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The Problem of Access Control

• Problem
• Restrict access to a resource according to policy.

• Approach
• Specify (and enforce) policies using an authorization logic.



Logic for Access Control

Policies are expressed as logical theories. [LABW ’92]

Benefits:
• Precision

• Logical specifications are more precise than natural language.
• Flexibility

• Can incorporate user-defined predicates.
• Can easily change policies without changing the system.

• Enforcement via PCA [AF ’99, Bauer ’03]
• Allow access to a resource if and only if a formal proof of access

is presented.
• Policy Analysis

• Consequence of proof-theory.
• E.g., non-interference theorems. [GP ’06, Abadi ’06]
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Motivating Example: Office Entry

Setting:
• admin, who controls entry to academic offices.
• Alice, a professor.
• Bob, a graduate student of Alice.

Policy:
• During 2007–2008, the admin allows a person K1 to enter an

office owned by a person K2, provided that K2 has authorized K1
to enter.

Dilemma:
• Alice is at CSF this week.
• Bob needs a book from Alice’s office.



A Traditional Approach to Time-Dependent Policies

Traditional approach:
• Ignore time-dependencies in the logical formulation of the policy.

• Policy:
admin says (∀K1.∀K2.((K2 says may_enter(K1, K2))⊃

may_enter(K1, K2)))

• Alice signs a certificate allowing Bob to enter during the week
6/23/08–6/30/08.

Alice says may_enter(Bob, Alice)
• Bob tries to enter at 1pm 6/24/08. He must prove:

admin says may_enter(Bob, Alice)
• Credentials used in the proof are checked for expiration.

Drawbacks:
• Correct proofs might be rejected because of expired credentials.
• Cannot analyze time using logical methods.



A Better Approach to Time-Dependent Policies

Better approach:
• Include time in the logic.

• Policy:
(admin says (∀K1.∀K2.((K2 says may_enter(K1, K2))⊃

may_enter(K1, K2)))) @ [2007, 2008]

• Alice signs a certificate allowing Bob to enter during the week
6/23/08–6/30/08.

(Alice says may_enter(Bob, Alice)) @ [6/23/08, 6/30/08]

• Bob tries to enter at 1pm 6/24/08. He must prove:
(admin says may_enter(Bob, Alice)) @ [1pm 6/24/08, 1pm 6/24/08]

Benefits:
• Proof construction is accurate with respect to time.
• Analysis of time-dependent policies.



Purpose of the Paper

• Design an authorization logic (for use with PCA) in which
time-dependent policies can be specified and enforced.

• Hence, we propose η logic (explicit time authorization logic).
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Key Ideas of η Logic

Key Ideas:
• Intuitionistic sequent calculus.
• All truths and statements are relativized to a set of time points.
• Authorization policies use absolute, specific sets of time.

• Temporal logic seems inadequate.
• For convenience, sets of time are called “intervals”.

• Model explicit time with hybrid @.
• Hybrid logic: modal logic where worlds may appear in formulas.
• Worlds ∼= intervals.

• Abstract away from “implementation” of times and sets of time.
• Require only a partial order of inclusion on intervals.

• Constraints for modeling the usual inclusion ordering on
intervals.



Syntax and Basic Judgments

Syntax:
A, B ::= K says A | A @ I | P | A ⊃ B | ∀x :s.A | . . .

Martin-Löf: Judgments are the objects of knowledge and evidenced
by proofs. Propositions are the subjects of judgments.

Basic Judgments:
1 A[I]: A is true on I.

• Judgmental form of A @ I.
2 (K affirms A) at I: During I, K affirms that A is true on I.

• Judgmental form of (K says A) @ I.



Hypothetical Judgments

Hypotheses:
• Ψ contains I ⊇ I′ constraint hypotheses
• Γ contains A[I] hypotheses

Hypothetical Judgments:
1 Ψ |= I ⊇ I′

2 Ψ; Γ =⇒ A[I]
3 Ψ; Γ =⇒ (K affirms A) at I
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Inference Rules: Hypothetical Judgments

Ψ |= I ⊇ I′ (P atomic)

Ψ; Γ, P[I] =⇒ P[I′]
init



Inference Rules: @ as a Hybrid Connective

Ψ; Γ =⇒ A[I]
Ψ; Γ =⇒ (A @ I)[I′]

@R
Ψ; Γ, (A @ I)[I′], A[I] =⇒ γ

Ψ; Γ, (A @ I)[I′] =⇒ γ
@L

Admissible properties:
• Write ` A if ·; · =⇒ A[I′′] for all I′′ and all instantiations of the

propositional variables. Write 6` A otherwise.

1 6` (A @ I)⊃ (A @ I′) (in general)

2 ` (A @ I)⊃ (A @ I′) if · |= I ⊇ I′

3 ` (A @ I @ I′) ≡ (A @ I)



Inference Rules: ⊃

Ψ, I ⊇ i ; Γ, A[i] =⇒ B[i] (i fresh)

Ψ; Γ =⇒ (A ⊃ B)[I] ⊃R

Ψ |= I ⊇ I′ Ψ; Γ, (A ⊃ B)[I] =⇒ A[I′] Ψ; Γ, (A ⊃ B)[I], B[I′] =⇒ γ

Ψ; Γ, (A ⊃ B)[I] =⇒ γ
⊃L

1 ` ((A⊃B)@I)⊃((A@I)⊃(B@I))
2 6` ((A@I)⊃(B@I))⊃((A⊃B)@I)



Inference Rules: says as a K -Indexed Monad

Ψ; Γ =⇒ A[I]
Ψ; Γ =⇒ (K affirms A) at I affirms

Ψ; Γ =⇒ (K affirms A) at I
Ψ; Γ =⇒ (K says A)[I]

saysR

Ψ; Γ, (K says A)[I], A[I] =⇒ (K affirms B) at I′ Ψ |= I ⊇ I′

Ψ; Γ, (K says A)[I] =⇒ (K affirms B) at I′ saysL

1 ` A ⊃ (K says A)

2 ` (K says (A ⊃ B))⊃ ((K says A)⊃ (K says B))

3 ` (K says (K says A))⊃ (K says A)

4 6` (K says A)⊃ A
5 6` ((K says A) @ I)⊃ (K says (A @ I))
6 6` (K says (A @ I))⊃ ((K says A) @ I)
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Meta-theory

Theorem (Admissibility of Cut)

If Ψ; Γ =⇒ A[I] and Ψ; Γ, A[I] =⇒ γ, then Ψ; Γ =⇒ γ.

• Entails the subformula property.
• Consequently, the connectives are defined entirely by their left

and right rules.

Theorem (Subsumption)

If Ψ; Γ =⇒ A[I] and Ψ |= I ⊇ I′, then Ψ; Γ =⇒ A[I′].

• Verifies desirable behavior of intervals.
• Verifies a proper fit between constraint and logical reasoning.
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PCA with η Logic

Principals state policies by digitally signing certificates.

When a principal requests access to a resource:
1 The certificates are converted to logical assumptions Γ; validity

bounds I are converted to @ I in Γ.
2 The principal must submit a proof of

·; Γ =⇒ Aaccess[now, now + ε]
where:

• Aaccess is the required formula to access the resource
• (By subsumption, it is sufficient to prove

·; Γ =⇒ Aaccess[I]

for any I such that · |= I ⊇ [now, now + ε].)

3 Access is granted if and only if the proof is correct.

Proof construction is now correct with respect to time.



Modeling Consumable Credentials

Problem:
• As presented in this talk, η logic cannot model consumable

credentials.
• Alice probably wants Bob to enter at most once during the week

6/23/08–6/30/08.

Solution:
• In our paper, η logic incorporates linear logic to express

“use-once” authorizations.
• Follows previous work on linear authorization logics (without

time). [GBBPR ’06, CCDEdHL ’06, BM ’06]

• Example, inference rules, admissible properties, and
meta-theory all easily extend to the linear case (see paper).



Outline

1 Background
Motivating Example

2 η Logic
Key Ideas and Judgments
Inference Rules and Admissible Properties
Meta-theory

3 Proof-Carrying Authorization (PCA) and Linearity

4 Conclusion



Future Work and Summary

Future work:
• Formal comparison of η logic to other logics and languages.
• Implementation of a PCA architecture based on η logic.
• Extend non-interference theorems to η logic. [GP ’06, Abadi ’06]

Summary:
• Using logic for access control provides several benefits.
• If the logic does not include time, benefits cannot apply to time.
• Therefore, we propose η logic.

• Incorporates time internally using a hybrid @ connective.
• Possesses “nice” meta-theoretic properties such as admissibility

of cut.
• Can be extended to model consumable credentials.



Thank you!

Questions?





Intuitionistic vs. Classical Logic

• Keep the logic constructive to make evidence as direct as
possible.

• Key role of proofs in the system.
• In classical logic, ¬¬A ⊃ A holds.

• If there is no proof of access denial (¬¬A), then there is a proof of
access (A).

• Risky for security purposes: a proof of denial might have been
overlooked.

• In constructive logic, ¬¬A ⊃ A is not provable.



Adding Linearity

Refine basic judgments:
1 A[I]: Single-use resource A is true on I.
2 A[[I]]: Multi-use fact A is true on I.
3 (K affirms A) at I: During I, K affirms that single-use resource A

is true on I.

Refine hypothetical judgments:
1 Ψ; Γ;∆ =⇒ A[I]
2 Ψ; Γ;∆ =⇒ (K affirms A) at I

Ψ |= I ⊇ I′

Ψ; Γ; P[I] =⇒ P[I′]
init

Ψ; Γ, A[[I]]; ∆, A[I] =⇒ γ

Ψ; Γ, A[[I]]; ∆ =⇒ γ
copy



Inference Rules: ∧

Ψ; Γ =⇒ A[I] Ψ; Γ =⇒ B[I]
Ψ; Γ =⇒ (A ∧ B)[I] ∧R

Ψ; Γ, (A ∧ B)[I], A[I] =⇒ γ

Ψ; Γ, (A ∧ B)[I] =⇒ γ
∧L1

Ψ; Γ, (A ∧ B)[I], B[I] =⇒ γ

Ψ; Γ, (A ∧ B)[I] =⇒ γ
∧L2

1 ` ((A∧B)@I) ≡ ((A@I)∧(B@I))



Meta-theory: Identity

Theorem (Identity)

For all A, if Ψ |= I ⊇ I′, then Ψ; Γ, A[I] =⇒ A[I′].

• Generalizes the init rule to compound propositions.



Generic Non-Interference Theorem

• If Ψ; Γ, A[I] =⇒ B[I′] and 〈some criteria on Ψ, Γ, A, I, B, I′〉,
then Ψ; Γ =⇒ B[I′].
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