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Abstract

We contend that the power of reinforcement learning comes
from its fundamental declarative nature, allowing a system
designer to consider what an agent’s objective is instead of
the details of how this objective can ultimately be achieved.
This abstract provides some early design ideas for creating
an end-user-oriented reinforcement-learning system based on
the trigger-action programming model. We propose a study
designed to highlight the similarities and differences of this
end-user-based reinforcement-learning language to more es-
tablished end-user trigger-action programming.

Introduction

Historically, much of research within the reinforcement-
learning community has been directed at applying and de-
signing algorithms to create intelligent agents that solve spe-
cific problems [Sutton and Barto 1998]. In recent years, this
approach to reinforcement learning (RL) has produced ex-
emplary results, with engineers being able to create agents
that rival or even surpass the best human-level performances
on some problems [Mnih et al. 2015, Silver et al. 2016]. In
contrast, little effort has been put into studying how non-
experts can interact with these systems.

An RL “programmer” needs to identify three things to the
algorithm: (1) the actions an agent can take in the environ-
ment, (2) the state variables of the environment the agent
should be concerned with, and (3) the reward function, or
more simply, a goal that the agent should complete. That
is, while RL researchers typically take actions, states, and
goals as given and focus on how to design agents that can
take actions to achieve goal states, RL users are the ones re-
sponsible for defining these parameters in the first place. Bad
choices can lead to intractable learning problems because
of either under-specification (critical aspects of the problem
are not accessible by the learner) or over-specification (too
many details are given to the learner, making learning and
generalization difficult).

For some tasks and for some users, finding the right ac-
tions, states, and goals may be considerably easier than ex-
plicitly articulating the choices the agent should make. For
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others, perhaps not. Our research objective is understanding
where that line might be.

Our baseline for comparisons is trigger-action program-
ming [Ur et al. 2014, Huang and Cakmak 2015, Zhang et al.
2020], a methodology in broad use that allows end users to
specify behaviors for data analysis, smart home devices, and
other applications. A trigger-action program (TAP) consists
of a set of rules, each of which has a trigger (something that
has become true of the world) and action (an intervention
that should be taken in response). Triggers can be primi-
tive events or a primitive event combined with one or more
conditions. An example TAP rule in the home-automation
domain is: “If T arrive home (trigger event) while the in-
door temperature is above 75 degrees (trigger condition)
then turn on the AC (action).” Existing research shows that
end users with no programming experience are able to con-
struct and interpret TAPs, providing some support for the
contention that this style of programming strikes a useful
balance between ease of use and expressive power.

In this work, we observe that the actions in TAP are anal-
ogous to the actions in RL, while the triggers are akin to
states. Thus, an RL task can be specified by a set of triggers
(which constitute the learner’s states), actions (which consti-
tute the learner’s actions), and a special trigger (which acts
as the learner’s goal).

Proposed Interface

Our interface is a modified version of the AutoTap project
created by Zhang et al. (2019) to support the construction
of TAPs. We have repurposed this framework to provide ac-
tions and triggers for a scenario in which a mobile robot
is tasked with moving boxes throughout a house. We cre-
ated two interfaces: TAP and RL. In both versions, users
are greeted with a page allowing them to create new rules
that guide agent behavior using the associated programming
style.

In the TAP version, the user creates rules that pair a trigger
and an action. (See Figure 1.)

In the RL version (see Figure 2), the user specifies a set
of parts, each of which belongs to one of three selected cat-
egories: ‘Consider doing:’, ‘Pay attention to:’, and ‘Get a
‘yes’ answer to:’. The part finishes the clause started by the
corresponding category. Parts take the form of conditions
that can be true or false given the current state of the envi-



B Your Current Rules

Add aNew Rule +

If & Therobotisinthe Entry then & Go through adoor tothe North

If & Therobot isinthe Kitchen then & Go through a door to the North

Figure 1: An example of a TAP ruleset in our system.

ronment or actions that can be performed by the agent. By
combining a category with a part, a user specifies an action
that the agent can take (‘Consider doing:’), a state variable
the agent should be concerned with (‘Pay attention to:’) or
the goal of the agent (‘Get a ‘yes’ answer to:’).

E Your Current Rules

Add aNew Rule +

= Get a'yes' answer to: & |s the robot in the Dining Room?

& Consider doing: & Go through a door to the North
= Pay attentionto: & |sthe robot in the Kitchen?

& Pay attentionto: & |s the robot in the Dining Room?

Figure 2: An example of an RL ruleset in our system.

Proposed Experiment Design

Our experiment will involve two groups of 20 participants
with no prior experience in programming. One group will
randomly be assigned to the TAP condition while the other
will be assigned to the RL condition. Both groups will re-
ceive instructions on how to access the website with our
program-creation framework.

| |
dining
room

master
bedroom

guest
bedroom

master

kitchen bathroom

guest
bathroom

Figure 3: Floorplan of the house for our experiments.

Users would then be given four programming tasks of in-
creasing difficulty and tasked with writing rules to control an

Table 1: Proposed tasks for our experiments.

| Instruction | TAP rules | RL parts |
Starting from the entry, go to 1 3
the kitchen.
Wherever you start, go to the 8 12
master bedroom.
Starting from the entry, bring 7 13

back the blue box from the
master bathroom.

Starting from the entry, clear 6 12
all of the red boxes out of the
hall.

agent to solve each task. The tasks involve a robot navigating
through a house and moving items around in it (Figure 3).

Triggers in the system include ‘Robot is in room X,
‘There is a red/blue block in room X’, and ‘Robot is hold-
ing a red/blue block’. Actions that the robot can take include
‘Go through a door to the North/South/East/West’, ‘Pick up
a red/blue block in your current room’, and ‘Put down held
block’.

Table 1 provides an example set of tasks and the number
of TAP rules or RL parts needed to solve them. Although the
number of required RL parts is consistently larger than the
TAP rule sets, the assembly of RL parts is performed by the
learner, which may make it easier to select them.

After users finish writing their programs, they submit
them to our database for analysis. Solutions that miss com-
ponents that are necessary to complete the task or put agents
into situations where they have no available actions will be
deemed incomplete. Solutions will be graded according to a
rubric determined in advance for each task.

We are interested in statistics such as: How often does
each programming style succeed on each task? Is there any
pattern to how the success rates change as the task difficulty
increases? Is a certain programming style better suited to
certain tasks? How often do participants include unneces-
sary components? How often do they miss required com-
ponents? Are there consistent errors that participants make
that might be reduced through careful interface design? Ul-
timately, we are interested in assessing if RL can be a viable
programming language for end users.
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