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Ensuring effective public understanding of algorithmic decisions that are powered by machine learning
techniques has become an urgent task with the increasing deployment of AI systems into our society. In this
work, we present a concrete step toward this goal by redesigning confusion matrices for binary classification to
support non-experts in understanding the performance of machine learning models. Through interviews (n=7)
and a survey (n=102), we mapped out two major sets of challenges lay people have in understanding standard
confusion matrices: the general terminologies and the matrix design. We further identified three sub-challenges
regarding the matrix design, namely, confusion about the direction of reading the data, layered relations and
quantities involved. We then conducted an online experiment with 483 participants to evaluate how effective a
series of alternative representations target each of those challenges in the context of an algorithm for making
recidivism predictions. We developed three levels of questions to evaluate users’ objective understanding. We
assessed the effectiveness of our alternatives for accuracy in answering those questions, completion time,
and subjective understanding. Our results suggest that (1) only by contextualizing terminologies can we
significantly improve users’ understanding and (2) flow charts, which help point out the direction of reading
the data, were most useful in improving objective understanding. Our findings set the stage for developing
more intuitive and generally understandable representations of the performance of machine learning models.
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1 INTRODUCTION
Imagine you are a journalist who needs to write a story covering issues of differential treatment of
two demographic groups by a recidivism prediction algorithm [4]. This task involves explaining
the performance of a machine learning classifier on two demographic groups to facilitate informed
public debate. Effectively communicating the machine performance to your readers, the vast
majority of whom have little or no knowledge of computer science or machine learning, is not easy,
as most representations of these results are designed for machine learning experts. Lay people
often lack the technical background required to understand relatively complex concepts and terms
(e.g., true positive, false negative) as well as the performance of the underlying machine learning
models.

The need for explaining and presenting the performance of algorithmic decision-making systems
powered by machine learning techniques to the non-expert public is a widely shared challenge
across many domains. With the increasing deployment of algorithmic decision-making systems in
many critical parts of our society, such as college admissions [42], loan decisions [55], and child
maltreatment prediction [12], many social and ethical concerns are being raised (e.g., [4, 15, 17, 43])
and urgently need public evaluation and debates. Effective public understanding of algorithmic
decisions – in particular, the performance of the underlying machine learning models – serves as
one way to support such public debates.

To date, the majority of past work on explaining and visualizing AI systems has primarily focused
on supporting expert decision-making ([13, 16, 30, 31, 46]). With the growing impacts of algorithmic
decision-making in our society, a growing body of work in HCI has called for more efforts to explore
how to better explain and present algorithmic decisions to multiple stakeholders, especially to lay
people without technical knowledge [58]. On the other hand, although researchers in Explainable
AI (XAI) have made progress in simplifying and explaining complicated machine learning models,
this line of work was critiqued for lacking a deep understanding of or evaluation with actual
users or stakeholders [39]. As a result, recent studies in HCI (e.g., [13, 56]) have started to adopt a
human-centered approach to both create and evaluate interactive user interfaces in this specific
domain.
Our work contributes to this emerging line of research. In this work, we explore how to cre-

ate non-expert-oriented representations of confusion matrices for binary classifications.
Confusion matrices are a widely used tool in machine learning to communicate the performance of
a classifier on a set of training or test data where ground truth is known [2]. They help explain the
fundamental performance metrics in binary classifications, including true positives, false positives,
true negatives, and false negatives, which are often used as the basis of other evaluation metrics.
More recently, with the surging interest in explaining and visualizing AI, confusion matrices

have also been used as one of the basic explanation components and core visual elements in
many existing XAI toolkits and tutorials, including the ones explaining fairness metrics that have
attracted increasing attention among ML and HCI researchers (e.g., [40, 48, 56]). For example,
in a widely circulated tutorial, Narayanan used binary confusion matrices to explain a series of
fairness metrics developed by the ML community [40]. Despite such wide applications, however,
there exists very limited understanding in terms of whether confusion matrices are a useful and
effective way to communicate ML performance to the non-expert public. Previous studies have also
shown that lay people in general face great challenges in probabilistic reasoning (e.g., [22]), which
might impact their ability in effectively interpreting confusion matrices. However, there lacks a
systematic investigation in terms of whether lay people are able to interpret information contained
in confusion matrices without additional help. In this paper, we set out to tackle this increasingly
critical yet under-explored problem.

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. CSCW2, Article 153. Publication date: October 2020.



Designing Alternative Representations of Confusion Matrices 153:3

Our research questions are: R1: What are the main challenges non-expert lay people have
in understanding the information contained in standard confusion matrices? R2: How effective
different alternative representations perform in addressing those challenges, in terms of objective
understanding, time costs and subjective understanding?
Our work explores how to create non-expert-oriented alternative representations of standard

confusion matrices for binary classification, as a step towards facilitating public understanding
of the performance of machine-learning-powered algorithmic decision-making systems. Towards
this end, we first conducted interviews (n=7) and a survey (n=102) to identify the major challenges
lay people have in understanding standard confusion matrices. Based on these initial studies, we
conducted an online experiment where 483 participants used different alternative information
representations of confusion matrices to understand the performance of an algorithm for making
recidivism predictions. We developed three levels of questions to assess participants’ understanding
of the performance of the algorithm, and assessed these representations for accuracy in answering
those questions, completion time, and understanding, which refers to self-reported perceived
understandability. Our contributions are three-fold:

• First, our work identified major challenges lay people have in understanding standard confu-
sion matrices, a widely used method in machine learning to present the performance of a
classifier on a set of test data where ground truth is known.

• Second, we designed a few alternative representations to tackle those challenges: Contextual-
ized confusion matrices that map all the terminologies (e.g., false positive and false negative)
back in specific problem domains, Tree diagrams, Bar charts, and Flow charts.

• Third, we evaluated our designs for their effectiveness. Our evaluations suggested several
design implications that might serve the foundation for further exploration in this space: (1)
contextualizing the terminologies can significantly improve users’ objective and subjective
understanding; (2) flow charts, which help point out the direction of reading the data, were
most useful in improving objective understanding.

2 RELATEDWORK
In this section, we outline relevant past work in two areas. First, we survey the related work in
explainable AI and visualizing AI, and describe how our work is positioned in this space. Next, we
present an overview of existing work on human perceptions of algorithmic decisions, a quickly
growing field that has received increasing attention in CSCWand describe how ourwork contributes
to this emerging line of research.

2.1 Explaining and Visualizing AI
While interpreting intelligent systems has a long history in AI and HCI, the recent widespread
deployment of machine learning enabled algorithmic systems in many critical and complex social
environments has lead to a renewed attention to interpretability. Generally labeled as “explainable
AI (XAI),” this growing body of work aims at providing a human-understandable explanation for
decisions made by “black box” machine learning models in order to support decision-making,
improve transparency, and increase trust (see review articles [1, 10, 57]).

A large body of past work has explored different explanation styles to probe the inner working of
such “black box” models. For example, Datta et al. [16] offered a solution to help users measure the
influence of a series of features in inputs on system outputs. Nugent et al. [41] selected similar cases
from the training data to offer explanation to the decision in question. Lakkaraju et al. [32] aimed
at generating short rule-based explanation. Despite making greater progress, this line of work was
critiqued for lacking a deep understanding of or evaluation with actual users or stakeholders [39].
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Meanwhile, although previous non-expert-oriented visualizations in (e.g., [28, 38]) used simple
diagrams to target specific probability problems such as Bayesian Reasoning, the recent surge of
XAI has led to more complex visual techniques, systems, and toolkits to facilitate expert users’
evaluation of model performance (e.g. see [3, 21]). For example, Google’s People + AI Research
group (PAIR) released the open-source “What-if” tool [52] to help people who are not formally
trained in machine learning visualize the effects of bias metrics. Prospector [30] enabled data
scientists to understand how a given feature influences algorithmic prediction and support for
manipulating feature values for response. Similarly, studies have also been conducted to create
alternative visualizations to confusion matrices, to help machine learning practitioners as well as
non-ML-experts adjust their models. For example, Square [46] introduced a novel visual system to
help machine learning practitioners evaluate the performance of a multi-class classifier. Classee
[7] offered a simplified barchart to help end-users with no expertise in machine learning choose
and tune parameters and understand classification errors. While these systems provided valuable
methods to explore machine learning data and model, they are designed primarily for expert users
with relatively advanced technical literacy – including both technical experts like machine learning
experts and data scientists as well as domain experts like doctors.
Recently, researchers in HCI seek to expand this line of research by taking a human-centered

design approach, with an emphasis on both improving usability of these explainable tools and
performing empirical tests for evaluation. For example, Cheng et al. [13] conducted non-expert-
oriented experiments to test the performance and trade-offs among interactive vs. static explanation
as well as white-box vs. black-block explanations. Their findings suggested that while both in-
teractive and white-box explanations can improve non-expert users’ comprehension, interactive
approach is more time consuming.

Our work contributes to this emerging line of research in HCI by focusing on confusion matrices,
a basic and widely used representation in the evaluation of algorithm performance. It helps set the
stage for understanding and developing laypeople-oriented representations of machine learning
model performance.

2.2 Human Perceptions towards Algorithmic Decisions
With the increasing penetration of algorithmic decision-making systems in our society, there is a
widely shared concern that ML-enabled algorithmic systems may produce socially and ethically
questionable decisions that are not aligned with human values (e.g. see [4, 6, 18, 19]).
In response to these concerns, an emerging line of work in the HCI community has started

to look at those decisions from a human-centered perspective. This body of research has used
interviews, surveys, and experiments to empirically probe people’s perceptions towards algorithmic
decisions. Examples include studies on how humans perceive algorithmic decisions versus human
decisions in managerial contexts [34], whether people perceive certain features (such as criminal
history or neighborhood safety) as fair to be used to predict criminal risk [25, 50], how explanation
styles might matter in shaping people’s justice perceptions [9], how members of traditionally
marginalized communities feel about algorithm (un)fairness [54], how affected communities feel
about algorithmic decisions in the context of a child welfare system [12], how the general public
perceives online behavioral advertising that used demographic factors (e.g., race) as targeting
variables [44], which statistical definitions of fairness people perceive to be the fairest in the context
of loan decisions [47], as well as how humans use AI systems to make decisions [23, 24]. This past
body of work mostly used storyboards or text to present several algorithmic scenarios to their
study participants, often without tackling the results and performance of the underlying machine
learning models. This is understandable, as lay people often lack the required technical knowledge
to fully understand and evaluate highly specialized algorithmic results.
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As a result, researchers in HCI are calling for more efforts to explore how to better explain
and present algorithmic decisions to multiple stakeholders, especially to non-experts with limited
technical literacy [58]. Recent studies (e.g., [13, 35, 50, 56]) have started to use visualizations or
create user interfaces to communicate algorithmic decisions to their study participants.

Our research contributes to this line of work by offering a new and complementary angle, looking
at making the performance of machine learning model more comprehensible. By creating alternative
representations of standard confusion matrices, we aim at developing more easily understandable
methods to represent the performance of machine learning models for the non-expert public. Our
work has the potential to be used to better solicit public perception of algorithmic decisions (e.g.,
help lay users evaluate fairness) for future research in this domain.

3 OVERVIEW OF THE STUDIES
We conducted a series of studies, both qualitative and quantitative, to explore how to better help non-
expert users interpret a very common output of machine learning classifiers: confusion matrices.
We chose binary confusion matrices as a starting point to improve model literacy for the non-expert
public for several reasons. First, they are commonly used representations of the performance of
machine learning models. Second, they work for all kinds of classifiers regardless of the underlying
algorithm and so have general applicability. Third, they help convey some important aspects of how
well a machine learning model is (or is not) working. And fourth, they help explain the fundamental
performance metrics in binary classifications (i.e., true positives, false positives, true negatives, and
false negatives), which can be further used as the basis of other evaluation metrics.
Our team for this project was composed of researchers with diverse backgrounds, including

machine learning, software engineering, visualization, and social science. We began with a session
for rapid ideation to identify our task domain.

3.1 Choice of Task Domain and Dataset
3.1.1 Task Domain. Recidivism prediction is an important public issue where algorithms have been
increasingly deployed to help judges assess the risk of re-offending among defendants. This topic
has also generated one of the most controversial cases so far in the debates around fairness and
public algorithmic decision-making [4]. Instead of looking at issues around fairness, in this work,
we used it as our task domain to test and facilitate public understanding of algorithmic outputs
and performance. Here, we chose to focus on a specific domain, instead of abstract algorithmic
results, because past studies in psychology (e.g., Wason’s selection task [51]) suggest people tend
to perform better with their reasoning powers on realistic cases than with abstract formulations.

3.1.2 Dataset. We used the dataset gathered by ProPublica in its 2016 report, which examined the
performance of COMPAS – a widely used recidivism algorithm in the US. This dataset contains
two years worth of COMPAS scores from Broward County, Florida in 2013 and 2014 [33]. COMPAS
assigns risk scores to criminals to determine their likelihood of re-offending, with 1-4 constituting
“low” risk, 5-7 “medium” risk, and 8-10 “high” risk. Following the study by ProPublica [33], which
used 4 as the threshold, we similarly present this as a binary classification task with score at and
below 4 as negative prediction (“Labeled as low risk”), and above 4 as positive prediction (“Labeled
as high risk”). Ground-truth labels – “Re-offended” and “Didn’t re-offend” – correspond to whether
a defendant released on bail was arrested for another crime within 2 years of their release.

3.2 Study 1
To understand what challenges non-expert lay people have in understanding standard confusion
matrices, we conducted a qualitative study comprised of interviews (n=7) and an Amazon MTurk
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survey (n=102). In both studies, we asked our study participants to answer a series of factual
questions about information contained in confusion matrices as well as what were the challenges
they have in reading the table and answering those questions. We identified two sets of main
challenges in Study 1.

3.3 Study 2
Building on the challenges identified in Study 1, in Study 2 we developed and evaluated alternative
representations of confusion matrices. We conducted a between-subjects online experiment (n=483)
on Amazon Mturk to assess the relative effectiveness of our alternatives in addressing those
challenges,in terms of comprehension, time costs and subjective preference.

3.4 Evaluation Framework of Objective Understanding
Over the years, the machine learning community has developed different error metrics to assess
the performance of classification algorithms (e.g., see [27]). However, these metrics are designed
primarily for expert users.

In this work, we developed three levels of questions – comprehension, comparison and simulation
– to assess and facilitate non-experts’ understanding of the statistical results and performance of
machine learning classifiers. Our evaluation questions were developed and adapted from previous
frameworks in learning science [20], which identified three levels of graph understanding of
statistical results for lay people: Level 1 focuses on extracting or locating information; Level 2
focuses on finding relationships; and Level 3 focuses on analyzing implicit relations contained in
the graph. In total, we created 11 questions, including 4 comprehension questions, 4 comparison
questions and 3 simulation questions.

Note that the framework developed in this study offers a general guideline and all the questions
can be adapted to different domains and problem statements in future research (see Table 1).

3.4.1 Question Level 1: Comprehension. In this level, we created questions to measure how accu-
rately users can identify and locate certain information in the information representation.

Questions we created and used in this level include:

• “In Group A, how many defendants were labeled high risk and re-offended?”
• “In Group A, how many defendants were labeled high risk but did not re-offend?”
• “In Group B, how many defendants were labeled low risk but re-offended?”
• “In Group B, how many defendants were labeled low risk and did not re-offend?”

3.4.2 Question Level 2: Comparison. In this level, we measured how accurately users can compare
information and performance of the machine learning classifier on two demographic groups, as
well as how well they can perform simple analysis. Questions in this level also served as a bridge
to lead users to the next level.

Questions we created and used in this level include:

• “Between Group A and B, which one has more defendants who were labeled as high risk and
re-offended?”

• “Between Group A and B, which one has more defendants who were labeled as low risk but
re-offended?”

• “In Group A, among people who did not re-offend, what percentage were labeled as high
risk?”

• “In Group A, among people who were labeled as high risk, what percentage did not re-offend?”
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Level Purpose Question type (X may equal to Y) Examples

1 Comprehension In Group A, how many people
were classified as X but/and be-
longed to Y?

In Group A, how many defen-
dants were labeled high risk but
did not re-offend?

2 Comparison Between Group A and B, which
one has more people who were
classified as X but/and belonged
to Y?

Between Group A and B, which
one has more defendants who
were labeled as high risk but did
not re-offend?

In Group A/B, among people who
belonged to X, what percentage
were classified as Y?

In Group A, among people who
did not re-offend, what percent-
age were labeled as high risk?

In Group A/B, among people who
were classified as Y, what percent-
age belonged to X?

In Group A, among people who
were labeled as high risk, what
percentage didn’t re-offend?

3 Simulation For a new defendant in Group
A/B, who we already know be-
longs to X, how likely will he be
labeled as Y?

For a new defendant in Group
A, who we already know won’t
re-offend, how likely will he be
labeled as high risk?

For a new defendant, who we
already know belongs to X, in
which group he/she is more likely
to be classified as Y?

For a new defendant, who we
already know won’t re-offend,
in which group he/she is more
likely to be labeled as high risk?

Table 1. Our evaluation framework used three levels of questions to assess non-experts’ objective under-
standing of the statistical outputs of binary classification. Note that the framework offers a general guideline
and all the questions can be adapted for different domains and problem statements in future research.

3.4.3 Question Level 3: Simulation. In this level, we wanted to measure how well users can perform
simulations based on the presented information, e.g., can identify implicit information contained in
the information representation.

Questions we used in this level include:
• “For a new defendant in Group A, who we already know will not re-offend, how likely will
he/she be labeled as high risk?”

• “For a new defendant in Group B, who we already know will not re-offend, how likely will
he/she be labeled as high risk?”

• “For a new defendant, who we already know will not re-offend, in which group he/she is
more likely to be labeled as high risk?”

To ensure that our participants could interpret and understand the questions above, we tested
all questions using cognitive interviews [45, 53]. We asked our participants to think aloud as they
answered the questions, and we identified and addressed any concerns and questions that emerged
from the process. We conducted cognitive interviews with four volunteer participants who had not
seen or heard of confusion matrices before. Two main changes were made to modify the questions

Proc. ACM Hum.-Comput. Interact., Vol. 4, No. CSCW2, Article 153. Publication date: October 2020.



153:8 Hong Shen et al.

based on their feedback: (1) we adjusted the wording of the level 1 and 2 questions by adding
conjunctions like “and” and “but”; and (2) we also adjusted the order of the clauses (e.g., “who
we already know won’t re-offend”) for level 3 questions to better facilitate understanding. We
iteratively refined our questions based on participants’ feedback until no new concerns or questions
were identified.

4 STUDY 1: AN EXPLORATORY INVESTIGATION OF THE CHALLENGES LAY
PEOPLE HAVING IN UNDERSTANDING STANDARD CONFUSION MATRICES

In Study 1, we began by interviewing non-expert lay people to understand what challenges they
might have in reading standard confusion matrices with original terminologies, which was followed
by a survey. In both interviews and the survey, we used the three levels of questions developed for
measuring objective understanding (see section 3.4) to test their comprehension and then asked
open-ended questions to probe in greater detail about the challenges.

4.1 Method
4.1.1 Interview (n=7). We first conducted semi-structured interviews with seven participants (three
males and four females) to learn about the challenges they are having. We recruited our participants
in a university located around a northeast US metropolitan area from non-technical majors. None
of them had seen or heard of a confusion matrix before. During our interviews, we showed them
a standard confusion matrix of the ProPublica data, along with factual questions regarding the
information contained in the confusion matrix. We asked them to think aloud as they worked
through the process. We then probed in detail what made them struggle in answering the questions.
Each interview lasted for 20-30 minutes and participants received $10 for time compensation. All
interviews were audio-recorded and transcribed.

4.1.2 Survey (n=102). In addition to qualitative interviews, we also conducted a quantitative survey
(n=102) on Amazon Mechanical Turk in August, 2019. The survey consisted of two sets of questions.
The first part included fill-in-the-blank and single choice questions. We asked factual questions
about information contained in confusion matrices, using the three levels of questions developed
for measuring objective understanding (see section 3.4). The second part included two open-ended
questions and probed in greater detail about users’ challenges in understanding. The average time
for completing the survey was 7 minutes and each participant received $1.

4.1.3 Data analysis. We applied thematic analysis [11] to all interview data as well as all the
open-ended questions in our survey. Two researchers read through the data set individually
and held weekly discussions. The aim of the coding is to find out comprehension challenges
that the study participants had. With this idea in mind, the two researchers coded the data set
independently, looking for asmany basic codes as possible. After this step, theymet again, discussing
and refining their initial codes and sorted the different codes into themes. Through iterative
discussion and deductive and inductive thinking, they further reviewed, defined and named themes
until a satisfactory thematic map has been reached.

4.2 Results
Below we discuss our findings from our interviews and survey. Interviewees are identified with a
“P” and survey participants are identified with a “S”. Survey responses are also accompanied with
percentages.
In general, users were frustrated with the information presented using standard confusion

matrices in original terminologies. In some cases, this led to negative feelings toward the decision-
making system as well as the people working behind it. For example, S35 commented: “I think
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Fig. 1. The standard confusion matrix shown to participants in Study 1.

that the individual who chose to present the data this way should be fired. If someone working for me
presented this in a meeting, I would let them go.”
They also felt incompetent and “dumb.” S36 commented: “Can you dumb it down for us regular

folks? Otherwise, those of us who are not so bright will not be able to pair the information appropriately.”

4.2.1 Challenge 1: Confusion about terminology. The first set of challenges that emerged from our
data is that users in general have difficulty interpreting the terminology used in confusion matrices
(true positive, true negative, false positive, and false negative). They did not know what positive
and negative meant and had a hard time mapping it to the original problem. This was a widely
shared concern in both our interviews (7/7) and survey (98%).
P3 explained : “What does positive mean? If this is from my doctor’s office, I know there might be

something wrong with my test. But in this (recidivism predication) case, does this mean ‘high risk’ or
‘re-offended’?”

S2 felt the repeated use of positive and negative in the matrix increased the difficulty of the task,
i.e., that the term “positive” and “negative” can refer to both predicted and actual classes: “Positive
and negative make it too sciency. Also, what does true mean? Does it mean positive positive?”
S14 suggested replacing the terminologies and labeling the matrix appropriately according to

the context: “Label the tables better with terms match what is asked in the questions. I had to guess to
start which axis X and Y was represented in the question about the tables.”

4.2.2 Challenge 2: Confusion about the underlying relationships between the four types of predictions.
Apart from terminology issues, users also reported that they need help in clarifying the underlying
structure of the confusion matrix. In general, they felt that the matrix design does not convey the
underlying relationships between the four types of predictions. Three sub-challenges were further
identified under challenge 2.

Sub-challenge 2.1: Confusion about the direction of reading the data. Userswere confused about
how the data flows from one category into other categories, i.e., direction of reading the data in
confusion matrices, in particular, about “False Positive” and “False Negative”. They made mistakes
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in answering questions like “In Group A, how many people were classified as X but belonged to Y?”
Four of seven interview participants and 54% of survey participants reported this challenge.

For example, P1 said: “You are asking me how many re-offending defendants were labeled as high
risk, there is a ‘directional relationship’ here – like, re-offending defendants were thrown into another
group. But from this table, it is really hard to tell. There is no clear clue in terms of which direction the
data go.”
S55 asked, “Can you better explain how the different groups went into the other groups? Like ‘in

Group A, how many defendants were labeled high risk but did not re-offend?’ I think understand that
‘positive’ means ’labeled high risk,’ but I’m confused after that.”

P2 suggested to add direction metaphor to the representation: “Maybe you can identify which one
(class) is the ‘starting point’ and which one (class) is the ‘end point’? So it can be read as a map – I will
have a better idea of how the data travels ...”

Sub-challenge 2.2: Confusion about layered relations. Some users are confused about the layered
relations embedded in confusion matrices. In particular, when answering questions like “In Group
A, how many people were classified as X and belonged to X,” they tend to mistake “Positive” with
“True Positive” (or “Negative” with “True Negative”). Four out of seven interview participants and
45% of our survey participants reported this challenge.

When asked why this is difficult to answer, P4 explained: “There are too many layers in the table!
You see, the table has a top and bottom row and when you ask ‘how many people were labeled as high
risk and re-offended?’ I just added everything up here.”
S13 suggested: “Can you break down the graph into subsections so it can only have one set of

headings – right now there are too many things messed up here.”
S27 said:“While I understand the terminologies, I found the true vs. false in addition to positive and

negative to be difficult to understand.”
S29 reported: “I just needed better organization. This setup with triple layers on each side wasn’t

easy to read.”
Sub-challenge 2.3: Confusion about quantities involved. Finally, a small group of users (one out

of seven of interviewees and 9.8% of survey participants) reported that they need support for
comparing the quantities involved in the confusion matrix, especially when they needed to compare
the performance of two classifiers. Even if they could locate the information correctly, it was hard
for them to compare.

P7 said: “I think everything is OK until you asked me to compare in which group a new defendant
who won’t re-offend is more likely to be labeled as high risk. You see, this involved two steps – I need to
figure out, first, how likely a new defendant who won’t re-offend is going to be labeled as high risk in
Group A and Group B, and second, do comparison. It would be much easier if you can make everything
proportionally so I don’t have do the rough calculation – I can just tell directly from the graph.”
S6 suggested: “It was difficult to tell percentages at a glance. If the different percentages could be

represented with visual size differences, it might be easier to compare groups at a glance.”

4.3 Summary
We identified two major sets of challenges non-expert lay people have in understanding standard
confusion matrices. First, we found that the majority of our participants had difficulties under-
standing the terminology and thus had a hard time mapping them back to the scenario. Second,
they also reported structural issues, i.e., that the matrix design does not convey the underlying
relationships between the four types of predictions. We then further identified three sub-challenges
under this structural issue: (1) some of our participants reported problems in understanding how
the data flows into other categories, i.e., the direction of reading the data; (2) others were confused
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about the multiple layers contained in the table and suggested us to unpack these layers; and (3) a
few of them suggested to represent the data proportionally to facilitate easy comparisons.

5 STUDY 2: AN EXPERIMENT OF USERS’ PERFORMANCE OF ALTERNATIVE
REPRESENTATIONS

Building on the findings of our first study, we conducted a design workshop to develop alternative
representations of confusion matrices that could address the challenges raised by our participants.
We then conducted a crowd-sourced experiment onMturk to test the effectiveness of our alternatives
in helping them understand the performance of a machine learning algorithm for making recidivism
predictions.

5.1 Design Workshop
We invited one machine learning expert, one software engineer, one former journalist, two visualiza-
tion experts, two UX designers (current graduate students at our university), and one psychologist to
join the workshop. We introduced the goal of facilitating public understanding of the performance
of machine learning classifiers using alternative representations of confusion matrices. We shared
the challenges we identified from Study 1 and asked our participants to come up with multiple
alternatives that could address those challenges. To avoid potential interaction effects among
different designs, in the workshop we asked participants to think about making each representation
targeting one specific challenge.
During our initial ideation and prototyping phase, we drew on previous studies that used

simple non-expert-oriented diagrams to target probability problems like Bayesian reasoning (e.g.,
[28, 38]) and developed 20 initial alternatives. Participants were also encouraged to develop visual
representations to tackle those challenges, minimizing the use of text descriptions.
We performed three steps to narrow down these initial prototypes. First, we discussed and

assessed the initial alternatives for their feasibility in targeting the specific structural challenges
identified in Study 1, usability for our targeted audience, and generalizability. Second, we clustered
similar ideas, identified common themes, and combined different options. Third, over the course of
our design process, we also iteratively conducted informal user testing with 12 participants. In these
tests, we showed our mock-ups and assessed them for understandability (e.g., we asked questions
like “Tell us what this table shows?”), how well they helped the participants in answering a set of
questions (e.g., “How many people were correctly labeled as ‘high risk?”’), as well as subjective
preference.
At the end of the process, we settled on two sets of solutions. The first set addresses the termi-

nology issue by replacing general terminology with a (a) contextualized confusion matrix that
uses terminology that maps back to the specific case in question, e.g., “Reoffended” and “Labeled
high risk” instead of “Positive”. We opted for this design since confusion over terminology was a
common challenge identified in Study 1.
In addition to changing terminology, we also developed a second set of representations, each

of which addresses a specific sub-challenge identified in Study 1. These representations include
a (b) a tree diagram to unpack layered relations, a (c) a flow chart to point out the direction of
reading the data, and a (d) a bar chart to clarify the quantities involved.
We made two additional choices in terms of visual encoding. First, in the design of the tree

diagram and flow chat, we explored how the matrix can be read from prediction to true label. We
followed the best practice in data visualization design to use lines (and arrows) to connect disparate
regions to help readers follow the visualization, based on the Gestalt principle of connectedness
[36]. Second, when choosing the color used in the design, we followed best practices in information
visualization to use different color hues to represent different categorizations [26]. In particular, we
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Fig. 2. The design workshop led to the creation of the following alternative representations to address each
challenge identified in Study 1, including (a) a contextualized confusion matrix with all terminologies mapping
back to the case in question but without structural change; (b) a tree diagram that unpacks layered relations;
(c) a flow chart that points out the direction of the data flow; and (d) a bar chart that clarifies the quantities
involved.

used blue, a more neutral color to represent “low risk,” and orange, a more risky color to represent
“high risk”. These mappings of risk to semantically resonant colors may aid understanding through
semantic facilitation and require less conscious thought [5] as well as improve memory during the
tasks [8]. In addition, blue and orange are common colors for qualitative/categorical palettes, because
they are colorblind friendly [49]. We used these colors with decreased saturation for incorrect
predictions (i.e., False Negative and False Positive), based on feedback from the aforementioned
iterative informal users tests. Where possible, we kept size, color, and fonts consistent across all
four alternatives (see Figure 2).

5.2 Experiment
We conducted a between-subjects experiment to assess users’ performance across our four alter-
native representations (see Figure 2). We used two baselines for our experiment: (1) the standard
confusion matrix with the original terminologies as Baseline 1; and (2) the contextualized confusion
matrix without structural change as Baseline 2. This results in total 5 conditions for our experiment.

5.2.1 Participants (n=483). The experiment was active on Amazon MTurk in August 2019 (see
experiment interface in Figure 1). In total, 574 participants completed the experiment. We removed
91 respondents who did not finish the trial, were not attending to the experiment (i.e., failed the
attention check question or provided gibberish answers), or have seen or heard about confusion
matrices before. Our final dataset contains 483 completed responses. Our sample was diverse in
terms of demographics. It included 182 female, 296 male, and 3 prefer not to say, ranged in age
from 18 to 75+ (6% from 18-24, 45% from 25-34, 25% from 35-44, 14% from 45-54, 7% from 55-64, 1%
from 64-74, and 0.2% above 75).

To ensure the quality of survey responses, we only recruited participants with a HIT Approval
Rate greater or equal to 95% and Number of HITs Approved greater than or equal to 50, who
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reside in the US, and are aged 18 or above. We randomly assigned each participant to one of the 5
conditions. Each participant completed a single trial.
The average time for completing the trial was 7.05 (std=5.6) minutes. We assigned a bonus

payment to participants based on the number of correct answers they gave for understanding
questions. Each participant received a base payment of $2 and an additional bonus (up to $2) based
on the number of correct answers they gave for the understanding questions.

5.2.2 Study Procedure. In our experiment, participants first filled out a consent form that ex-
plained the purpose, procedure, and compensation of our study. They were then introduced to
the recidivism prediction algorithm. We told our participants that a computer system had been
developed to assess the possibility of re-offending of two groups of defendants. Each participant
was then randomly assigned to one of the five conditions. Participants explored the information
representation presented to them and answered all of the aforementioned 11 questions we created
for understanding measurement (see details of the evaluation questions in 3.4). They were allowed
to go back to questions during their interpretation of the representations. They were then presented
with questions measuring their subjective understanding. A final page captured demographic
information. We also included an instructed-response question for an attention check [37].

5.2.3 Evaluation Metrics. We recorded three metrics: objective understanding, time cost, and
subjective understanding.We used the evaluation questions we developed in section 3.4 for assessing
understanding, looking at number of questions correctly answered. Time cost was measured as the
number of seconds fromwhen the question was displayed until the participant hit the submit button
on the interface. Subjective understanding, which refers to self-reported perceived understandability
of the confusion matrix design, was measured by asking the participants to subjectively rate their
agreement with the following statement on a scale from one (strongly disagree) to seven (strongly
agree): “I found this information representation easy to understand.”

5.2.4 Data analysis. We used linear regression models for data analysis, examining whether the
different alternative representations led to different levels of objective understanding, time costs,
as well as subjective understanding (See Table 2). We performed two sets of analyses: (1) Analysis 1
compared the contextualized confusion matrix against the standard confusion matrix; (2) Analysis 2
compared bar, tree and flow charts against the contextualized confusion matrix to explore whether
the structural change of the representations led to different level of understanding, while other
variables remaining the same.

5.3 Results
5.3.1 Analysis 1: Contextualized confusion matrices versus standard confusion matrices. In Analysis
1, we compared contextualized confusion matrices against standard confusion matrices to test
whether replacing general terminologies with contextualized ones will significantly improve users’
performance, given terminology challenge is a widely shared issue among our participants in Study
1 (see Figure 3).

In general, our results suggested that compared to the standard confusion matrix, participants in
contextualized condition performed significantly better in terms of both objective understanding
and subjective understanding.

Objective Understanding. Overall, our results suggested that people’s level of understanding
decreased as the question level increased. In Table 2, when compared to the standard confusion
matrix, the contextualized condition led to significant increases in participants’ understanding
of the algorithmic performance. In total, they answered 1.54 more questions (out of 11) correctly,
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Fig. 3. In analysis 1, we compared the contextualized confusionmatrix with the standard confusionmatrix. Our
results suggested that compared to the standard confusion matrix, participants in contextualized condition
performed significantly better in terms of accuracy in answering understanding questions and in subjective
understanding.

compared to participants using the standard confusion matrix with original terminologies (Coef. =
1.54, 𝑝 < 0.001). Figure 4 shows the accuracy rate across standard and contextualized conditions.

Completion Time. The “time” column in Table 2 shows the time participants spent on the un-
derstanding task using different alternative representations. Our results suggest that compared to
the standard confusion matrix, there was no statistical significance in terms of the time our study
participants spent on the understanding task in contextualized condition. We also broke down the
time to complete at each task-level and calculated the mean. The differences between the means
were not significant.

Subjective Understanding. The “subjective understanding” column in Table 2 shows the level
of self-reported perceived understanding our study participants reported with the alternative
representations, in the form of “I found this information representation easy to understand” and on
a 7-point scale, where 7 means "strongly agree". Compared against the standard confusion matrix,
participants in contextualized conditions reported significant improvement in this measurement
(Coef. = 2.20, 𝑝 < 0.001).

5.3.2 Analysis 2: Comparing three alternatives against confusion matrices, all using contextualized
terminologies. (see Figure 2).

In the second set of analysis, we compared tree, flow, and bar charts against the confusion matrix,
all using contextualized terminologies. Our results showed that there was no significant difference
for bar charts and tree diagrams in terms of overall objective understanding, time, and subjective
understanding. Bar charts outperformed the matrix condition only in answering level 3 questions.
In contrast, participants performed significantly better using the flow chart in understanding the
algorithmic performance compared to using confusion matrix. Flow chart in particular helped
participants answer level 2 and level 3 questions correctly. However, it didn’t improve users’
subjective understanding.

Objective Understanding. When we compared tree, flow, and bar against the matrix condition, all
using contextualized terminologies, participants in the flow condition performed significantly better
in overall objective understanding tests (Coef. = 0.73, 𝑝 < 0.05), as we saw in Table 2. Bar charts
performed significantly better than the matrix condition only in answering level 3 questions (Coef.
= 0.28, 𝑝 < 0.05). There was no significant difference in understanding task when we comparing
tree against the contextualized confusion matrix. Figure 4 shows the accuracy level among all four
experimental conditions in our second set of analysis.
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Fig. 4. The accuracy rate in our two sets of analyses across different conditions (error bars show the 95%
confidence interval). The left one shows the comparison between the standard confusion matrix versus the
contextualized one. The right one shows the comparison of bar, tree and flow against the contextualized
condition, all using contextualized terminologies. The three levels of questions refer to Level 1: Comprehension,
Level 2: Comparison, and Level 3: Simulation, see Evaluation Framework in section 3.4.

We further preformedWelch’s t-test to compare Bar vs. Tree vs. Flow. We only found a significant
effect (𝑝 < 0.05, Cohen’s d = 0.30) with flow condition outperforming tree. There was no statistical
significance between Bar vs. Tree or Flow vs. Bar.

Completion Time. Our results also suggested that there was no significant difference in time costs
when we compared all the three representations (tree, flow and bar) against the confusion matrix,
when they all used contextualized terminologies. Similarly, there was no significant difference when
we compared the means of the time participants spent on each level with these representations.

Subjective Understanding. Similarly, there was no significant difference in subjective under-
standing when we compared all the three representations against the contextualized confusion
matrix.

5.4 Interpretation of the Results
Study 2 investigated the relative effectiveness of four alternative representations in addressing the
challenges identified in Study 1, with an aim to better facilitate non-experts in understanding the
information contained in standard confusion matrices.

There are three major findings from our data. First, the contextualized confusion matrix (with no
structural change) led to significant improvement on users’ objective and subjective understanding
of the algorithm. This suggests that there are straightforward opportunities for creating more
comprehensive alternatives of confusion matrices. That is, by mapping the terminologies back
to the specific scenario, we can significantly improve users’ performance on both objective and
self-reported understanding.
Second, when comparing tree, bar, and flow conditions against the contextualized confusion

matrix, all using contextualized terminologies, only flow charts performed significantly better
than the matrix condition in terms of improving overall objective understanding. One possible
explanation is that flow charts articulate the directional relationships between categories, which is
effective to help users compare information across categories and predict the algorithm’s outputs.
Bar charts outperformed the matrix condition only in accuracy of answering level 3 (simulation)
questions. One potential reason is that bar charts help clarify the quantities involved, making it easy
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Lvl-11 Accu.
(# = 4)

Lvl-2 Accu.
(# = 4)

Lvl-3 Accu.
(# = 3)

Overall Accu.
(# = 11)

Time (s) Subjective Un-
derstanding

Coef. (S.E.) Coef. (S.E.) Coef. (S.E.) Coef. (S.E.) Coef. (S.E.) Coef. (S.E.)

Analysis 1: Comparing contextualized terminologies and standard terminologies

Baseline: Standard
confusion matrix2

2.75∗∗∗ (0.12) 2.63∗∗∗ (0.10) 1.27∗∗∗ (0.10) 6.65∗∗∗ (0.25) 489∗∗∗ (35) 2.91∗∗∗ (0.17)

Contextualized vs
Standard (Δ)3

0.83∗∗∗ (0.16) 0.23 (0.14) 0.47∗∗ (0.15) 1.54∗∗∗ (0.35) −79 (48) 2.20∗∗∗ (0.24)

Analysis 2: Comparing bar, tree and flow with confusion matrix, all using contextualized terminologies

Baseline: Contextual-
ized confusion matrix

3.58∗∗∗ (0.10) 2.86∗∗∗ (0.10) 1.74∗∗∗ (0.10) 8.18∗∗∗ (0.23) 410∗∗∗ (32) 5.12∗∗∗ (0.17)

Bar vs Contextualized
(Δ)

−0.14 (0.15) 0.25 (0.13) 0.28∗ (0.15) 0.39 (0.33) +18 (45) −0.18 (0.23)

Tree vs Contextual-
ized (Δ)

−0.07 (0.15) 0.03 (0.14) 0.06 (0.15) 0.02 (0.34) −9 (46) −0.07 (0.24)

Flow vs Contextual-
ized (Δ)

0.10 (0.15) 0.30∗ (0.14) 0.33∗ (0.15) 0.73∗ (0.33) -22 (46) −0.36 (0.24)

p-value significance: ∗𝑝 < 0.05; ∗∗𝑝 < 0.01; ∗∗∗𝑝 < 0.001.
Bold font indicates statistical significance.
1 The three levels of questions refer to Level 1: Comprehension, Level 2: Comparison, and Level 3: Simulation, see
Evaluation Framework in section 3.4.
2 The baseline row describes the performance of the baseline. For example, participants answered 2.75 level-1 questions
(out of four) correctly and spent 489 seconds to complete three-level questions using the original confusion matrix.
3 The comparison row describes the performance delta between an alternative representation and the baseline. For example,
participants using contextualized confusion matrix can answer 0.83 more questions correctly and spend 79 seconds less
time, compared to participants using the original confusion matrix.

Table 2. Results of our two sets of analyses. In Analysis 1, compared to the standard confusion matrix,
participants in contextualized condition performed significantly better in terms of accuracy and subjective
understanding. In Analysis 2, when comparing bar, tree and flow conditions against the confusion matrix, all
using contextualized terminologies, there was no significant difference for bar chart and tree diagram in terms
of overall understanding, time, and subjective understanding, while participants performed significantly
better using flow chart in understanding the algorithmic decision.

for people to simulate the future performance of ML models. But the actual mechanism remains
unclear. There was no statistical significance between tree and matrix.

Additionally, although some alternative designs (i.e., flow and bar charts) had some positive effects
on improving users’ objective understanding of the model compared to the standard confusion
matrix, none of them improved users’ subjective understanding of the model. To better understand
this finding, we looked into participants’ responses to our open-ended questions. The most likely
explanation from our data is that our participants were less familiar with the new designs. Such
unfamiliarity may lower the level of subjective understanding, even if the representation itself
might facilitate the understanding of the algorithm.

For example, S96 highlighted this unfamiliarity: “It was OK, slightly confusing until I got used to
it.”. S65 proposed using more conventional information representations: “I felt if the information
was presented on a table it would’ve been a lot easier to read.”.
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Therefore, the data suggests that there might be possible trade-offs between addressing identi-
fied structural issue of standard confusion matrices and improving understandability perception.
Introducing new structures can facilitate objective understanding but might reduce subjective
understanding due to unfamiliarity. However, more studies are needed to explicitly test if such a
relationship exists and identify innovative approaches that might satisfy both goals.

6 DISCUSSION
In this paper, we present an exploratory study on how to create non-expert-oriented alternative
representations of confusion matrices, as a step towards facilitating public understanding of the
performance of machine-learning-powered algorithmic decision-making systems. We conducted
a series of studies, both qualitative and quantitative, investigating better ways of presenting the
performance of machine learning models through redesigning standard confusion matrices with
original terminologies. We have identified major challenges lay people face in front of standard
confusion matrices and evaluated a couple of designs that were chosen specifically for targeting
those challenges. Our results contribute to the emerging line of research on building human-centered
algorithm design.

6.1 Summary of the ResearchQuestions and Results
Below we summarize our results in response to the research questions raised in the introduction.

6.1.1 What are the major challenges lay people have in understanding standard confusion matrices?

• Our results in Study 1 suggest that lay people have two sets of major challenges in under-
standing the information contained in standard confusion matrices.

• First is the terminology issue. We found that the majority of our participants had difficulties
understanding the terminology and thus had a hard time mapping them back to the scenario.

• Second is the structural issue, i.e., that the matrix design does not convey the underlying
relationships between the four types of predictions. We then further identified three sub-
challenges under this structural issue: (1) some of our participants reported problems in
understanding how data flows into other categories, i.e., the direction of reading the data; (2)
others were confused about the multiple layers contained in the table and suggested us to
unpack these layers; and (3) a few of them suggested to represent the data proportionally to
facilitate easy comparisons.

6.1.2 How effective different alternative representations perform in addressing those challenges, in
terms of objective understanding, time costs and subjective understanding?

• The comparison of contextualized confusion matrices against standard ones suggested that
contextualizing the terminologies (e.g., false positive and false negative) in specific problem
domains can significantly improve users’ objective and subjective understanding.

• The comparison of tree, bar and flow charts against the contextualized confusion matrix,
all using contextualized terminologies, suggested that flow charts, which help point out the
direction of reading the data, performed significantly better in improving overall objective
understanding, though its level of subjective understanding was not improving. Bar charts
performed significantly better than contextualized confusion matrices only in answering
level 3 questions. There were no statistical significance when comparing tree against the
matrix condition.
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6.2 Contribution to Research on Human-Centered Algorithm Design
We consider our work contributes to the broad discussion on how to better involve human influence
into algorithm design, a topic that has received increasing attention in CSCW. Below we situate
our results in this broad domain.

6.2.1 Supporting human-centered design approach to create explainable algorithmic decision. As
discussed, while previous literature on explainable AI (XAI) has made greater progress in simpli-
fying complicated machine learning models, this line of work was critiqued for lacking a deep
understanding of or evaluation with actual users or stakeholders [39]. In their previous work, Zhu
[58] called for more efforts to be devoted to both improve the usability of explanation interfaces and
to evaluate those interfaces using empirical user studies. The current study contributes to this line
of work, supporting human-centered design approach to create explainable algorithmic decision.

In particular, in this study, we created a set of alternative representations of standard confusion
matrices to help non-expert users better understand the performance of the underlying machine
learning classifier. We observed that merely by adding informative labels to the standard confusion
matrices we can significantly improve users performance. This suggests the importance of contex-
tualization in the design of explanation interfaces for machine learning algorithms. Our results
also suggested that the flow chart, which help point out the direction of the data flow, were most
useful in improving understanding. We suggest future scholars to build on those initial insights
and choose and adapt our framework and representations for their own research purposes.

6.2.2 Supporting “social evaluation” of algorithmic decisions. Past work in the HCI community
has used text or storyboards to present different scenarios to their study participants in order to
probe and understand how humans perceive algorithmic decisions (e.g., [9, 25, 34, 54]). Emerging
studies [35, 50, 56] started to use visualizations and create user interfaces to communicate algorith-
mic decisions to their study participants. Our study contributes to this quickly growing body of
work by developing more intuitive and generally understandable representations of algorithmic
performance.

One possible direction for the extension of the current work is to use our method and represen-
tation to support “social evaluation” of algorithms. That is, to solicit social and ethical feedback
around algorithmic decision-making systems. We do not expect that our research will generate any
single unified solution to any given social and ethical dilemma, but rather can offer useful feedback
to help developers understand how people perceive their system, and give them guidance in tuning
the parameters of their system so that social and ethical concerns by people who may be impacted
by the system are taken into account.

A concrete application scenario is to facilitate public understanding of the trade-offs embodied
in different fairness metrics developed by the machine learning community [14, 29], for example,
help lay people understand whether the underlying algorithm has a higher false positive rate in
labeling black defendants than white defendants. The current work showed that with a few design
modifications, lay people can perform significantly better in understanding the performance of
machine learning classifiers, compared to reading the standard confusion matrices. If we keep
iterating on the designs and using techniques from learning science to create quick tutorials, we
can offer greater support for non-experts understanding of these results, and potentially, to enable
them perform “social evalution”.
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6.3 Limitations and Future Work
This work is a first step towards understanding and developing laypeople-oriented representations
of ML model performance through the redesign of confusion matrices. As an initial effort, there are
a number of limitations which are important to mention.

First, our samples were not representative of the general population. Participants for the interview
study were all drawn from a northeast US metropolitan area. Participants in the online studies
were from Amazon Mechanical Turk (AMT). While running the large-scale experiments on AMT
allows us to reach a diverse population, the results may suffer from generalizability biases.
Second, we only investigated the challenges users had with standard confusion matrices with

original terminologies. Since confusion with terminology is a widely shared challenge, it may
influence users’ perception of other challenges.
Third, our work focused on standard confusion matrices for binary classifications as the initial

step. The results might not be applicable to multi-classification problems. Future research is needed
to further explore this space and test how the proposed designs might (or might not) support
non-binary variables.

Fourth, we have developed and evaluated our alternative representations in the specific domain
of recidivism predictions. Future research is needed to replicate and validate our methods and
findings in other decision-making contexts.

Fifth, our work focused on creating static representations of confusion matrices. Future work is
needed to test different ways of educating the general public, including interactive representations
or quick tutorials that were not explored in this work.

Finally, it is also important to note that solely relying on confusion matrices for understanding
model performance is not sufficient, as it might obscure other important features of model behavior
and separate performance from the data [46]. There are a lot more to present in order to give
users a comprehensive picture of the ML models. Examples include the dataset (e.g., what is the
training set? what is the test set?), the performance across different subgroups, and its impacts in
the real-world settings. This work focuses on developing lay people-oriented confusion matrices as
a first step to improve the literacy of model performance. Future work should explore how we can
offer other complementary tools to better help lay people understand more complex model types.

7 CONCLUSION
Ensuring wider public participation in the debates of algorithmic decision-making has become
an urgent task with the further deployment of AI systems into our society. Effective public un-
derstanding of algorithmic decisions – which serves as a foundation for effective public debates –
however, remains a vexing challenge. In this study, we present a concrete step toward this large
goal by redesigning the standard confusion matrix to support non-expert public understanding
of the statistical outputs and performance of machine learning models. We have identified key
challenges non-expert users have in understanding algorithmic results represented in confusion
matrices. We also developed an evaluation framework to assess users’ understanding and used it
to assess different representations. Our findings set the stage for developing more intuitive and
generally understandable representations of algorithmic decisions and performance.
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