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Abstract— Designing tendon-driven anthropomorphic robotic
hands is a tedious process, where designers are often faced
with the choice of how to configure tendons for the best motion
within an actuator budget. Furthermore, the design process
can be significantly longer for soft, dexterous hands, which
often cannot be tested in simulations. To design robots that
model human motion, which may be more trusted by humans,
we first present a method of converting motion capture data
into approximated tendon actuation. This information is then
used to determine the best set of tendons and joint moment
arms for the given motion capture, providing researchers with
pivotal design information without physical testing. We evaluate
our algorithm and find that the average marker position error
converges to 2.8 mm as the number of tendons increases,
outperforming a baseline greedy algorithm by 2×.

I. INTRODUCTION
To achieve a human-trusted design, we want a robot that

can replicate human motion, which is seen as trustworthy and
intuitive. This is difficult to do with tendon-based robotic
hands since tendons are limited by bulky, expensive motors.
In comparison to a human hand, whose 27 joints and
over 30 muscles give them an immense range of motion,
robotic hands are severely constrained [1]. Thus, this work
outlines a method for designing tendon-based hands that can
nevertheless closely approximate human hand motion.

Specifically, due to the limited number of tendons allowed
in robotic hands, researchers have to spend countless hours
optimizing their hand designs to maximize performance [2].
To automate this time-exhausting process, this work outlines
an algorithm that uses evolutionary learning methods to
select the best combination of tendons for performing a
desired set of motions. This contribution provides a key step
in enabling the rapid generation and use of robotic hands by
eliminating significant overheads in tendon optimization.

II. RELATED WORK
Tendons have been largely ignored in robotic design

optimization. However, studies show that optimized tendon-
based robotic hands can surpass human capabilities [3].

One optimization method is computational hand design,
which uses simulations to identify the best hand under
constraints, while other methods use heuristics optimized
through extensive physical testing [4], [2], [5], [6].

Soft dexterous hands have recently shown promise in the
field [2]. Such hands have the ability to deform with infinite
degrees of freedom, giving them greater potential in complex
tasks. However, the lack of structure makes designing and
testing soft hands difficult [7]. For example, the placement
of actuators in soft hands can be tedious to optimize.
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III. METHODS

A. Motion Capture

12 motion capture demonstrations were collected from one
human subject using a Vicon Motion Capture System. We
incorporated 59 markers on their hand, and these markers
were grouped into 23 segments.

B. Robotic Hand Model

We assume a soft robotic hand model similar to that shown
in Bauer et al. [2]. We assume a standard hand kinematic
model with 18 joints (3 thumb, 3 index, 3 middle, 4 ring, 4
pinky, 1 wrist), actuated by abduction/adduction and flexion
tendons wired through tendon channels. As a soft model, it
returns to a rest pose when no tendons are actuated.

Note that due to this model, when two tendons actuate one
joint in the same direction, the greater actuation will have the
sole effect. Contrarily, for two tendons tugging in opposite
directions, the joint is actuated by their absolute difference.

C. Tendon Optimization Process

Let the number of motion capture frames be n. Let there
be j joints and c tendons to choose t tendons from.

We begin with x, the position of each joint. Ideally, t
tendons should be chosen and actuated in such a way that
the resulting marker position x̃ is as close to x as possible.

To accomplish this, an IK solver is used on x to determine
θ, a n× j matrix containing the joint angles for each frame.

Next, we create the tendon-joint matrix Sall with shape
j × c to encode information about which joints each tendon
actuates as well as their relative moment arms. The ikth entry
in Sall is defined as the relative moment arm of the ith joint
with respect to the joints actuated by the kth tendon.

Sall can be estimated from joint angles in the motion
capture by normalizing each angle along their corresponding
joints then calculating the average angle of each joint over
the motion capture frames.

After choosing t tendons, we only need information about
the chosen tendons. Hence, we only need the columns of
Sall that correspond to those tendons. Let this matrix be S.

With S, we calculate tendon actuation α by minimizing
the MSE of the kth tendon at frame l against θlk.

We can now calculate x̃ (where x̃ ≈ x) by using S and α.
First, we run algorithm 1 to calculate θ̃ (where θ̃ ≈ θ). The
algorithm operates by examining each joint and determining
which tendons rotate that joint the most in the positive and
negative directions. These two rotations are summed to get θ̃.
Lastly, x̃ is calculated by using FK on θ̃. The error between
x̃ and x can then be retrieved using MSE.



Algorithm 1: calculate θ̃

Input: S, α
1 for frame i in {0,...,n-1} do
2 for joint i in {0,...,j-1} do

// matrix β has shape j × n× t
3 β[frame i, joint i, :]← S[joint i, :]·α[frame i, :]

4 β+ ← clip(β,min = 0) // lower bound by 0
5 β− ← clip(β,max = 0) // upper bound by 0
6 θ̃ ← max(β+, dim = 2) + max(β−, dim = 2)

7 return θ̃
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Fig. 1: The average marker position error across motion
capture frames. the CMA-ES algorithm converges to 2.8 mm
while the baseline converges to 5.6 mm.

We can now select “optimal” t tendons by relying on an
optimization algorithm. We utilized CMA-ES, a gradient-
free evolutionary algorithm that performs extremely well in
optimizing rough, continuous domains [8]. CMA-ES was
used to determine the best set of input tendons.

Lastly, S was optimized using CMA-ES. This optimization
was performed once the tendons were chosen. While this
final step is irrelevant if S is already constant, this step is
useful for determining the hypothetical “optimal” moment
arms, which can be important in design optimization.

IV. EVALUATIONS

Our algorithm was evaluated from 1 to 24 tendons using
the Bridges-2 Supercomputer at the Pittsburgh Supercom-
puting Center [9]. The evaluation was performed using 12
motion capture movements including grasping small objects.

A greedy algorithm was also evaluated as a baseline.
This algorithm looped through all possible tendons and
iteratively added the tendon that best decreased the error.
S was optimized using CMA-ES at each iteration.

The MSE error was calculated at each frame. Figure 1
highlights the average marker position error for each of the
generated hand models. The figure indicates that using CMA-
ES for selecting tendons almost consistently outperforms the

Fig. 2: Tendons selected by the CMA-ES-based algorithm for
the 16-tendon hand model (split into 4 hands for visibility).
Tendons with sphere ends are flexion tendons and tendons
with cross ends are abduction/adduction tendons.
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Fig. 3: Select frames from the 16-tendon hand model.

baseline, especially as the number of tendons increases.
Figure 2 depicts the actual tendons selected by our algo-

rithm for the 16-tendon hand model. The algorithm chose 5
abduction/adduction tendons and 11 flexion tendons. Not all
joints were connected to a tendon: the ring and pinky DIP
joints were left unconnected, indicating that a finer control
of lower joints was more important than permitting a wider
range of movement for the given motion capture data.

Figure 3 depicts select frames of the 16-model hand
approximating the given motion capture. Image 3c illustrates
the frame with median error across frames (4.69 mm), and
although some error is apparent, the motion still closely
resembles the true motion capture. Image 3a shows the worst
frame with an average error of 15.03 mm, and image 3b,
shows the best frame with an average error of 2.47 mm.

V. CONCLUSION

We presented a method of translating motion capture data
into moment arms and tendon actuation. We also highlighted
a CMA-ES-based algorithm for selecting optimal tendons
and moment arms, which can save substantial overhead in
tendon-based robotic hand design optimization. We find that
our algorithm translated motion capture into hand movement
with relatively low error compared to the baseline.
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