrilateral and hexahe-
dral meshes; Section 6 talks about three ways to control the mesh adaptivity; Section 7 discusses
the mesh quality improvement; Section 8 shows some results and applications; the final section
presents our conclusions.
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2 Previous Work

As a structured method, quad/hex mapped meshing [9] generates the most desirable meshes if
opposite edges/faces of the domain to be meshed have equal numbers of divisions or the same
surface mesh. However, it is always difficult to decompose anarbitrary geometric configuration
into mapped meshable regions. In the CUBIT project [1] at Sandia National Labs, a lot of research
has been done to automatically recognize features and decompose geometry into mapped meshable
areas or volumes.

As reviewed in [23] [35], there are indirect and direct methods for unstructured quad/hex mesh
generation. The indirect method is to generate triangular/tetrahedral meshes first, then convert
them into quads/hexes. The direct method is to generate quads/hexes directly without first going
through triangular/tetrahedral meshing.

Unstructured Quad Mesh Generation: The indirect method is to convert triangles into quads by
dividing a triangle into three quads, or combining adjacentpairs of triangles to form quads [20].

There are three main categories for unstructured direct quad mesh generation: quad meshing by
decomposition, advancing front quad meshing and isosurface extraction. The decomposition tech-
nique divides the domain into simpler regions which can be resolved by templates [2] [33]. The
second category is to utilize a moving front method for direct placement of nodes and elements.
Starting with an initial placement of nodes on the boundary,Zhu et al. [40] formed individual
elements by projecting edges towards the interior. As a partof CUBIT [1], the paving algorithm
places elements starting from the boundary and works in [5].Different from the decomposition
and the advancing front techniques, the dual contouring method [15] extracts uniform quadrilat-
eral meshes from volumetric data to approximate isosurfaces which can be an arbitrary geometry.

Unstructured Hex Mesh Generation: Eppstein [10] started from a tetrahedral mesh to decom-
pose each tetrahedron into four hexahedra. Although this method avoids many difficulties, it
rapidly increases the number of elements and tends to introduce poorly shaped elements.

There are five distinct methods for unstructured direct all-hex mesh generation: grid-based, medial
surface, plastering, whisker weaving and isosurface extraction. The grid-based approach generates
a fitted 3D grid of hex elements on the interior of the volume, and hex elements are added at the
boundaries to fill gaps [26] [28] [29]. The grid-based methodis robust, but tends to generate poor
quality elements at the boundaries. Medial surface methodsdecompose the volume into map-
meshable regions, and fill the volume with hex elements usingtemplates [24] [25]. Plastering
places elements on boundaries first and advances towards thecenter of the volume [6] [4]. Whisker
weaving first constructs the spatial twist continuum (STC) ordual of the hex mesh, then the hex
elements can be fitted into the volume using the STC as a guide [34]. Medial surface methods,
plastering and whisker weaving have successfully generated hex meshes for some geometry, but
have not been proven to be robust and reliable for an arbitrary geometric domain. Zhang et al. [38]
[39] extended the dual contouring isosurface extraction method [15] to uniform hexahedral mesh
generation. This method is robust and reliable for an arbitrary geometry, but adaptive meshes are
preferable and mesh quality needs to be improved.
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Quality Improvement: As the simplest and most straight forward method, Laplaciansmoothing
relocates the vertex position at the average of the nodes connecting to it [11]. There are a variety
of other smoothing techniques based on a weighted average ofthe surrounding nodes and ele-
ments. The averaging method may invert or degrade the local quality, but it is simple to implement
and in wide use. Instead of relocating vertices based on a heuristic algorithm, people utilized an
optimization technique to improve mesh quality. The optimization algorithm measures the qual-
ity of the surrounding elements to a node and attempts to optimize it. The algorithm is similar
to a minimax technique used to solve circuit design problems[8]. Optimization-based smoothing
yields better results but it is more expensive than Laplacian smoothing. Some papers [7] [12] [13]
recommended a combined Laplacian/optimization-based approach.

Staten et al. [32] [16] proposed algorithms to improve node valence for quadrilateral meshes. One
special case of cleanup in hexahedral meshes for the whiskerweaving algorithm is presented in
[21]. Schneiders [27] proposed algorithms and a series of templates for quad/hex element decom-
position. A recursive subdivision algorithm was proposed for the refinement of hex meshes [3].

3 Starting Octree Level Selection

There are three main steps in our adaptive and quality quadrilateral and hexahedral mesh extraction
from volumetric data. First, we need to choose a suitable starting octree level to generate the
uniform mesh with correct topology. Then pre-defined templates are used to refine the uniform
mesh adaptively. The positions of all boundary vertices arerecalculated, and the mesh adaptivity
can be controlled by an error function designed in multiple ways. Finally, the relaxation based
technique is used to improve mesh quality.

The bottom-up surface topology preserving octree-based algorithm is used to select a starting
octree level. Suppose the volume data has the dimension of(2n +1)3, so the deepest octree level
is n. For an isosurface, we first compare the surface topology at Leveln and Level(n−1). If the
surface topology is equivalent, then we continue comparingthe surface topology at Level(n−1)
and Level(n−2) until we find the surface topology at two neighboring levels,e.g. Leveli and
Level (i−1) (i = n, . . . ,1), is different from each other. Then we will selecti as the starting octree
level.

We assign a sign to each grid point in the volumetric data. If the function value at a grid point is
greater than the isovalue, then the sign is 1, otherwise it is0. An approach is described in [15] to
check whether a fine isocontour is topologically equivalentto a coarse one or not. The fine and
coarse isocontour is topologically equivalent with each other if and only if the sign of the middle
vertex of a coarse edge/face/cube is the same as the sign of atleast one vertex of the edge/face/cube
which contains the middle vertex. Generally we guarantee the correct topology for the boundary
surfaces by choosing a suitable starting octree level, and correct topology will be preserved in the
process of adaptive mesh refinement.
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4 Quad Isosurface Extraction

Finite element calculations sometimes require quadrilateral meshes instead of triangular meshes.
It is more challenging to generate quadrilateral meshes since not every polygon can be decom-
posed into quads directly. The uniform quadrilateral mesh extraction algorithm is simpler [15],
but adaptive meshes are preferable over uniform ones. Thereare two main problems in adaptive
quadrilateral mesh extraction.

(1) How to decompose a quad into finer quads.
(2) How to calculate the positions of vertices.

4.1 Mesh Decomposition

Indirect Method: In the dual contouring isosurface extraction method [15], an error function is
defined to control where we should generate fine meshes, and where we should keep coarse ones.
In the adaptive octree data structure, either a sign change edge is shared by three cells resulting
in a triangle, or it is shared by four cells and a quad is generated. Therefore, the isosurface is
represented by a union of quads and triangles. In order to obtain an all-quad mesh, the indirect
method splits each quad into four quads and each triangle into three quads by inserting points at
the middle of edges and at the center of the element as shown inFigure 3. The idea of the indirect
method is simple and easy to implement, but the number of elements increases by a factor of 2 to
3 over the original mesh.

(d)(c)(b)(a)

Fig. 3. The templates to decompose a quad or a triangle into quads. Red points are newly inserted at the
middle of edges or the element center. (a) - a quad before splitting; (b) - a triangle before splitting; (c) - a
quad is split into four quads; (d) - a triangle is split into three quads.

Direct Method: At the selected starting octree level, the dual contouring isosurface extraction
method [15] generates uniform quadrilateral meshes by analyzing each sign change edge which is
shared by four leaf cells. Adaptive quadrilateral meshes can be obtained from the uniform mesh
by using some templates. There are multiple ways to define templates for adaptive quadrilateral
mesh construction, therefore criteria needs to be set to evaluate them in order to generate meshes
with good quality. Here we define some requirements for templates:

(1) All resulting elements are quads.
(2) No hanging nodes exist.
(3) The resulting mesh approximates the object surface accurately.
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(4) The resulting elements have good aspect ratio.
(5) The resulting mesh introduces a small number of new elements and vertices.

0 2b

Method 1

42a1 3

Method 3

3 42a

Method 2

2b0 1

Fig. 4. Three different methods to define templates for adaptive quadrilateral isosurface extraction. In
Method 1, the quad needs to be refined; In Method 2 and 3, octree leaf cells generating red minimizer
points need to be refined.

Figure 4 shows three methods to define templates for adaptivequadrilateral mesh generation start-
ing from a uniform mesh with correct topology. In the uniformcase, each sign change edge is
shared by four cells and four minimizer points are obtained to construct a quad. In Method 1,
if the maximum error function value (for example, the feature sensitive error function defined in
[38] [39]) of the four cells is greater than a thresholdε, then the four octree cells containing the
sign change edge should be subdivided, and the quad generated from this edge should be refined.
This method does not consider its neighboring information,each quad is refined independently. If
a quad needs to be refined, then the resulting mesh has 5 elements and 4 newly inserted vertices.
In Method 2 [29] and 3, various decomposition methods are chosen according to the cell which
generates a quad node and also needs to be refined. Method 2 and3 are only different in Case (2b),
Method 2 generates less elements and vertices, but the quad quality is worse than in Method 3.

We can use the above five template requirements to compare thethree methods in Figure 4. It
is obvious that all the three methods only generate quad elements, and no hanging nodes are
introduced. Compared with Method 1, Methods 2 and 3 insert extra nodes on the quad edges as
well as inside the quad, so they can approximate the surface more accurately. Comparing the worst
aspect ratio of the resulting quad elements in Method 2 and 3,we can see that Method 3 generates
quads with better quality. The number of elements and the number of newly inserted vertices for
each template are listed in Figure 5. Method 3 is preferable by balancing the five criteria.
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Method Number of 0 1 2a 2b 3 4

2 elements 1 3 7 4 8 9

vertices 0 3 8 4 10 12

3 elements 1 3 7 7 8 9

vertices 0 3 8 8 10 12

Fig. 5. The number of elements and the number of newly inserted vertices fortemplates in Methods 2 and
3 shown in Figure 4.

4.2 Vertex Position Calculation

In the process of mesh refinement, new vertices are inserted according to the pre-defined templates.
The next step is to update the positions of existing verticesand calculate the positions of newly
inserted vertices.

In Figure 6, we assume that the leaf cell can be divided into four subcells in the finest resolution
level, therefore the real isosurface (the red curve) is represented by a union of three trilinear inter-
polation functions within the subcells. For each existing minimizer point, first we find the octree
leaf cell containing it in the current resolution level, then move it toward the isosurface within
this leaf cell along its normal direction. The intersectionpoint is more accurate to represent this
boundary vertex than the minimizer point. If the calculatedintersection point lies outside this cell
unfortunately because of bad normal vectors, we will still keep old position and normal vectors.

(b) (c)(a)

Fig. 6. The calculation of vertex positions. (a) - one leaf cell; (b) - the leafcell is subdivided into four sub-
cells, and three minimizer points are obtained; (c) - the three minimizer points are moved to the isocontour
along their normal directions. The red curve is the real isocontour. The green circle point represents an
existing minimizer point of this leaf cell, and blue circle points are two newly inserted vertices. The arrows
are their normal vectors, the green and blue box points are the resulting vertices.

For those newly inserted vertices, we first calculate their position and normal vectors by linear
interpolation of the four vertices of the original quad. Then we will move them toward the isosur-
faces in the same way as we update the positions of existing vertices.

Figure 7 shows adaptive quadrilateral meshes of the human head generated from two direct meth-
ods, Method 1 and Method 3 shown in Figure 4. It is obvious thatthe original uniform mesh is
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Fig. 7. Adaptive quad meshes generated from two direct methods. A feature sensitive error function [38]
[39] is chosen for mesh adaptivity, the isovalueα = 0, the error toleranceε = 0.4. Method 1 generates a poor
nose, and Method 3 generates a better result.

refined adaptively, and the new vertex positions are closer to the isosurface. Method 1 generates
a bad nose, and Method 3 approximates the isosurface more accurately than Method 1 because it
introduces extra vertices on the refined edges of each original quad. The mesh adaptivity is con-
trolled by a feature sensitive error function [38] [39], which is sensitive to facial features such as
the nose, the eyes, the mouth and the ears.

5 Hexahedral Mesh Extraction

The dual contouring method [15] has been extended to uniformhexahedral mesh generation by
analyzing each interior vertex (a grid point inside the interval volume) shared by eight different
cells, which are either boundary cells or interior cells [38] [39]. A minimizer point is calculated
for each boundary cell, and the cell center is set as the minimizer point for each interior cell.
Those eight minimizer points construct a hexahedron. In this section, we will focus on adaptive
hexahedral mesh generation.

5.1 2D Mesh Decomposition

In 2D, the uniform quadrilateral mesh can be constructed by analyzing each interior grid point,
which is shared by four cells. One minimizer point is calculated for each cell, therefore four mini-
mizer points are obtained and they construct a quad. All the templates defined in Figure 4 can be
used here for adaptive 2D mesh generation. Figure 8 shows an example of adaptive quadrilateral
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0 1 3 42a 2b

Fig. 8. Top row - an example of adaptive quad mesh generation in 2D. Eachgreen point represents a min-
imizer point of a cell to be refined, and the red curve represents the realisocontour. Bottom row - the
decomposition templates of Method 3 shown in Figure 4.

mesh extraction using Method 3. When we analyze each cell to calculate the minimizer point, we
compare the feature sensitive error function of this cell with a thresholdε. If the error function
value of a cell is greater thanε, then this cell needs to be subdivided. An interior grid point is
shared by four cells, therefore there are a total of 24 = 16 configurations. Due to the symmetry,
there are six basic templates for the quad refinement. A uniform quadrilateral mesh can be refined
adaptively by using those templates.

5.2 3D Mesh Decomposition

Indirect Method: Adaptive and quality tetrahedral meshes have been generated from volumetric
imaging data [38] [39], therefore we can obtain hexahedral meshes by decomposing each tetrahe-
dron into four hexahedra.

Direct Method: Not all the direct methods for adaptive 2D mesh generation shown in Figure 4
can be extended to 3D. There are two main methods for adaptivehexahedral mesh generation, one
is extended from the first 2D direct method and the other one isderived from part of the third 2D
direct method.
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Fig. 9. Adaptive hexahedral mesh decomposition (Method 1). Left - a 2Dexample; Middle - a small hex-
ahedron is inserted; Right - the top face of the original hexahedron needs to be refined, 6 hex and 8 extra
vertices are generated.

Extended from the first 2D direct method in Figure 4, Method 1 refines each hexahedron indepen-
dently as shown in Figure 9. It first splits each hexahedron into seven hexahedra by inserting one
small hex in its center, and each face of the original hex is contained in a hex independently. If
one face needs to be refined, then the hex containing it will berefined as shown in the right picture
of Figure 9. If there arei (i = 1, . . . ,6) faces that need to be refined for a hexahedron, then the
resulting mesh has (6i+(6− i)+1 = 5i+7) elements and 8(i+1) newly inserted vertices.

0 1 2 4 8

Fig. 10. Templates of adaptive hexahedral mesh decomposition (Method 2)according to the cells to be
refined from which red minimizer points are generated. The bottom row shows the detailed decomposition
format.

Method 2 is derived from part of the third 2D direct method shown in Figure 4. In the process of
refinement, this method considers whether the error function value of each cell is greater than a
thresholdε or not. One hexahedron has a total of eight vertices, so thereare (28 = 256) configura-
tions. Due to symmetry, there are only 22 unique templates [36], but only five templates are useful
out of them because not all the templates can be decomposed into hexahedra. Figure 10 shows the
five templates for adaptive hexahedral decomposition together with a detailed view [29], which
are much more complicated than the templates for 2D quadrilateral decomposition. Figure 11 lists
the number of elements and the number of newly inserted vertices for each template.

We set a sign for each leaf cell at the uniform starting octreelevel indicating if this cell needs to
be refined or not. For each leaf cell, the feature sensitive error function is calculated and compared
with a thresholdε. If the function value is greater thanε, then the sign is set to be 1, otherwise it
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Method Number of 0 1 2 4 8

2 elements 1 4 11 22 27

vertices 0 7 19 39 56

Fig. 11. The element number and the newly inserted vertex number of Method2 within refined hexahedra
shown in Figure 10.

is 0. For each hexahedron extracted from the uniform level, we check if it belongs to one of the
templates shown in Figure 10. If not, we need to convert it by looking up the table shown in Figure
12. We keep updating the sign for each leaf cell until no sign changes, at this time all the generated
hexahedra in the uniform level are in the format of the five templates shown in Figure 10, then we
can construct an adaptive hexahedral mesh using the corresponding templates.

and all others

Fig. 12. The Look-Up table for converting an arbitrary configuration to one of the five templates in Figure
10. Each green node represents the cell from which the minimizer point is generated needs to be refined.
The sign of the cell generating a red node is 1, otherwise the sign is 0.

Each hexahedron is constructed by eight minimizer points, which are calculated from leaf cells in
the uniform octree level. The error function of the cell generating a minimizer point is either greater
than the thresholdε or≤ ε, therefore there are a total of 28 = 256 configurations for a hexahedron.
Figure 12 shows the Look-Up table for converting an arbitrary configuration to the five templates
shown in Figure 10. The green node means the error function ofthe cell generating this minimizer
point is greater than the thresholdε. The red node means the sign of the cell generating this node
is set to be 1, otherwise the sign is 0.
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Fig. 13. Adaptive hexahedral meshes from Method 1 (left) and Method 2(right) for the human head. Top
row shows the boundary isosurfaces, it is obvious that Method 1 generates a poorly-shaped nose as was
shown in Figure 7. Bottom row shows cross sections, the right part of elements are removed.

In the process of adaptive hexahedral mesh generation, we need to insert extra vertices and detect
if they lie on the boundary or not. If a vertex lies on a boundary edge or a boundary face, then
it is a boundary vertex. Otherwise it lies interior to the interval volume. There is a special case,
of which we need to be careful. It occurs in cases where a vertex lying on an edge whose two
end points are on the boundary, or lying on a face whose four points are on the boundary, may
not be on the boundary. For those extra vertices lying insidethe interval volume, we choose the
linear interpolation of the eight vertices of the original hexahedron. For those existing and newly
inserted vertices lying on the boundary isosurface, we firstcompute their positions from the linear
interpolation, then move them toward the isosurface as we dofor adaptive quadrilateral isosurface
extraction.

Figure 13 compares adaptive hexahedral meshes of the human head generated from Method 1 and
Method 2. It is obvious that Method 2 constructs a better nosethan Method 1 because it introduces
extra vertices on edges of refined hexes resulting in a more accurate approximation, and Method
2 tends to generate meshes with better quality than Method 1.The extracted surface mesh from
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Method 2 is a little different from the result of the third method shown in Figure 7, since only
templates 0, 1, 2a and 4 of the third method in Figure 4 are adopted, while templates 2b and 3
are not used. Since we still use QEF (Equation 1) for computing minimizing vertices, we can also
preserve sharp edges and corners (Figure 14).

Fig. 14. Sharp features are preserved. From left to right: an adaptive quad mesh of a mechanical part, an
adaptive hex mesh of a mechanical part, an adaptive quad mesh of a fandisk, and an adaptive hex mesh of a
fandisk.

6 Mesh Adaptivity

In order to generate accurate meshes with the minimal numberof elements and vertices, it is
important to choose a good error metric to decide where we should generate a finer mesh and
where a coarser mesh should be kept. There are three main waysto control the mesh adaptivity.
Users can also design an error function based on their specific requirements.

• Feature sensitive error function
• Areas that users are interested in
• Finite element calculation results

The feature sensitive error function [38] [39] is defined as the difference of trilinear interpolation
functions between coarse and fine octree levels normalized by the gradient magnitude. It is sensi-
tive to areas of large geometric features since it directly measures the surface difference between
coarse and fine levels, for example, the facial features (nose, eyes, mouth and ears) in the head
model as shown in Figure 13 and 18.

Sometimes, people are interested in some special areas based on their physical or biological ap-
plications. For example, there is a cavity in the structure of the biomolecule called mouse acetyl-
cholinesterase (mAChE) [31] [30]. A finer mesh is required around the cavity area while a coarse
mesh needs to be kept in other regions. In this situation, theerror function should be defined by
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regions. Figure 1 shows the adaptive quadrilateral and hexahedral meshes for the biomolecule
mAChE, and it is obvious that the mesh adaptivity is controlled by regions.

In finite element simulations, we first need to construct meshes to represent the analyzed geo-
metric domain, then solve ordinary/partial differential equations over it using the finite element
method. For accurate and efficient finite element analysis, adaptive meshes are preferable. The
mesh adaptivity can be controlled directly by finite elementsolutions to balance the error of finite
element solutions over each element. Figure 21 shows quad meshes of a bubble model. The mesh
adaptivity is controlled by its deformation obtained from the finite element analysis.

7 Quality Improvement

Quality improvement is a necessary step for finite element mesh generation. First we need to
choose corresponding quality metrics to measure the quality of quadrilateral and hexahedral meshes.
Here we select the scaled Jacobian, the condition number of the Jacobian matrix and Oddy metric
[22] as our metrics [17][18][19].

Assumex ∈ ℜ3 is the position vector of a vertex in a quad or a hex, andxi ∈ ℜ3 for i = 1, . . . ,m
are its neighboring vertices, wherem = 2 for a quad andm = 3 for a hex. Edge vectors are defined
asei = xi − x with i = 1, . . . ,m, and the Jacobian matrix isJ = [e1, ...,em]. The determinant of the
Jacobian matrix is calledJacobian, or scaled Jacobian if edge vectors are normalized. An element
is said to beinverted if one of its Jacobians≤ 0. We use theFrobenius norm as a matrix norm,
|J| = (tr(JT J)1/2). The condition number of the Jacobian matrix is defined asκ(J) = |J||J−1|,
where|J−1| = |J|

det(J) . Therefore, the three quality metrics for a vertexx in a quad or a hex are
defined as follows:

Jacobian(x) = det(J) (2)

κ(x)=
1
m
|J−1||J| (3)

Oddy(x)=
(|JT J|2− 1

m |J|
4)

det(J)
4
m

(4)

wherem = 2 for quadrilateral meshes andm = 3 for hexahedral meshes.

In the process of mesh quality improvement, our goal is to remove inverted elements and improve
the worst condition number of the Jacobian matrix. First theaveraging method is used to remove
inverted elements. We calculate the scaled Jacobian for a vertex in each element, and relocate
this vertex by the average of all its neighbors if the Jacobian is negative. Then we calculate the
condition number of the Jacobian matrix for a vertex in each quad or hex, and find the vertex with
the maximum value. We compute the new position for this vertex using the conjugated gradient
method with the condition number (Equation 3) as objective.
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Type DataSet MeshSize Scaled Jacobian Condition Number Oddy Metric Inverted

(Vertex♯, Elem♯) (best,aver.,worst) (best,aver.,worst) (best,aver.,worst) Elem♯

quad Bubble1 (208, 206) (1.0, 0.92, 0.36) (1.0, 1.12, 2.77) (0.0, 0.61, 13.37) 0

Bubble2 - (1.0, 0.94, 0.62) (1.0, 1.07, 1.60) (0.0, 0.34, 3.13) 0

Head1 (714, 712) (1.0, 0.92, 0.06) (1.0, 1.13, 17.41) (0.0, 0.98, 604.24) 0

Head2 - (1.0, 0.92, 0.37) (1.0, 1.10, 2.73) (0.0, 0.48, 12.93) 0

mAChE1 (19998, 20013) (1.0, 0.90, 0.04) (1.0, 1.17, 27.63) (0.0, 1.29, 1524.67) 0

mAChE2 - (1.0, 0.90, 0.16) (1.0, 1.15, 6.26) (0.0, 0.87, 76.28) 0

hex Head1 (1210, 812) (1.0, 0.85, 1.9e-3) (1.0, 2.62, 519.74) (0.0, 12.88, 6.95e3) 1

Head2 - (1.0, 0.85, 0.02) (1.0, 1.98, 46.34) (0.0, 5.03, 638.83) 0

mAChE1 (81233, 70966) (1.0, 0.94, 5.2e-5) (1.0, 2.07, 1.92e4) (0.0, 18.35, 1.58e6) 5

mAChE2 - (1.0, 0.94, 0.01) (1.0, 1.40, 74.73) (0.0, 2.37, 1379.81) 0

Fig. 15. The comparison of the three quality criteria (the scaled Jacobian, the condition number and Oddy
metric) before/after the quality improvement for quadrilateral meshes of bubble, head and mAChE. DATA1

– before quality improvement; DATA2 – after quality improvement.

Fig. 16. The histogram of the condition number for quadrilateral (left) andhexahedral (right) meshes of
mAChE and the human head.

If the relocated vertex is an interior node, then we replace the location of this vertex with the
calculated new position. If this vertex lies on the boundary, then we calculate its new position
and move it toward the isosurface along its normal direction. We keep reducing the maximum
condition number for quad or hex meshes until we arrive a given threshold. In this way, we can
improve the worst condition number of the Jacobian matrix, as well as improving the other two
metrics, the scaled Jacobian and Oddy metric. However, it ispossible to produce an invalid mesh
containing inverted elements. We choose a ‘smart’ smoothing method [12], which relocates the
point only if the mesh quality is improved.

Figure 15 shows the improvement of the worst values of the scaled Jacobian, the condition number
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DataSet Type Dimension Number of Elements (Extraction Time (unit : ms) )

(a) (b) (c) (d)

Bubble SDF 653 206 (172) 1478 (329) 1854 (344) –

Head SDF 653 1942 (594) 812 (375) 4049 (750) 17905 (3267)

Knee SDF 653 4058 (735) 1386 (453) 7111 (797) 36207 (1516)

Skull CT 1293 – – 20416 (9893) 10827 (9205)

Skin CT 1293 20999 (9955) 61244 (14565) – –

mAChE Given 2573 20013 (6080) – 70966 (11690) 38939 (7955)

Fig. 17. Data Sets and Test Results. The CT data sets are re-sampled to fit into the octree representation.
Rendering results for each case are shown in Figure 21, 18, 19, 20 and 1. Skull and Skin are extracted from
the UNC Head model.

and Oddy metric. The histograms of the condition number (Figure 16) show the overall quality of
quad and hex meshes for the human head model and a biomoleculemAChE. By Comparing the
three quality metrics before and after quality improvement, we can see that the worst parameters
are improved significantly.

8 Results and Applications

We have developed an interactive program for adaptive and quality quadrilateral/hexahedral mesh
extraction and rendering from volumetric data, and pluggedit into our LBIE-Mesh software (Level
Set Boundary and Interior-Exterior Mesher), which can generate adaptive and quality 2D (trian-
gular/quadrilateral) and 3D (tetrahedral/hexahedral) meshes from volume data. The algorithm of
tetrahedral mesh generation is described in [38] [39]. In this software, error tolerances and isoval-
ues can be changed interactively. Our results were computedon a PC equipped with a Pentium III
800MHz processor and 1GB main memory.

Our algorithm has been used to generate quadrilateral and hexahedral meshes for some signed
distance function data such as the bubble (Figure 21), the human head (Figure 18) and the knee
model (Figure 19). We have also extracted meshes for the skinand the skull from a CT scanned
data (the UNChead, Figure 20), and tested the algorithm on biomolecular data (mAChE, Figure 1).
Figure 17 shows the information for each dataset and results. The results consist of the number of
elements, the extraction time and images with respect to different isovalues and error tolerances.
Extraction time includes octree traversal, QEF computation and mesh extraction.

Figure 21 shows the extracted quadrilateral meshes for a bubble, which has been used in the
simulation of drop deformation using the finite element method. First, we generate a uniform
quad mesh for the original state of the bubble. Then we get finite element solutions such as the
deformation from finite element analysis, and use the error of the deformation over each element
to control the mesh adaptivity. Finally we can provide an adaptive and quality quad mesh to limit
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Fig. 18. Quadrilateral and hexahedral meshes of the human head. (a) -an adaptive quadrilateral mesh; (b) -
the uniform hexahedral mesh at a chosen starting level; (c) - an adaptive interior hexahedral mesh controlled
by the feature sensitive error function; (d) - an adaptive exterior hexahedral mesh controlled by the feature
sensitive error function.

Fig. 19. Quadrilateral and hexahedral meshes of the knee. (a) - an adaptive quadrilateral mesh; (b) - the
uniform hexahedral mesh at a chosen starting level; (c) - an adaptive hex mesh controlled by the feature
sensitive error function; (d) - all the hexahedral elements in (b) are refined.

the maximum error of finite element solutions within a threshold.

Some physically-based simulations need both interior and exterior hexahedral meshes. For exam-
ple, when people are analyzing the electromagnetic scattering over the human head, hex meshes
of the volume interior to the head surface and hex meshes exterior to the head surface but inside
an outer sphere are needed at the same time. Figure 18 shows the extracted interior and exterior
meshes for a head model. The facial features such as nose, eyes, mouth and ears are kept, and fine
meshes are generated in those regions. Figure 1 shows another example of interior and exterior
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Fig. 20. Quadrilateral and hexahedral meshes are extracted from a CT-scanned volumetric data (UNC head).
(a) - the quadrilateral mesh of the skin; (b) - the hexahedral mesh of the volume inside the skin; (c) - the
quadrilateral mesh of the skull isosurface; (d) - the hexahedral mesh of the skull.

Fig. 21. Quadrilateral meshes of a bubble model. (a) - the uniform mesh at achosen starting level; (b) - an
adaptive mesh controlled by finite element solutions (deformation); (c) - a mesh generated by refining all
the elements in (a).

hexahedral meshes, the biomolecule mAChE. The mesh adaptivity is controlled by regions, fine
meshes are generated in the area of cavity.

9 Conclusions

We have presented an algorithm to extract adaptive and quality quadrilateral and hexahedral
meshes directly from volumetric data. First, a bottom-up surface topology preserving octree-based
algorithm is used to select a starting octree level, at whichwe extract uniform meshes with correct
topology using the dual contouring isosurface extraction method [15] [38] [39]. Then we extended
it to adaptive quadrilateral and hexahedral mesh generation using some predefined templates with-
out introducing any hanging nodes. The position of each boundary vertex is recalculated to ap-
proximate the isosurface more accurately. The mesh adaptivity can be controlled in three ways, the
feature sensitive error function [38] [39], the areas that users are interested in and finite element
solutions. Users can also design their own error function tocontrol the mesh adaptivity according
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to their specific requirements. Finally, three various quality metrics are selected to measure the
mesh quality, and the relaxation based technique is used to improve it. The resulting meshes are
extensively used for efficient and accurate finite element calculations. Some of them have been
used successfully.

Acknowledgments

An early version of this paper appeared in 13th International Meshing Roundtable conference
[37]. We thank Bong-Soo Sohn for several useful discussions,Jianguang Sun for our system man-
agement, Dr. Gregory Rodin for finite element solutions of drop deformation, Dr. Nathan Baker
for providing access to the accessibility volume of biomolecule mAChE and UNC for the CT
volume dataset of a human head respectively. This work was supported in part by NSF grants
ACI-0220037, CCR-9988357, EIA-0325550, a UT-MDACC Whitaker grant, and a subcontract
from UCSD 1018140 as part of the NSF-NPACI project, Interaction Environments Thrust.

References

[1] Cubit mesh generation toolkit. web site: http://sass1693.sandia.gov/cubit.

[2] P. Baehmann, S. Wittchen, M. Shephard, K. Grice, and M. Yerry. Robust geometrically based,
automatic two-dimensional mesh generation.Int. J. Numer. Meth. Engng, 24:1043–1078, 1987.

[3] C. Bajaj, J. Warren, and G. Xu. A subdivision scheme for hexahedral meshes.The Visual Computer,
18(5-6):343–356, 2002.

[4] T. Blacker and R. Myers. Seams and wedges in plastering: a 3d hexahedral mesh generation algorithm.
Engineering With Computers, 2:83–93, 1993.

[5] T. Blacker and M. Stephenson. Paving: A new approach to automatedquadrilateral mesh generation.
Int. J. Numer. Meth. Engng, 32:811–847, 1991.

[6] S. Canann. Plastering and optismoothing: new approaches to automated, 3d hexahedral mesh
generation and mesh smoothing.Ph.D. Dissertation, Brigham Young University, Provo, UT, 1991.

[7] S. Canann, J. Tristano, and M. Staten. An approach to combined laplacian and optimization-based
smoothing for triangular, quadrilateral and quad-dominant meshes. In7th International Meshing
Roundtable, pages 479–494, 1998.

[8] C. Charalambous and A. Conn. An efficient method to solve the minimax problem directly. SIAM
Journal of Numerical Analysis, 15(1):162–187, 1978.

[9] W. A. Cook and W. R. Oakes. Mapping methods for generating three-dimensional meshes.Computers
in Mechanical Engineering, pages 67–72, 1982.

[10] David Eppstein. Linear complexity hexahedral mesh generation. InSymposium on Computational
Geometry, pages 58–67, 1996.

20



[11] D. Field. Laplacian smoothing and delaunay triangulations.Communications in Applied Numerical
Methods, 4:709–712, 1988.

[12] L. Freitag. On combining laplacian and optimization-based mesh smoothing techniqes.AMD-Vol. 220
Trends in Unstructured Mesh Generation, pages 37–43, 1997.

[13] L. Freitag and C. Ollivier-Gooch. Tetrahedral mesh improvement using swapping and smoothing.Int.
J. Numer. Meth. Engng, 40:3979–4002, 1997.

[14] M. Garland and P. Heckbert. Simplifying surfaces with color and texture using quadric error metrics.
In IEEE Visualization, pages 263–270, 1998.

[15] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite data. InProceedings of
SIGGRAPH, pages 339–346, 2002.

[16] P. Kinney. Cleanup: Improving quadrilateral finite element meshes. In 6th International Meshing
Roundtable, pages 437–447, 1997.

[17] P. Knupp. Achieving finite element mesh quality via optimization of the jacobian matrix norm and
associated quantities. part i - a framework for surface mesh optimization.Int. J. Numer. Meth. Engng,
48:401–420, 2000.

[18] P. Knupp. Achieving finite element mesh quality via optimization of the jacobian matrix norm and
associated quantities. part ii - a framework for volume mesh optimization and thecondition number of
the jacobian matrix.Int. J. Numer. Meth. Engng, 48:1165–1185, 2000.

[19] C. Kober and M. Matthias. Hexahedral mesh generation for the simulation of the human mandible. In
9th International Meshing Roundtable, pages 423–434, 2000.

[20] C. Lee and S. Lo. A new scheme for the generation of a graded quadrilateral mesh.Computers and
Structures, 52(5):847–857, 1994.

[21] S. Mitchell and T. Tautges. Pillowing doublets: Refining a mesh to ensure that faces share at most one
edge. In4th International Meshing Roundtable, pages 231–240, 1995.

[22] A. Oddy, J. Goldak, M. McDill, and M. Bibby. A distortion metric for isoparametric finite elements.
Transactions of CSME, No. 38-CSME-32, Accession No. 2161, 1988.

[23] S. Owen. A survey of unstructured mesh generation technology. In 7th International Meshing
Roundtable, pages 26–28, 1998.

[24] M. Price and C. Armstrong. Hexahedral mesh generation by medial surface subdivision: Part i.Int. J.
Numer. Meth. Engng, 38(19):3335–3359, 1995.

[25] M. Price and C. Armstrong. Hexahedral mesh generation by medial surface subdivision: Part ii.Int. J.
Numer. Meth. Engng, 40:111–136, 1997.

[26] R. Schneiders. A grid-based algorithm for the generation of hexahedral element meshes.Engineering
With Computers, 12:168–177, 1996.

[27] R. Schneiders. Refining quadrilateral and hexahedral element meshes. In5th International Conference
on Grid Generation in Computational Field Simulations, pages 679–688, 1996.

[28] R. Schneiders. An algorithm for the generation of hexahedral element meshes based on an octree
technique. In6th International Meshing Roundtable, pages 195–196, 1997.

21



[29] R. Schneiders, R. Schindler, and F. Weiler. Octree-based generation of hexahedral element meshes. In
5th International Meshing Roundtable, pages 205–216, 1996.

[30] Y. Song, Y. Zhang, C. L. Bajaj, and N. A. Baker. Continuum diffusion reaction rate calculations
of wild type and mutant mouse acetylcholinesterase: Adaptive finite element analysis. Biophysical
Journal, 87(3):1558–1566, 2004.

[31] Y. Song, Y. Zhang, T. Shen, C. L. Bajaj, J. A. McCammon, and N. A. Baker. Finite element
solution of the steady-state smoluchowski equation for rate constant calculations.Biophysical Journal,
86(4):2017–2029, 2004.

[32] M. Staten and S. Canann. Post refinement element shape improvement for quadrilateral meshes.AMD-
Trends in Unstructured Mesh Generation, 220:9–16, 1997.

[33] J. Talbert and A. Parkinson. Development of an automatic, two dimensional finite element mesh
generator using quadrilateral elements and bezier curve boundary definitions. Int. J. Numer. Meth.
Engng, 29:1551–1567, 1991.

[34] T. Tautges, T. Blacker, and S. Mitchell. The whisker-weaving algorithm: a connectivity based method
for constructing all-hexahedral finite element meshes.Int. J. Numer. Meth. Engng, 39:3327–3349,
1996.

[35] S.-H. Teng and C. W. Wong. Unstructured mesh generation: Theory, practice, and perspectives.
International Journal of Computational Geometry and Applications, 10(3):227–266, 2000.

[36] F. Weiler, R. Schindler, and R. schneiders. Automatic goemtry-adaptive generation of quadrilateral
and hexahedral element meshes for the fem.Numerical Grid Generation in Computational Field
Simulations, pages 689–697, 1996.

[37] Y. Zhang and C. Bajaj. Adaptive and quality quadrilateral/hexahedral meshing from volumetric data.
In 13th International Meshing Roundtable, pages 365–376, 2004.

[38] Y. Zhang, C. Bajaj, and B-S Sohn. Adaptive and quality 3d meshing from imaging data. InACM
Symposium on Solid Modeling and Applications, pages 286–291, 2003.

[39] Y. Zhang, C. Bajaj, and B-S Sohn. 3d finite element meshing from imaging data. The special
issue of Computer Methods in Applied Mechanics and Engineering (CMAME) on Unstructured Mesh
Generation, in press. http://www.ices.utexas.edu/∼jessica/meshing, 2004.

[40] J. Zhu, O. Zienkiewicz, E. Hinton, and J. Wu. A new approach to thedevelopment of automatic
quadrilateral mesh generation.Int. J. Numer. Meth. Engng, 32:849–866, 1991.

22


