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As particle experiments become more complex,
how well prepared are we for the unexpected?

Prelude:  Unparticles as a warning

There is a danger that we might be
blinded by our expectations

Bubble chamber decay of a K+

© 1973, CERN
ALICE (LHC): Simulated Pb-Pb collision
© 2003, CERN
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What is an unparticle?

It is a scale-invariant (or conformal) field

with scaling dimension d
Georgi, 2007

Introducing unparticles

Conformal invariance provides powerful constraints

– it fixes the propagator

– unparticles in a conformally flat backgrounds are
closely related to those in flat backgrounds

a few conventions

! = an unparticle in an expanding universe

" = an unparticle in flat space

# = an ordinary scalar particle



Before worrying about unparticles, let us look at a
conformal particle in an expanding universe

Particles in a conformal background

In flat space, it enough to set m = 0

a few preliminaries

the metric:  ds2 = a2($) [ d$2 – dx · dx ]

a($) is the scale factor

H = a!/a2 is the Hubble scale

In curved space, the curvature itself can
break the conformal symmetry

" we ought to consider a massless,
conformally coupled scalar field

##



A massless, conformally coupled field, #($,x)

Particles in a conformal background

Expand the field in eigenmodes

To obtain the following equation of motion,

#k!! + 2 —– #k! + —– #k + k2#k = 0
a!
a

a!!
 a

Rescale by a($) raised to the scaling dimension (d = 1)

#k($) = ——–
"k($)

a($)
"k!! + k2"k = 0$

#($,x) = !         [#k($) eik·x ak + #k*($) e–ik·x ak
†]

d3k

(2%)3

#
#

#

##
#

#
#

1

2

1

12
"S[#] =    d4x    –g [ — gµ& %µ#%&# – — R#2 ]!



We no longer have an explicit action

Unparticles in a conformal background

But we can still take advantage of
the conformality of the field

to relate unparticles in curved space (!)
to those in flat space (")

So, we first need to review the behavior of
unparticles in flat space

!($,x) = ———
"($,x)

ad($)

S[!(x)] = ?

#
#
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In a Lorentz-invariant theory, the propagator can be
written in the Lehmann-Källen spectral form

A short review of particles

What are the properties of '(M2) for a particle?

'(M2)

pole at M2 = m2

branch cut at M2 = 4m2

Renormalization conditions:

1) pole at the physical mass

2) with residue i

&0' T["(x)"(y)] '0( =    —— e–ik·(x–y)      dM2  ————————
d4k

(2%)4

i'(M2)

k0
2 – k2 – M2 + i(! !

0

#



In a Lorentz-invariant theory, the propagator can be
written in the Lehmann-Källen spectral form

A short review of particles

What are the properties of '(M2) for a particle?

&0' T["(x)"(y)] '0( =    —— e–ik·(x–y)      dM2  ————————
d4k

(2%)4

i'(M2)

k0
2 – k2 – M2 + i(! !

0

#

'(M2)

pole at M2 = m2

branch cut at M2 = 4m2

Renormalization conditions:

1) pole at the physical mass

2) with residue i

unparticles have 
no mass poles

nor a normalization



In a Lorentz-invariant theory, the propagator can still
be written in the Lehmann-Källen spectral form

A short review of unparticles

1) The field is scale invariant

$fixes '(M2) up to a normalization

2) No canonical normalization

$match with the phase space of d
massless particles

Georgi, 2007

What are the properties of '(M2) for an unparticle?

&0' T["(x)"(y)] '0( =    —— e–ik·(x–y)      dM2  ————————
d4k

(2%)4

i'(M2)

k0
2 – k2 – M2 + i(! !

0

#



In a Lorentz-invariant theory, the propagator can still
be written in the Lehmann-Källen spectral form

A short review of unparticles

What are the properties of '(M2) for an unparticle?

1) The field is scale invariant

$fixes '(M2) up to a normalization

2) No canonical normalization

$match with the phase space of d
massless particles

Georgi, 2007

'(M2) = —– (M2)d–2
Ad

2%

2d      =      4      +      2      +      [']      –      2

&0' T["(x)"(y)] '0( =    —— e–ik·(x–y)      dM2  ————————
d4k

(2%)4

i'(M2)
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In a Lorentz-invariant theory, the propagator can still
be written in the Lehmann-Källen spectral form

A short review of unparticles

1) The field is scale invariant

$fixes '(M2) up to a normalization

2) No canonical normalization

$match with the phase space of d
massless particles

Georgi, 2007

'(M2) = —– (M2)d–2
Ad

2%

d – 1

(16%2)d–1

2%

()(d))2
Ad = ———— ———

What are the properties of '(M2) for an unparticle?

&0' T["(x)"(y)] '0( =    —— e–ik·(x–y)      dM2  ————————
d4k

(2%)4

i'(M2)

k0
2 – k2 – M2 + i(! !

0

#



Is any possible scaling dimension d
allowed for an unparticle?

Limits on d

But if we simply integrate over the spectral index M2,

we discover 1 $ d < 2

Unitarity places a lower bound on d (> 1)
Grinstein, Intriligator & Rothstein, 2008

&0' T["(x)"(y)] '0( =    —— e–ik·(x–y)  —– ——— ———————
d4k

(2%)4

i

(k0
2 – k2 + i()2–d!

Ad

2

(–1)d–2

sin %d

Note that a massless scalar particle is an unparticle too

d # 1:  ———— ——— ——— ———————    #   ——————
i

(k0
2 – k2 + i()2–1

(–1)1–2

sin %d

d – 1

(16%2)1–1

%

()(1))2

i

k0
2 – k2 + i(



In a time-dependent background,
it is often more useful to write the propagator as

Wightman functions

Integrating over k0, we find

)k
>(t,t!) = )k

<(t!,t) is the unparticle Wightman function
~ ~

)k
>(t,t!) = ——— ——— ——    ——–         H(2)       [k(t – t!)]

~ –i

(8%2)d–1

%

2    2

1

)(d)

t – t!

k

"

"

3
2

— – d

3
2

d – —

Hankel function

)k
>(t,t!) = —– ———         —–  ———————

dk0

2%

ie–ik  ·(t – t!) 

(k0
2 – k2 + i()2–d!

Ad

2

(–1)d–2

sin %d

#

– #

~ 0

&0' T["(x)"(y)] '0(

       =    —— eik·(x–y)   *(t – t!) )k
>(t,t!) + *(t! – t) )k

<(t,t!)d3k
(2%)3! [ ]

~ ~#
#

##



In a conformally flat universe, it is easy to write the
cosmological propagator in terms of the flat one,

Wightman functions in cosmology

We are now ready to calculate the effects of
unparticles on the primordial perturbations

So, the cosmological Wightman function is

)k
>($,$!) = a–d($) a–d($!) )k

>($,$!)

or,

)k
>($,$!) = ——— ——– ——    ——–

                    + a–d($) a–d($!) H(2)       [k($ – $!)]

–i

(8%2)d–1

%

2    2

1

)(d)

$ – $!

k

"

"

3
2

— – d

3
2

d – —

~

&0' T[!($,x)!($!,y)] '0( = ———————————
&0' T["($,x)"($!,y)] '0(

ad($) ad($!)

# #
# #
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Perhaps some of the unnatural features of the inflaton
could be explained if it were an unparticle

Unparticles as inflatons

Some simplifying assumptions:

1) de Sitter space

2) neglect mixing with gravity

The conformal properties could protect small
parameters of the potential

Unfortunately, in the slowly rolling regime,
this hope is not realized —

The power spectrum is not flat

a($) = – —–
1

H$

Let us see how the calculation proceeds



How inflation makes structure
(a very brief review)
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“cosmological coordinates”

ds2 = dt2 – a2(t) dx · dx# #
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quantum fluctuations of the inflaton,
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the horizon catches up
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How inflation makes structure
(a very brief review)

$0

$CMB

quantum fluctuations of the inflaton,
for a mode #k($) of wavelength
)phys($)= 2% a($)/k

are stretched until larger
than the horizon

and are frozen into the background

until long after inflation ends,
the horizon catches up

and they influence how matter is
distributed in the universe
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The simplest measure of the pattern of these
‘primordial perturbations’ to the background

is the two-point function

Unparticles as inflatons

or its Fourier transform, the power spectrum Pk($),

just the Wightman function again

Pk($) = —– )k
>($,$) = ——— —– ————    —— 

1

(16%2)d

4

%

)( – – d)

)(d)

k

a($)"

3
2

2d
k3

2%2

diverges unless d < —3
2

Since 1 < d <  —, the power spectrum is not very flat
3

2

&0' !($,x)!($,y) '0( =    —— eik·(x–y) —– Pk($)
d3k

(2%)3! 2%2

k3

# #

#
# # #



Experimentally, one assumes Pk - kn  –1, and finds

ns = 0.960
WMAP, 5yr data, 2008

Unparticles as inflatons

So, at least for slowly rolling inflation,
an unparticle is not an especially good inflaton

Pk($) = ——— —– ————  (– k$)2dH2d

(16%2)d

4

%

)( – – d)

)(d)"

3
2

+ 0.014
– 0.013

s

In de Sitter space,

a($) = – —–
1

H$

so the power spectrum is
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Low energy degrees of freedom

Until now, we have not said how unparticles
might arise

Consider the following scenario with 3 sorts of fields

– some very massive (M) fields X
– some ‘proto-unparticles’ (particles) .
– the inflaton #

Start at very high energies: M < E

.-# interact
by exchanging

an X X

.

.#

#



Low energy degrees of freedom

Until now, we have not said how unparticles
might arise

Consider the following scenario with 3 sorts of fields

– some very massive (M) fields X
– some ‘proto-unparticles’ (particles) .
– the inflaton #

Integrate out the X: E < M

generates
an effective

.-# interaction

.

.#

#

~ —– #2.21

M2



Low energy degrees of freedom

Until now, we have not said how unparticles
might arise

Consider the following scenario with 3 sorts of fields

– some very massive (M) fields X
– some unparticles !
– the inflaton #

The .’s have a non-trivial IR fixed point: E < / < M

dimensional
transmutation

.  #  !
!#

#

~ /2–d —–  #2!
/2

M2



Low energy effective interactions

From this basic picture, we can write the general form
for the possible unparticle-inflaton couplings

The natural energy scale is set by the expansion:  E#H

The leading effect is from the most relevant operator

c /4 – N – N!d  —–   #N!*+
/

M

n

integers

dimensionless
coupling

heavy
mediator mass

dimensional
transmutation

scale

H < / < M

c /2 – d  —–   #2!
/

M

n



Radiative unparticle corrections

So, even if the inflaton is not itself an unparticle,

any unparticles around during inflation
can affect the power spectrum

A technical point:

– we do not use an S-matrix
– time-evolve the entire two-point function

Schwinger, 1961; Keldysh, 1964; Mahanthappa, 1962

d3k

(2%)3

2%2

k3

'0($)( = T e–i     d$! H  ($!) '0($)( !$$0
I

/

M

n

HI($) = – c /2 – d  —–   a4($)   d3x #2!!

Time-evolve with Dyson’s equation

with

#

&0($)' #($,x)#($,y) '0($)( =    —— eik·(x–y) —– Pk($)!# # # # #

#



Tree-level prediction

The 0th order prediction is just the standard one

 Again, a few simplifying assumptions,

– work in de Sitter space
– neglect the inflaton mass m   (it will reappear later)
– use the Bunch-Davies vacuum

so that

The tree-level power spectrum is flat

k3

2%2
Pk($) = ——'#k($)02

(i – k$) e–ik$

k3/2

H

21/2
#k($) = —— —————–

H2

4%2
Pk($) = —— [ 1 + k2$2 ] # ——

H2

4%2

#($,x) = !         [#k($) eik·x ak + #k*($) e–ik·x ak
†]

d3k

(2%)3

#
#

#

##
#

#
#



The loop

The 1st order prediction is more complicated

Pk($) = Pk
tree($) + Pk

loop($) + …

The general structure of the loop is

H2

4%2

c2

)(d)

23/2%1/2

(8%2)d

/

H

4–2d /

M

2n

Pk
loop($) = —— —— ————   ––           ––     1(k$,k$0)

Where the loop contribution comes from the graph

1(k$,k$0) is a dimensionless loop integral
Collins & Holman, hep-ph/0802.4416

How does it scale in k?

k #k # k – p #

2 p

$! $!!



UV divergences?

The loop has three places where UV divergences
could potentially occur,

1. short distances (p # #)
2. coincident times ($!! # $!)
3. “trans-Planckian” times ($!,$!! # – #)

All of these limits turn out to be safe
$ no renormalization is needed

Collins & Holman, hep-ph/0802.4416

#1. safe, even in flat space
#2. safe, provided d < –
#3. safe, provided d < 2

5
2

k #k # k – p #

2 p

$! $!!

#

## # #



An unparticle loop in flat space

The UV behavior is much milder for unparticles

An example, let us look at the same graph, except now
in flat space and returning to the S-matrix formalism

2n d–1

A(k2) = c2 /2(2–d)   —       ——— ———      dx   —————————
/

M

1

(16%2)d

)(1–d)

)(d)

xm2 – x(1 – x)k2 – i(

1 – x
!

1

0

k #k # k – p #

2 p

iA(k2) = 

Feynman amplitude,

On-shell,

A(m2) = ———   —             —       —————————
2(d–1)

/

M

c2/2

(16%2)d

)(1–d))(2–d))(2d–1)

)(d))(d+1)

m

/

2n



An unparticle loop in flat space

The UV behavior is much milder for unparticles

An example, let us look at the same graph, except now
in flat space and returning to the S-matrix formalism

If the dashed line were a particle, we would have a
UV divergence (requiring some renormalization)

2n d–1

A(k2) = c2 /2(2–d)   —       ——— ———      dx   —————————
/

M

1

(16%2)d

)(1–d)

)(d)

xm2 – x(1 – x)k2 – i(

1 – x
!

1

0

k #k # k – p #

2 p

iA(k2) = 

Feynman amplitude,

On-shell,

A(m2) = ———   —             —       —————————
2(d–1)

/

M

c2/2

(16%2)d

)(1–d))(2–d))(2d–1)

)(d))(d+1)

m

/

2n

UV divergence at d = 1



IR divergences?

The loop also has three places where IR divergences
could potentially occur,

The first is completely finite, but the other two are not
Collins & Holman, hep-ph/0802.4416

#2. the p # k divergence is cured when m %  0
#3. this divergence means only that Pk($) has a non-

trivial scaling in k

1. soft unparticle (p # 0)
2. soft virtual inflaton (p # k)
3. late times ($!,$!! ~ $ # 0)

k #k # k – p #

2 p

$! $!!

#

## # #



IR divergences

The loop also has two places where IR divergences
actually occur,

The first is completely finite, but the other two are not
Collins & Holman, hep-ph/0802.4416

#2. the p # k divergence is cured when m %  0

#3. this divergence means only that Pk($) has a non-
trivial scaling in k

H2

4%2

c2

)(d)

23/2%1/2

(8%2)d

/

H

4–2d /

M

2n

Pk
loop($) = —— —— ————   ––           ––     1(k$,k$0)

1(k$) ~ ln — + 
m

k
…

1(k$) ~ (–k$)2d–3



Predictions

If we define some dimensionless integrals, 1i, which
are finite as m # 0 and k$ # 0, we find

So we learn that if the unparticle scaling dimension is

H2

4%2

c2

)(d)

23/2%1/2

(8%2)d

/

H

4–2d /

M

2n

Pk
loop($) = —— —— ————   ––           ––

+   10 + 11 ln — +12 (–k$)2d–3 + 13 (–k$)2d–3 ln —
m

k

m

k

then there is an enhancement at the “red” end of the
power spectrum

d < —
3

2

Recall that the most recent experimental bounds are
WMAP, 5yr data, 2008

ns = 0.960 + 0.014
– 0.013



Conclusions

Can unparticles play any role during inflation?

Unparticle inflatons do not produce

a realistic power spectrum

—

A unparticle coupled to the usual inflaton produces an

enhancement at the red end of the power spectrum

provided d < —

—

Future bounds on the acoustic oscillations:

CMB precisions:  0.1%      LSS precisions:  0.001%

—

Some more general observations about unparticles:

1. Wightman function diverges for d > —,

2. loops free of UV divergences,

3. “unparticle regularization”, . . .

3
2

3
2



the end



An aside:  Unparticle regularization

Since unparticle loops are freer of divergences, we can
use them to regularize massless scalar field theories

Evaluate in 4 – 2, dimensions:

without altering the space-time symmetries!

k #k # k – p #

2 p

iA(k2) = 

Adr = ——   — – - + ln 4% –     dx  ln ————————xm2 – x(1–x)k2 – i(
µ2

c2/2

16%2

1
,

!
1

0

Aun = ——   – — – 2- – 1 + 2 ln 4% –     dx  ln ————————xm2 – x(1–x)k2 – i(
µ2

c2/2

16%2
1
,

!
1

0

Evaluate with a d = 1 + , unparticle:             (c/µ1–d#2")

Example:  c/#2" coupling in flat space
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same
finite parts


