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• Inflation was originally proposed as a means
for explaining several observed peculiarities
of the universe

– horizon problem:  the extreme similarity
of regions that would not have been in
contact had the universe been solely
radiation & matter dominated

– it was later realized that it not only
explained the extreme smoothness, but
the tiny inhomogenieties as well

• Inflation provides a very elegant and
economical explanation for the observed
structure, relying upon two essential
ingredients:

– quantum fluctuations
– rapid expansion

Inflation and structure formationInflation and structure formation
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• How do these ingredients conspire to
produce the structure?

• Inflation is usually implemented with one or
more scalar fields

– the classical part drives the expansion
– and since it is a quantum field, it also

fluctuates (+ scalar part of the metric)

• To accelerate, the kinetic energy of the field
must be smaller than its potential

– ‘slow-roll’ consistency conditions
– thus the mass & couplings must be small

• So, many different inflationary models share
a common set of predictions
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• How inflation makes structures:
– quantum fluctuations occur at some early

stage during inflation
– the expansion stretches them until they are

larger than the Hubble horizon
– at this stage, they are essentially frozen into

the background forming a set of primordial
perturbations

– after inflation ends, they re-enter the horizon,
influencing any material present

• Inflation makes a set of predictions shared
across many particular models

– nearly flat primordial power spectrum
– small non-Gaussianities
– correlations of features (TT-TE) on super-

horizon* scales
– phase synchronization

The primordial perturbationsThe primordial perturbations
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• In fact, just these oscillations are seen in the
cosmic microwave background

– WMAP, Acbar, Boomerang, CBI …

• Recently, the first baryon peak has also been
observed in the distribution of luminous red
galaxies

– SDSS (astro-ph/0501171)
– this approach promises the best

accuracies eventually

• So far, what is seen is suggestive but not
conclusive; all that is really required is

– Gaussian white noise
– phase synchronization
– structure extending beyond the ‘horizon’

ObservationsObservations

structure formation – 4/32
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• Despite these successes, this picture is not
without several serious problems

Brandenberger
– the amplitude problem
– the cosmological constant problem
– the inflaton problem (scalar fields)
– the singularity problem
– the trans-Planckian problem

• Of these problems, perhaps the most serious
is the trans-Planckian problem

• It arises from exactly those two basic
ingredients needed to produce inflation

– it is based on a quantum theory
– the continual expansion of space-time

Problems with inflationProblems with inflation

structure formation – 5/32
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• One problem in particular arises directly
from the ingredients that make inflation so
appealing

– 60–70 e-folds of expansion solves the
horizon problem

– but most models have much more

• A little thought-experiment:
consider some feature in the primordial
power spectrum at the end of inflation that
later will cause a feature in the microwave
background radiation

– starts outside horizon (tend)
– going backwards:  left the horizon (texit)
– still earlier:  it was smaller than 1/Mpl

• Do we need to understand the subtleties at
the Planck scale to predict the CMB?

The trans-Planckian problem of inflationThe trans-Planckian problem of inflation
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• Because of the importance of this problem,
there have been many attempts to address it

• The first attempts chose a particular model
for what happens near the Planck scale

– modified dispersion relations
Brandenberger, Martin

– stringy uncertainty relation
Easther, Greene, Kinney, Shiu

– shortest distance prescription
Kempf, Niemeyer

– invariant de Sitter states (α-states)
Danielsson; Collins, Holman, M. Martin

– couplings to excited fields
Burgess, Cline, Lemieux, Holman

• This last case emphasizes that the scale of
new physics does not need to be Mpl

Approaches to the trans-Planckian problemApproaches to the trans-Planckian problem
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• Although each of these models proceeded
from very different physical principles, they
all reached similar conclusions about the size
of the trans-Planckian effect

• The typical effect was suppressed by H/M
– H is the Hubble scale during inflation
– M is the scale for the new physics

• Some questions:
– is this estimate truly universal?
– to what extent can these different

models be distinguished?
– is a particular model renormalizable?
– we should not impose a crude cutoff; in

field theories, we integrate well beyond
the scale of applicability of our theory

The general implications from many picturesThe general implications from many pictures

trans-Planckian problem – 8/32
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• There is another approach more in keeping
with the principles of effective field theory

• In an effective field theory, we divide
phenomena according whether they are
higher or lower energy than a scale M
– the fields and symmetries of the low

energy (< M) degrees of freedom fix the
renormalizable operators

– the effects of new physics are included
as non-renormalizable operators,
suppressed by powers of 1/M

• The theory is consistent since, for a
measurement made at energy E < M, the
effects of the new physics are always
suppressed by

Effective field theoryEffective field theory

an effective state – 9/32
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• Effective field theory strictly applies to the
evolution of a state

• So we need to apply the same principle to
the structures of the state, dividing them
according to whether they vary significantly
or not over a distance 1/M
– long-distance features we set empirically
– but short-distance structures are left

general

• Measurements made at long-distances
should not be greatly affected by the short-
distances structure

– inflation naturally provides a scale, H
– the ‘trans-Planckian’ signature should be

suppressed by powers of H/M

The effective description of a stateThe effective description of a state

an effective state – 10/32
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• The idea behind an effective state is that
whenever we choose a ‘vacuum’ we are
implicitly extrapolating our understanding of
nature at low energies into arbitrarily short-
distance regimes

• To avoid the trans-Planckian problem, we
start our theory at an initial time, η0

– sufficiently early that the main features
in the CMB are in the Hubble horizon

– sufficiently late that none of them are
smaller than the Planck length

• Of course, processes that sum over all scales
will sum over the structure we added to
describe the effect of new physics

– this produces new divergences which we
shall show how to renormalize

The effective description of a state The effective description of a state —— the idea the idea

an effective state – 11/32
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• We begin with a free scalar field theory
propagating in a curved background

– to keep the calculation simpler, we shall
not include an Rϕ2 term

• We usually specify the state by first
restricting to the maximally symmetric
solutions of the Klein-Gordon equation

with

and then impose a condition on the
asymptotic behavior of the modes

The mode functions of an effective stateThe mode functions of an effective state
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• Standard prescription:  choose the state that
at short distances ( k >> H) matches with the
flat-space vacuum

– note that H can be just a few orders of
magnitude below Mpl

– this defines the ‘Bunch-Davies’ state

• Since the Bunch-Davies state gives a good
description of the long-distance features of
the CMB

– the effective state modes (ϕk(η)) are
described in terms of its modes (Uk(η))

– fk is a ‘structure function’ for the state

• Define the state through an initial condition
on the mode functions,

The mode functions of an effective stateThe mode functions of an effective state

propagation & evolution – 13/32
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• We shall denote the effective state by ⎢0eff〉

• The propagator should also be compatible
with the initial boundary condition

– in terms of the propagator modes:

• There is a subtlety since both the modes and
the time-ordering have a time dependence

– if we demand that the loop corrections
are free of pinched singularities, then
this ambiguity is removed

PropagationPropagation

propagation & evolution – 14/32
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• Several other groups have also proposed
using the principles of effective theories to
study the trans-Planckian problem

• Kaloper, Kleban, Lawrence, Shenker & Susskind
hep-th/0201158, hep-th/0209231

– standard effective field theory (evolution)
– the state was still a Bunch-Davies state

• Greene, Schalm, Shiu & van der Schaar
hep-th/0401164, hep-th0411217

– closest in spirit to our approach (propagator)
– defined the state with a boundary action

• Anderson, Molina-París & Mottola
hep-th/0504134

– no modification to the propagator
– states defined asymptotically (η0 → − ∞)
– restricts to 4th order adiabatic states

A comparison to other effective approachesA comparison to other effective approaches

propagation & evolution – 15/32
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• Because of the trans-Planckian problem, it is
not appropriate to evaluate matrix elements
before the ‘initial time’ η0

– we should not use an S-matrix approach
– apply a Schwinger-Keldysh evolution

• The time evolution is given by the
interaction picture

– operators evolve using the free part of the
Hamiltonian

– states evolve using the interacting part, HI

• In the Schwinger-Keldysh formalism, both
the state and its dual evolve

EvolutionEvolution

propagation & evolution – 16/32
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• To write the matrix element more compactly
we shall formally double the fields

• First, insert a factor of 1 = UI
†(0,η) UI(0,η)

• Next, label the arguments of the right three
operators with a ‘+’ and label those of the UI

†

with a ‘−’ so that we can group everything
within one time-ordering

• Finally, let us introduce ‘±’ fields, ϕ± whose
arguments are implicitly η±

Evolution Evolution —— field doubling field doubling

propagation & evolution – 17/32
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• When the interactions are weak, then we
can evaluate a matrix element perturbatively

• However, in taking the Wick contractions
of the fields, we have four basic possibilities

– depending upon the ‘±’ labels of the two
fields being contracted

• For illustration, we have used the scalar field,
but the same analysis applies to the graviton,
hμν(x), as well

Wick contractionsWick contractions

propagation & evolution – 18/32
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• Thus we have a formalism for including
short-distance structure in the state that
differ from the Bunch-Davies vacuum

– our description is in terms of the modes
– the difference grows at shorter and

shorter distances

• We should next show that this description is
sensible perturbatively—processes that sum
over all scales will be sensitive to this new
structure we have added

– the energy-momentum tensor
– loop corrections from interactions

• So, in principle, we should expect to meet
new divergences and we must provide a
prescription for their renormalization

Divergences and renormalizationDivergences and renormalization
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• As an illustration, we shall examine the
expectation value of the energy-momentum
tensor for a scalar field

– its renormalization
– the size of the back-reaction

• The standard approach is to reduce the
energy-momentum tensor to a classical
function

• However, since the boundary effects are
genuine quantum effects, it is more
consistent to treat both gravity and the
scalar field quantum mechanically

• The gravitational equations of motion are
fixed by a renormalization condition

– the vanishing of the graviton tadpole

The energy-momentum tensor & its divergencesThe energy-momentum tensor & its divergences

the energy-momentum tensor – 20/32
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A renormalization condition,
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• Consider the gravitational action as an
effective theory, in a derivative-expansion

• The divergences naturally form two classes:
– state-independent or ‘bulk’ divergences
– state-dependent or ‘boundary’

divergences

• The former occur for any state, and they
require the renormalization of the
parameters of the 4d gravitational action

–  Λ, Mpl, α, …
– for simplicity, we shall not show the

renormalization associated with the R2

term; it can be found in the references

• Here we shall evaluate the part that depends
on the initial state we chose, Sct

The actionThe action

the energy-momentum tensor – 21/32
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• To evaluate the graviton tadpole to leading
order, we must determine the interaction
Hamiltonian, HI(η)

• Therefore, we expand the action to linear
order in hμν

– from SG, hμν couples to the Einstein tensor
– from SΦ, hμν couples to the energy-

momentum tensors for φ and for ϕ 

– for now, we shall neglect the graviton loop

• A few comments:
– there is a ϕ-φ cross-term in LΦ, but it gives no

contribution because of 〈0eff⎢ϕ(x)⎢0eff〉 = 0
– DG

(1) is a total derivative, associated with the
standard Gibbons-Hawking term

– the leading interaction Hamiltonian is just

Gravity in the weak field limitGravity in the weak field limit

the energy-momentum tensor – 22/32

H d a h G T TI = − + +[ ]∫ 3 1
2

2 2x clμν
μν μν μν

Add small fluctuations,

The energy-momentum operator,
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Look for the linear terms in hμν



• To account for the effect of the initial state
structure, we must properly include it in the
expectation value, Tμν

• The propagator provides a paradigm for how
to include this structure, so let us write the
expectation value in terms of G(x,x′)

• In terms of the Bunch-Davies modes, Uk,
and the structure function, fk, we find

The expectation value of The expectation value of TTμμνν for the effective state for the effective state

the energy-momentum tensor – 23/32

  

T a
T a pij ij

00
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2

( ) ( ) ( )

( ) ( ) ( )

η η ρ η

η η η δ

=

=

Standard trick:
  –  evaluate the fields at separate points
  –  extract the derivatives
  –  take the expectation value
  –  return to the limit, x′ → x

The η-derivatives do not act on the 
Θ-functions

Define the expectation value as

Tμν has the same symmetries as the
background space-time,

    
T i a m G x xμν μ ν μν λ
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• The gravitational equations of motion are a
consequence of the vanishing of the tadpole,

• The tadpole vanishes if its integrand
vanishes—in particular, the terms within the
braces

– yields the Einstein equations
– note that we have included Λ in Gμν

• Here, Γλσ,μν represents the graviton leg

The graviton tadpole to leading orderThe graviton tadpole to leading order

the energy-momentum tensor – 24/32

Γ

Π Π

λσ μν

λσ μν λσ μν

η η

η η η η η

,

, ,

( , )

( ) ( , ; ) ( , ; )

′

= ′ ′ − ′[ ]> <a4 0 0

At an arbitrary intermediate time we
have the Einstein equation,

The leading interaction Hamiltonian is

Note that Π>
λσ,μν and Π<

λσ,μν are the 
Wightman functions for the graviton

  T T xμν μνη( ) ( )= 0 0eff eff

0 0
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    2G T Tμν μν μν= + cl

where Tμν is the expecation value of the 
energy-momentum operator for ϕ(x)



• As we mentioned, the divergences can be
characterized according to whether they
occur at an arbitrary time along the
evolution or only occur at the initial time, η0

• We shall call the former ‘bulk’ divergences;
they occur in the part independent of the
state (fk)

• For example, ρbulk contains quartic, quadratic
and logarithmic divergences that require the
renormalization of Λ, Mpl and α

– expand the integrand in powers of ωk

– dimensionally regularize the integrals
– rescale the gravitational parameters to

render the theory finite

• This also cancels the divergences in pbulk

Bulk divergences in the energy-momentumBulk divergences in the energy-momentum

the energy-momentum tensor – 25/32

Expand in ωk
2 = k2 + a2m2,

Define the bulk part of ρ to be

Renormalize Λ and Mpl
2, 
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• The second class of divergences depends on
the details of the initial state we have chosen

• They occur in the following parts of the
energy-momentum tensor,

• The gravitational field will have a similar
behavior, since ρsurf and psurf are the sources
for the background curvature

(in progress)

• Here, however, we shall focus on the types
of divergences in ρsurf and psurf, outlining
briefly how they are renormalized

Boundary divergences in the energy-momentumBoundary divergences in the energy-momentum

the energy-momentum tensor – 26/32

To one-loop order, the graviton tadpole
is given by
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Diagrammatically, we have
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• The prescription for renormalizing the
boundary divergences is as follows:

hep-th/0609002
– consider a particular moment in fk

– apply an adiabatic expansion of the
integrands of ρsurf and psurf to isolate the
divergent terms

– note:  because of the dη′ integral,
logarithms are integrable

– integrate by parts until the integrand is
finite

– in the process, we obtain terms
evaluated at the η0 boundary that are
divergent

– dimensionally regularize the divergences
– cancel with an appropriate boundary

action

Boundary renormalization prescriptionBoundary renormalization prescription

the energy-momentum tensor – 27/32

The adiabatic approximation effectively
expands Ωk in powers of ωk 

Add counterterms at the boundary:

0 0
1
2

00
0

eff eff

surf

surf

x( ) ( , ) ( )

( , ) ( )

( , ) ( )

,

,

η η η

η η η ρ η

η η δ η

μν

μνη

η

μν

h

d

pij
ij

+

= − ′ ′ ′{
+ ′ ′ } + ⋅ ⋅ ⋅

∫ Γ

Γ

H d a h TI
ct x= − −{ }∫ 3 3

0
μν

μνδ δ η η( )

The initial state structure is given by

    
U e

ak

i d

k

k

( )
( ) ( )

( )

η
η η

η ηη
η

=
∫− ′ ′Ω

Ω

0

2

  
f c a m d

a Mk n
n n

k
n n

k
n

n n
nn

= +
=

∞

=

∞

∑∑
ω

ω

10

Recall that there is a dη′ integration



• For illustration, a simple case should suffice

• The first divergence actually occurs in the
‘long-distance’ part of the structure

• In this case only the pressure diverges

• The divergence has exactly the same
structure as the action for a surface tension

• The next order terms require successively
less relevant boundary operators

initial counterterm
state dimension

c2 m2/ωk
2 → dim 1   (relevant)

c1 m/ωk → dim 2   (relevant)

c0 → dim 3   (marginal)

d1 ωk/M → dim 4   (irrelevant)

A A very simplevery simple example:  a surface tension example:  a surface tension

the energy-momentum tensor – 28/32

Consider an initial state with

Recall that the initial state structure is
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The leading divergence in psurf is

Since only the spatial part (Tij) diverges,



• After renormalizing the divergences in the
energy-momentum tensor, and away from
the η = η0 boundary, how large is what
remains?

Greene, Schalm, van der Schaar & Shiu
Porrati, Nitti & Rombouts

Collins & Holman:  hep-th/0605107

• Let us calculate how the density & pressure
scale in the divergences

– look at a generic part of the trans-
Planckian structure of the state

– after renormalization we should have a
similar term multiplying ln(μ2/m2)

Back-reactionBack-reaction

the energy-momentum tensor – 29/32

To compare, the vacuum energy that 
sustains the inflationary expansion is

Thus the back-reaction is suppressed by
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The leading divergence for a trans-
Planckian initial state is

After renormalization, 
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an aside on loops



OverviewOverview

(1) Inflation & structure formation

(2) The trans-Planckian problem

(3) An effective description of a state

(4) Propagation & evolution

(5) Renormalization of the energy-
momentum tensor & back-reaction

(6) Observability



• Before concluding, let us consider whether a
trans-Planckian signal can be observed

• The natural place to look for a trans-
Planckian signal is in the CMB (Martin’s talk)

– it adds a modulation about the standard,
flat primordial power spectrum

– typical size of the signal scales as H/M
– depends on an amplitude and phase, but

the frequency is not independent (unlike
a signal from the inflaton potential)

– a source for non-Gaussianities (?)

• Some works have already tried to look for a
trans-Planckian signal in the CMB

Martin & Ringeval, astro-ph/0310382
Easther, Kinney & Peiris, astro-ph/0505426
Easther, Kinney & Peiris, astro-ph/0412613

Observability of a trans-Planckian signal in the CMBObservability of a trans-Planckian signal in the CMB

observability – 30/32

Experimental upper limits:

WMAP (1 yr) lmax ≈ 300
WMAP (6 yr) lmax ≈ 600

Planck lmax ≈ 1500
Ideal limit lmax ≈ 2000

beyond l = 2000 all CMB is affected by
physics along the line of sight

From Spergel’s talk at string cosmology 5

The measurement of the CMB fix the
power spectrum to about 1 part in 100

With Planck, we should be able to 
measure it to 1 part in 1000 

    

P k
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l
n cP l l

( )
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max
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=
+1

so we can improve our errors by looking
at higher mulitpoles
(here cl is the cosmic variance}



• A better place to look for a trans-Planckian
signal—at least eventually—will be in the
distribution of the large scale structure

• Matter is also affected by the primordial
perturbations

– we need to look at large enough scales so that
the non-linearities of the gravitational
collapse have set in

– in fact, the acoustic oscillations have already
been seen in the Sloan Digital Sky Survey

astro-ph/0501171

• Over the next 10-20 years, several surveys
should look at the distribution of galaxies on
very large volumes

– Square kilometre array (furthest along)
– 21 cm high redshift gas (Loeb & Zaldarriaga)
– cosmic inflation probe (look out to z = 2)

Observability of a trans-Planckian signal in the LSSObservability of a trans-Planckian signal in the LSS

observability – 31/32

More from Spergel’s ISCAP talk:

so we can improve our errors by looking
at larger volumes

P k
k

k V
P k V NP

( )
( ) ( ) /

max
σ

=
+

3

1 galaxies

Current/future surveys:

SDSS V ≈ 108 Mpc3

SKA V ≈ 109 Mpc3

the challenge is to resolve the initial 
conditions on small (Mpc) scales

The planned galaxy surveys should fix
power spectrum to 1 part in 10,000

But future surveys should be able to 
measure it to 1 part in 100,000



• State-dependent effects can have a larger
effect on the primordial power spectrum
than sub-leading effects in the evolution

• An effective initial state provides a fairly
generic method for following the effects of
features in the state that differ from the
Bunch-Davies vacuum at short-distances

– provides a renormalizable framework
– there is no strict cut-off, we integrate over all

scales, but most higher-order structures have
a negligible effect at lower energies (H << M)

– so far, the back-reaction seems to be small

• Experimentally, over the next few years we
can detect a 0.1% signal; by the end of the
next decade, this should improve to 0.001%

– CMB:  WMAP (6 yr), Planck, …
– LSS:  SKA, 21 cm gas, CIP, …

ConclusionsConclusions

conclusions – 32/32

How do specific models translate?

  –  modified uncertainty
  –  quantum-deformed symmetries
  –  composite inflaton/excited states

How do we correctly choose the
state in inflation?     (η0, M)

The basic effective state idea:

  
ϕ η ϕ ηk k

BD
n

n

nd k
M

( ) ( )0 0− →∑


