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We begin with a simple question

Why are we able to explain what happens at long
distances without knowing what happens at short
distances?

In quantum field theory we have an answer: the
details at short distances do not matter . . . at least
not much!

= decoupling & effective field theory






Inflation and structure

* Inflation began as a idea for addressing
several fine-tunings that seemed to be
needed in the standard cosmological picture A

— flatness problem Guth (1981), Linde (1982)
— horizon problem

particle

horizon
— diluting topological relics

e Among these, the horizon problem is
perhaps the most serious

e If we look back to the surface of last T crface
scattering, how large were the causally chftg‘rj;g
connected patches?

— assuming a standard cosmology, radiation
followed by matter domination, they are
each about one degree of the sky

— but they all look the same to about one part
in 10°

time (yr)




When a horizon is not the horizon

e Without inflation, this uniformity of the
universe is difficult to understand particle

horizon

(inflation)

e The reason is that the distances a signal can /
travel from the beginning—the particle / . \
horizon—is too small \ / \ /

¢ dt’
dSz = dtz - a2 (t)dx ’ dx 7,‘hor(t) = 'fto ﬂ(t,)

e During inflation the particle horizon and
the Hubble horizon (1/H) can be

surface
dramatically different of last
scattering
t dt’ t H(t-t") ' eH(t_tO)
to () = ~| e dt’ =
0=, a(t') o
e Thus, with enough inflation, all that we see era of
today could have grown from a single, inflation

causally connected region




Prirmordial perturbations

e Having an explanation of the horizon
problem in inflation is interesting
philosophically; but by itself, is it really
testable?

 However, inflation does provide a definite
prediction for the primordial perturbations
H(t)

— quantum fluctuation of a scalar field

(tensor modes too) o ;
Inriation endas

— rapidly stretched by expanding space-time \
— pattern essentially frozen after leaving the >
Hubble horizon /

e This mechanism leaves a pattern of
perturbations in the background that affects /\

both matter (LSS) and radiation (CMB) in
the universe

\/ Thor(t)

e Since its details are important for this talk,
let us examine this mechanism more fully

2<>

space




Primordial perturbations—de Sitter space

e Letus look at the simple case of a free,
massless scalar field, ¢, in de Sitter space

e We shall use conformally flat coordinates

FEN dn® - dx - dx
- Hz 2
n

e In quantum field theory, there is always
some inherent variation in the field. We
shall divide ¢ into a term for its mean value,
¢(n), and a term describing the fluctuations
about that value, 6¢(n,x)

e The pattern of fluctuations can be
characterized by the variance of d¢

S= fd4x\/§[%g“v&“(po"v¢]

V(g)

o/
\/

¢(n)

@(n,x) = ¢(n) + 6¢p(n,x)
(0|g(1,%)[0) = ()

(0]8¢(n,x)6¢(n,y)|0) =0




Primordial perturbations—de Sitter space

e The power spectrum is the Fourier
form of this two-point functi 0|d¢(n,x)0¢(n, ¥)|0)
transform of this two-point function @(n,x)op(n,y
3
. : k
e Expand ¢ in its operator eigenmodes = f d e = 2 P (n)
(27) o
d’k
Sq = S a, + 5.
@ f 21y [ Cﬁk K §0k ]
where the time-dependent part satisfies the ’
Klein-Gordon equation S, - =0, + k8¢, =0
n
e How then do we choose the mode functions,
op,?
— Ttis rpade up of the.two independen.t s _ 5('02 o fk 5 (P,? *
solutions to the Klein-Gordon equation Cr = \/17
— One further constraint comes from the = e
canonical equal-time commutation relation
gy (17) = —— (1 + ikn)e™
— so the question is, how do we choose f,? k 2k




Choosing the vacuumn state

e At very short distances, << 1/H, the

background curvature is not very apparent
and space-time looks flat

Therefore a natural choice is that state that
matches with the flat space vacuum as  k
— oo with n fixed

— this choice fixes f, =0

At some stage we might worry about some
of our underlying assumptions

- H<<k<<M,
— sometimes 7 is taken to o
— simple dynamics/other fields

We have encountered the question posed at
the very beginning:
— how do we know what happens at very short
length scales (or any scale < 1/M,))?

H
oY, =0 o__ ML
@y @y X lizk

kK’ 2
o _ 0
Pk (77) - 231:2 ‘5(pk‘
2
B (fn = 0) =
JU

If we assume that—to some
degree—these details

decouple, the leading result
should be that given by this

“vacuum”’

(1+ ikn)e™"




Primordial perturbations from the vacuurn

e What then are the leading predictions for
the primordial spectrum of scalar and
tensor perturbations?

e In the limit where the modes have been
stretched outside the Hubble horizon, the
power spectrum is flat

— this sets the primordial pattern of

perturbations in the background (using
coordinate-invariant fields)

— the power spectrum of the primordial
gravity waves is similar

e Once we have a set of primordial
perturbations, we can solve its evolution
using well understood physics

— Einstein & Boltzmann equations: matter

(structure formation) and radiation (the
CMB)

HZ
47*

P! ~162G

op
Pk =

H2

2

47

ol
@ X) = rad
(1,x) =

rad

5(1,” X) — 5pdm

dm

primordial
| 2
o C)
C =4x | ak P |
kM,

evolution -/‘




The microwave background and inflation

e Of course, the power spectrum
: : Angular Scale
will not be perfectly flat, but will S L 2 05 oz
reflect some of the properties of /*\ 7 Coss Power
the potential b [y DT
g ok / Pn
e What is the leading form of the g /’
000 \ 3
power spectrum of the CMB a | . :
i i : % o000 | B O é
according to inflation? SEDS / v *'#-1 !
— nearly scale invariant (models) omf By VA
2 E i 1 g
— nearly Gaussian SEE TN
— synchronized acoustic oscillations e
. i Ferkeazalicn Spacinam -
— correlations on super-Hubble :
horizon scales <
2 *F :
: : y i :
e In particular, to leading order our S ;
choice of the standard vacuum = :
seems to have been justified of t *iF I u*;} Mif“&f“ —
— but can we understand why this is t
s0? i 10 a0 w0 =0 400 B0 1400
Mullipole moment (1)

WMAP



Conceptual problems of inflation

e So inflation has passed some very non-
trivial tests

— in particular the correlation of the

polarization and the temperature on super-
Hubble scales

e But as this subject moves into a more
mature phase, we must begin to address
some conceptual problems inherent within
this picture Brandenberger

hierarchy /amplitude problem (fine-tune)
trans-Planckian problem (an opportunity)
cosmological constant problem (fine-tune)
singularity problem (only as a final theory)
back-reaction

as well as to begin to determine the
signatures from sub-leading effects

inflation potential, new physics, . . .

V(p)/Ag* <107

4 A 2
Lg = Mpl W + Mle

pl

time

end
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The trans-Planckian problem

In flat space as long as some sort of
decoupling holds, we do not need usually
to worry about details at the Planck length

However, the expansion of the background
means that what may be a large scale in the
primordial background was smaller and
smaller the earlier we follow it back during
inflation

So some perturbation that produces, for
example, a feature in the CMB was much
smaller when it arose during inflation

— 60-70 e-folds to solve the horizon problem

— abit more and the wavelength of that mode
would have been smaller than the Planck
length at some time

Perhaps the CMB/LSS could be used as a
COSIMIC MICroscope

end

At)

H™(t)

space
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The trans-Planckian problem—two philosophies

e Suppose that you have a model for what
happens above the Planck-scale

e Then you should be able to solve for the
true vacuum state and see how the details
alter the primordial spectrum

— modified uncertainty relation

— cut-off a-states

— modified dispersion relations

— minimal length scale

e Limitations
— any particular model may not be right

— how general are the conclusions of a
particular case (amplitude and shape)

e The other approach is to find an effective
theory description

— for the evolution (H2/M?)

— for the state (H/M)

Brandenberger & J. Martin,
2001-2003

Easther, Greene, Kinney, & Shiu,
2001-2002

Mersini, 2001

Niemeyer & Kempf, 2001
Starobinsky, 2001
Danielsson, 2002
Goldstein & Lowe, 2003
Collins & M. Martin, 2004
and others

Kaloper, Kleban, Lawrence,
Shenker, & Susskind, 2002

Burgess, Cline, Lemieux, &
Holman, 2003

Greene, Schalm, Shiu, & van der
Schaar, 2004-2005

Collins & Holman, 2005
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An effective initial state—boundary conditions

e Let us return to the point where we chose a
particular initial state

e We shall examine the case of flat space

— the regime in which the new effects will
appear should be at much shorter lengths
than the Hubble horizon

— so if an effective description is applicable to a
cosmological background, it should also be
able to be formulated for flat space

e Earlier we mentioned that a state is defined
up to one k-dependent constant of
integration

e For definiteness, let us define our state by
imposing an initial condition at t = {, and
evolve forward

S= fd%[%&ugoﬂvqp—;—mzqaz]

3
v=J éif} [#.(De*a,

+ (p;(t)e'ik"‘alf]
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An effective initial state —short-distance structure

e Notice that this initial condition includes
the standard vacuum state, w, = w,

e In an effective theory, there is always an
inherent error between predictions based on
our theory and those of a better description
of nature

— e.g. Feynman—-Gell-Mann (V — A) theory
compared with electroweak theory

e If we could solve for the “true vacuum” it
might not be the same as our low energy
idea of the vacuum; an effective state
parameterizes this difference

— non-localities?
— strongly interacting gravity?
— non-commutative space-time?

e toour “vacuum” this difference appears as
new short-distance structure

d .
%(to) = —iw. @ (ty)
_ 1_fk

wk_wk1+f
k

for vacuum, 0

fi = ”W

+ “UV important

77

possible for k > M <J
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An effective initial state—propagation

Next we must determine how this
information in the initial state
propagates

The propagator, which is the Green’s
function associated with a point source,
will include new terms representing the
effect of the short-distance features of the
state
— Since the state is defined at an initial time,
it is natural that we should include only a
term for the forward propagating modes
— avoids pinched singularities

— both forward and backward propagating
modes are included for the point source

Note that this Green’s function is also
consistent with the initial condition,
which is again defined for the modes

Ge(x,x) = [ ™G, (¢, 1)

@2n)?

point source

~iG,(t,t") =0t - t) @, (t)p, (')
+O(t' - )@, (H)pL(t)

+ fopt (Dl () )

initial state “structure

9,Gy

oy, = iw G, (t,,t)

= im G (1)
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An aside on image sources

e The large degree of symmetry of
Minkowski space permits a geometric
interpretation for the extra term in the image time: £, = 2¢, —¢
propagator

— we define an image time, reflected across
the in initial time hypersurface

e Then the propagator can be defined as G, (t,t") =Gt t') + £, GO(t,, 1)
the Green’s function associated with two
sources, one of which is in the

unphysical region before f,

— only one of the @ functions contributes in

the physical region Vacuum (f, = 0) propagator:

3
e A general expanding background may Gp(x,x') = f d—kSG,? (t,t)
not have an analogous geometric
interpretation, but otherwise the f
propagator is a simple generalization of (2n)4 k* -m® +ie
what we had before




Renormalization—general properties

e Although our ultimate goal is to calculate the trans-
Planckian signal in the CMB, this talk will focus on
establishing the renormalizability of the effective state
approach

e In ordinary field theory, loops appear in perturbative
corrections to processes

— these contain intermediate propagators of arbitrarily
large momenta

— in some cases, in summing over this short-distance
behavior we encounter divergences

— these are absorbed by rescaling the parameters of the
theory (counterterms)

e For an general initial state, a loop will also introduce
sums of over the short-distance structure of the state

— new divergences & boundary counterterms

16



Renormalization —quartic theory

e Let us consider a specific example, a
theory with a quartic interaction

e We shall consider a baby version of
inflation
— calculate in flat space
— include an isotropic zero mode

— the full Robertson-Walker case is
considered in hep-th /0507081

e We impose the renormalization
condition that the tadpole of the
fluctuation should vanish

— calculate to one loop order
— 1isolate classes of divergences

— determines renormalization scale
dependence

1 1 1

=20 0d"0— = nmPe? — — i
AGA AN AT Vi
o(t,x) = ¢(t) + dp(t,x)

(Ocge | 0(£,x) 1 O ) = 0
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Renormalization—quartic theory

e Let us consider a specific example, a
theory with a quartic interaction

e We shall consider a baby version of
inflation
— calculate in flat space
— include an isotropic zero mode

— the full Robertson-Walker case is
considered in hep-th /0507081

e We impose the renormalization
condition that the tadpole of the
fluctuation should vanish

— calculate to one loop order
— 1isolate classes of divergences

— determines renormalization scale
dependence

1 1 1
L==0 6pddp-—|m*+—=Ard* |6¢*
Al 2[ 2¢]<;0

- [Vz(p + 1P+ %Aqf]acp

1 1
— AP0 — — Ao?
. pog " @
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Renormalization of the leading trans-Planckian effect

e The boundary divergences fall into two

classes

— from IR features = relevant/marginal
boundary counterterms

— from UV (trans-Planckian) features =
irrelevant boundary counterterms

The idea is that we determine the state
by choosing the long distance features
empirically and allowing a general set of
short distance features

— consider a leading example of the latter

— use wj to simplify integrals

At one loop order we find two new
divergences which are confined to the
initial surface

— cancel these with boundary counterterms

n=1 M" M
2
1
o _[oarm . nl
bnd f X2M¢+4M(P

irrelevant boundary counterterm 5
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Boundary renormalization group running

e The coefficients of the boundary
counterterms are determined by a
renormalization prescription (MS)

— infinite, scale-independent part to cancel
1/e pole (and -y, In 4, etc.)

— finite, scale dependent part satisfies the
Callan-Symanzik equation

e Note that the Callan-Symanzik equation
applies to both bulk and boundary
divergences

— there is universal cut-off that applies to

both the large spatial momenta and
infinitesimal time intervals from ¢,

— the equivalence of bare and renormalized
n-point functions means that the
derivatives of both, with respect to the
renormalization scale u, vanish

e For the leading trans-Planckian effect:

dz,  2iciA
Bi(Ag) = p2L = ZUR .

du T

dzx  ic, 22
/33()LR)=M 3 _ 12R+.

du 7T
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Renormalization of a state and its evolution

e Letus summarize generally what we have found, both for a flat
and a completely general Robertson-Walker background

IR/long distance UV/short distance
renormalization renormalization
structure structure
operators examples operators examples
observed lon V. pVH il (V oVee)?
bulk distance relevant, WPV free, up to irrelevant WPV
. ; p marginal Q2 @4 assumed . @ Q°
(evolution) fegreaes 0 (dim < 4) symmetries of (dim > 4) 2
reecom m Re? background R, ...
appropriate completely 4 2
boundary state of long relevant, @2, free, up to irrelevant . (V”.(p) ’
distance marginal assumed ) V.gVig,
(state) effective free (dim = 3) oV, 9 K¢? symmetries of (dim > 3) K
theory state (pz, oo

* Here, V, =n"V  is a derivative normal to the initial surface and K ,,

= h *V,n, is the extrinsic curvature along the surface
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Further work

So we find an elegant correspondence
between the long and short distance
features of the initial state and the sorts
of operators the appear in their
renormalization

This is still rather a young subject so
there are many aspects which should be
studied further

back-reaction (size of effect, types of
operators that appear)

RG flow (de Sitter space?)

decoherence of quantum effects
generating effective states by integrating
out excited heavy fields

calculation of the amplitude and the
generic shape of the trans-Planckian
correction to the power spectrum

Back-reaction and naturalness:
e Porrati, 2004-2005

e Greene, Schalm, Shiu, & van der
Schaar, 2004-2005

Somewhat related work on RG flows in
de Sitter space:
e Larsen & McNees, 2003-2004

Fits to the CMB data:
e Easther, Kinney & Peiris, 2004—2005
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Observation of the primordial perturbations in the CMB

e What is the prospect for observing small
effects in the primordial perturbations?

e Note that both matter, in the large scale
structure, and radiation, in the CMB,
trace these perturbations

e Radiation
— WMAP (1 year): I
— WMAP (6 year): I,
— Planck: I, = 1500

* Gravity waves
— WMAP, Planck, balloons, CMBPOL
— would help fix the value of H

=300
= 600

maxX

e Large scale structure
— Square kilometer array (10 x SDSS)
— 21 cm high redshift gas
— cosmic inflation probe (look to z = 2)




Observation of the primordial perturbations in the LSS

e The same acoustic peaks also appear in
the large scale structure (SDSS), before
the non-linear growth of perturbations
sets in

e Future experiments to measure the large
scale structure are being developed that
will map much larger volumes of the
universe (21 c¢m line)

e So how accurately will the power

spectrum be measured?
Spergel (ISCAP, 2005)

— today 102
— soon (WMAP /Planck) 103
— planned galaxy surveys 10~
— future galaxy surveys 107

— theoretical limit 10
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Conclusions

e What emerges is an effective theory with many familiar
properties
— the long distance features are fixed empirically and any

divergences are cancelled by relevant or marginal
counterterms with respect to the boundary action

— we include a general set of short distance features consistent
with the symmetries of the state; their divergences also require

irrelevant boundary counterterms

infinite set of possible boundary terms most will be too

— note that for a long distance measurement (1/E), among the (
suppressed to affect measurements

e An effective theory of a state provides a model-

independent description of the trans-Planckian effects
H

— can match to particular models ~2 5107 (22)
— typical effect scales as H/M

e Ultimately this approach provides an estimate of the
amplitude and the shape of a generic trans-Planckian signal

— distinguish from other small corrections (potentials, . . . )
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