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We begin with a simple question

Why are we able to explain what happens at long
distances without knowing what happens at short
distances?

In quantum field theory we have an answer:  the
details at short distances do not matter . . . at least
not much!

⇒ decoupling & effective field theory
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• Inflation and structure formation

• The trans-Planckian problem of inflation

• An effective theory of initial conditions

• Boundary renormalization

• Observational outlook and conclusions



• Inflation began as a idea for addressing
several fine-tunings that seemed to be
needed in the standard cosmological picture

– flatness problem
– horizon problem
– diluting topological relics

• Among these, the horizon problem is
perhaps the most serious

• If we look back to the surface of last
scattering, how large were the causally
connected patches?

– assuming a standard cosmology, radiation
followed by matter domination, they are
each about one degree of the sky

– but they all look the same to about one part
in 105

Inflation and structureInflation and structure
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• Without inflation, this uniformity of the
universe is difficult to understand

• The reason is that the distances a signal can
travel from the beginning—the particle
horizon—is too small

• During inflation the particle horizon and
the Hubble horizon (1/H) can be
dramatically different

• Thus, with enough inflation, all that we see
today could have grown from a single,
causally connected region

When a horizon is not the horizonWhen a horizon is not the horizon
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• Having an explanation of the horizon
problem in inflation is interesting
philosophically; but by itself, is it really
testable?

• However, inflation does provide a definite
prediction for the primordial perturbations

– quantum fluctuation of a scalar field
(tensor modes too)

– rapidly stretched by expanding space-time
– pattern essentially frozen after leaving the

Hubble horizon

• This mechanism leaves a pattern of
perturbations in the background that affects
both matter (LSS) and radiation (CMB) in
the universe

• Since its details are important for this talk,
let us examine this mechanism more fully

Primordial perturbationsPrimordial perturbations
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• Let us look at the simple case of a free,
massless scalar field, ϕ, in de Sitter space

• We shall use conformally flat coordinates

• In quantum field theory, there is always
some inherent variation in the field.  We
shall divide ϕ into a term for its mean value,
φ(η), and a term describing the fluctuations
about that value, δϕ(η,x)

• The pattern of fluctuations can be
characterized by the variance of δϕ

Primordial perturbationsPrimordial perturbations——de Sitter spacede Sitter space
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• The power spectrum is the Fourier
transform of this two-point function

• Expand δϕ in its operator eigenmodes

where the time-dependent part satisfies the
Klein-Gordon equation

• How then do we choose the mode functions,
δϕk?

– It is made up of the two independent
solutions to the Klein-Gordon equation

– One further constraint comes from the
canonical equal-time commutation relation

– so the question is, how do we choose fk?
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• At very short distances, << 1/H, the
background curvature is not very apparent
and space-time looks flat

• Therefore a natural choice is that state that
matches with the flat space vacuum as       k
→ ∞ with η fixed

– this choice fixes fk = 0

• At some stage we might worry about some
of our underlying assumptions

– H << k << Mpl

– sometimes η is taken to ∞
– simple dynamics/other fields

• We have encountered the question posed at
the very beginning:

– how do we know what happens at very short
length scales (or any scale < 1/Mpl)?

Choosing the vacuum stateChoosing the vacuum state
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• What then are the leading predictions for
the primordial spectrum of scalar and
tensor perturbations?

• In the limit where the modes have been
stretched outside the Hubble horizon, the
power spectrum is flat

– this sets the primordial pattern of
perturbations in the background (using
coordinate-invariant fields)

– the power spectrum of the primordial
gravity waves is similar

• Once we have a set of primordial
perturbations, we can solve its evolution
using well understood physics

– Einstein & Boltzmann equations:         matter
(structure formation) and radiation (the
CMB)

Primordial perturbations from the vacuumPrimordial perturbations from the vacuum
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• Of course, the power spectrum
will not be perfectly flat, but will
reflect some of the properties of
the potential

• What is the leading form of the
power spectrum of the CMB
according to inflation?

– nearly scale invariant (models)
– nearly Gaussian
– synchronized acoustic oscillations
– correlations on super-Hubble

horizon scales

• In particular, to leading order our
choice of the standard vacuum
seems to have been justified

– but can we understand why this is
so?

The microwave background and inflationThe microwave background and inflation
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• So inflation has passed some very non-
trivial tests

– in particular the correlation of the
polarization and the temperature on super-
Hubble scales

• But as this subject moves into a more
mature phase, we must begin to address
some conceptual problems inherent within
this picture

– hierarchy/amplitude problem (fine-tune)
– trans-Planckian problem (an opportunity)
– cosmological constant problem (fine-tune)
– singularity problem (only as a final theory)
– back-reaction

as well as to begin to determine the
signatures from sub-leading effects

– inflation potential, new physics, . . .

Conceptual problems of inflationConceptual problems of inflation
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• In flat space as long as some sort of
decoupling holds, we do not need usually
to worry about details at the Planck length

• However, the expansion of the background
means that what may be a large scale in the
primordial background was smaller and
smaller the earlier we follow it back during
inflation

• So some perturbation that produces, for
example, a feature in the CMB was much
smaller when it arose during inflation

– 60–70 e-folds to solve the horizon problem
– a bit more and the wavelength of that mode

would have been smaller than the Planck
length at some time

• Perhaps the CMB/LSS could be used as a
cosmic microscope

The trans-Planckian problemThe trans-Planckian problem
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• Suppose that you have a model for what
happens above the Planck-scale

• Then you should be able to solve for the
true vacuum state and see how the details
alter the primordial spectrum

– modified uncertainty relation
– cut-off α-states
– modified dispersion relations
– minimal length scale

• Limitations
– any particular model may not be right
– how general are the conclusions of a

particular case (amplitude and shape)

• The other approach is to find an effective
theory description

– for the evolution (H2/M2)
– for the state (H/M)

The trans-Planckian problemThe trans-Planckian problem——two philosophiestwo philosophies

• Brandenberger & J. Martin,
2001–2003

• Easther, Greene, Kinney, & Shiu,
2001–2002

• Mersini, 2001
• Niemeyer & Kempf, 2001
• Starobinsky, 2001
• Danielsson, 2002
• Goldstein & Lowe, 2003
• Collins & M. Martin, 2004
• and others

• Kaloper, Kleban, Lawrence,
Shenker, & Susskind, 2002

• Burgess, Cline, Lemieux, &
Holman, 2003

• Greene, Schalm, Shiu, & van der
Schaar, 2004–2005

• Collins & Holman, 2005
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• Let us return to the point where we chose a
particular initial state

• We shall examine the case of flat space
– the regime in which the new effects will

appear should be at much shorter lengths
than the Hubble horizon

– so if an effective description is applicable to a
cosmological background, it should also be
able to be formulated for flat space

• Earlier we mentioned that a state is defined
up to one k-dependent constant of
integration

• For definiteness, let us define our state by
imposing an initial condition at t = t0 and
evolve forward

An effective initial stateAn effective initial state——boundary conditionsboundary conditions
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• Notice that this initial condition includes
the standard vacuum state, ϖk = ωk

• In an effective theory, there is always an
inherent error between predictions based on
our theory and those of a better description
of nature

– e.g. Feynman–Gell-Mann (V – A) theory
compared with electroweak theory

• If we could solve for the “true vacuum” it
might not be the same as our low energy
idea of the vacuum; an effective state
parameterizes this difference

– non-localities?
– strongly interacting gravity?
– non-commutative space-time?

• to our “vacuum” this difference appears as
new short-distance structure

An effective initial stateAn effective initial state——short-distance structureshort-distance structure
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• Next we must determine how this
information in the initial state
propagates

• The propagator, which is the Green’s
function associated with a point source,
will include new terms representing the
effect of the short-distance features of the
state

– Since the state is defined at an initial time,
it is natural that we should include only a
term for the forward propagating modes

– avoids pinched singularities
– both forward and backward propagating

modes are included for the point source

• Note that this Green’s function is also
consistent with the initial condition,
which is again defined for the modes

An effective initial stateAn effective initial state——propagationpropagation
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• The large degree of symmetry of
Minkowski space permits a geometric
interpretation for the extra term in the
propagator

– we define an image time, reflected across
the in initial time hypersurface

• Then the propagator can be defined as
the Green’s function associated with two
sources, one of which is in the
unphysical region before t0

– only one of the Θ functions contributes in
the physical region

• A general expanding background may
not have an analogous geometric
interpretation, but otherwise the
propagator is a simple generalization of
what we had before

An aside on image sourcesAn aside on image sources
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• Although our ultimate goal is to calculate the trans-
Planckian signal in the CMB, this talk will focus on
establishing the renormalizability of the effective state
approach

• In ordinary field theory, loops appear in perturbative
corrections to processes

– these contain intermediate propagators of arbitrarily
large momenta

– in some cases, in summing over this short-distance
behavior we encounter divergences

– these are absorbed by rescaling the parameters of the
theory (counterterms)

• For an general initial state, a loop will also introduce
sums of over the short-distance structure of the state

– new divergences & boundary counterterms

RenormalizationRenormalization——general propertiesgeneral properties
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• Let us consider a specific example, a
theory with a quartic interaction

• We shall consider a baby version of
inflation

– calculate in flat space
– include an isotropic zero mode
– the full Robertson-Walker case is

considered in hep-th/0507081

• We impose the renormalization
condition that the tadpole of the
fluctuation should vanish

– calculate to one loop order
– isolate classes of divergences
– determines renormalization scale

dependence

RenormalizationRenormalization——quartic theoryquartic theory
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• Let us consider a specific example, a
theory with a quartic interaction

• We shall consider a baby version of
inflation

– calculate in flat space
– include an isotropic zero mode
– the full Robertson-Walker case is

considered in hep-th/0507081

• We impose the renormalization
condition that the tadpole of the
fluctuation should vanish

– calculate to one loop order
– isolate classes of divergences
– determines renormalization scale

dependence
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• The boundary divergences fall into two
classes

– from IR features ⇒  relevant/marginal
boundary counterterms

– from UV (trans-Planckian) features ⇒
irrelevant boundary counterterms

• The idea is that we determine the state
by choosing the long distance features
empirically and allowing a general set of
short distance features

– consider a leading example of the latter
– use ωk to simplify integrals

• At one loop order we find two new
divergences which are confined to the
initial surface

– cancel these with boundary counterterms

Renormalization of the leading trans-Planckian effectRenormalization of the leading trans-Planckian effect
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• The coefficients of the boundary
counterterms are determined by a
renormalization prescription (MS)

– infinite, scale-independent part to cancel
1/ε pole (and –γ, ln 4π, etc.)

– finite, scale dependent part satisfies the
Callan-Symanzik equation

• Note that the Callan-Symanzik equation
applies to both bulk and boundary
divergences

– there is universal cut-off that applies to
both the large spatial momenta and
infinitesimal time intervals from t0

– the equivalence of bare and renormalized
n-point functions means that the
derivatives of both, with respect to the
renormalization scale μ, vanish

• For the leading trans-Planckian effect:

Boundary renormalization group runningBoundary renormalization group running
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• Let us summarize generally what we have found, both for a flat
and a completely general Robertson-Walker background

• Here, ∇n = nμ∇μ is a derivative normal to the initial surface and Kμν
= hμ

λ∇λnν is the extrinsic curvature along the surface

Renormalization of a state and its evolutionRenormalization of a state and its evolution
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• So we find an elegant correspondence
between the long and short distance
features of the initial state and the sorts
of operators the appear in their
renormalization

• This is still rather a young subject so
there are many aspects which should be
studied further

– back-reaction (size of effect, types of
operators that appear)

–  RG flow (de Sitter space?)
– decoherence of quantum effects
– generating effective states by integrating

out excited heavy fields
– calculation of the amplitude and the

generic shape of the trans-Planckian
correction to the power spectrum

– · · ·

Further workFurther work
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Back-reaction and naturalness:
• Porrati, 2004–2005
• Greene, Schalm, Shiu, & van der

Schaar, 2004–2005

Somewhat related work on RG flows in
de Sitter space:
• Larsen & McNees, 2003–2004

Fits to the CMB data:
• Easther, Kinney & Peiris, 2004–2005



• What is the prospect for observing small
effects in the primordial perturbations?

• Note that both matter, in the large scale
structure, and radiation, in the CMB,
trace these perturbations

• Radiation
– WMAP (1 year):  lmax = 300
– WMAP (6 year):  lmax = 600
– Planck:  lmax = 1500

• Gravity waves
– WMAP, Planck, balloons, CMBPOL
– would help fix the value of H

• Large scale structure
– Square kilometer array (10 x SDSS)
– 21 cm high redshift gas
– cosmic inflation probe (look to z ≈ 2)

Observation of the primordial perturbations in the CMBObservation of the primordial perturbations in the CMB
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• The same acoustic peaks also appear in
the large scale structure (SDSS), before
the non-linear growth of perturbations
sets in

• Future experiments to measure the large
scale structure are being developed that
will map much larger volumes of the
universe (21 cm line)

• So how accurately will the power
spectrum be measured?

– today 10–2

– soon (WMAP/Planck) 10–3

– planned galaxy surveys 10–4

– future galaxy surveys 10–5

– theoretical limit 10–6

Observation of the primordial perturbations in the LSSObservation of the primordial perturbations in the LSS
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• What emerges is an effective theory with many familiar
properties

– the long distance features are fixed empirically and any
divergences are cancelled by relevant or marginal
counterterms with respect to the boundary action

– we include a general set of short distance features consistent
with the symmetries of the state; their divergences also require
irrelevant boundary counterterms

– note that for a long distance measurement (1/E), among the
infinite set of possible boundary terms most will be too
suppressed to affect measurements

• An effective theory of a state provides a model-
independent description of the trans-Planckian effects

– can match to particular models
– typical effect scales as H/M

• Ultimately this approach provides an estimate of the
amplitude and the shape of a generic trans-Planckian signal

– distinguish from other small corrections (potentials, . . . )

ConclusionsConclusions
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