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Inflation was developed to overcome some of

the problems of the old “big bang” model …

—

… and though it succeeded in doing so,

inflation is not without its own problems.

—

We shall discuss one of these problems today,

describing how it might provide the chance to look

at how nature behaves at extremely short distances
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The development of general relativity together
with the observation that the universe is expanding

led to a standard cosmology

The standard cosmological picture
(old version)

Einstein’s Equation (space-time dynamics)

a few preliminaries

space-time metric:  ds2 = dt2 – a2(t) dx · dx

a(t) is the scale factor

H = a/a is the Hubble scale

Rµ! –     gµ! R = 8"G Tµ!

1
2

.



Initially, the only known ingredients were
matter and radiation

both have a retarding effect on the expansion

The standard cosmological picture
(old version)

Some consequences: the universe grew out of a
much hotter and denser state

it had a “beginning” (a = 0)

=  –           (# + 3p)
4"G

3

a

a

..
density (#) and pressure (p)

matter: p ! 0 a(t) ! t2/3

radiation: p = #/3 a(t) ! t1/2



A little reasoning:

earlier, the universe was hotter and denser

gas ignites when heated and compressed

far away = long ago

we should be able to see the glow of this early plasma phase

A successful prediction:  the CMB

Success! cosmic microwave
background radiation

it is extremely close
to a perfect black body

The fact that it is so uniform everywhere
presents a problem for our theory



A conundrum

How big is a causally connected patch
when the CMB formed?

The problem with having a beginning

particle horizon = elapsed conformal time

the particle horizon
(or how far a signal can travel)

dt = a d$   "   ds2 = a2($) [d$2 – dx · dx]

xpart(t) = !            = $
dt#

a(t#)

t

t0

null signal:     ds2 = 0 = dt2 – a2(t) dx2

For the old picture, the casually connected regions
at the time of the CMB are about 1° of the sky(BBN)



Or, as a picture (in conformal time)

The problem with having a beginning

ds2 = a2($) [d$2 – dx · dx]

We need $now – $CMB < $CMB – $0

How is this possible?

particle horizons at $CMB

our past lightcone

us

$CMB

$now

$0
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Different horizons

particle horizon $ casually disconnected
Hubble horizon 1/H only currently hidden

$ can only increase, but 1/H can increase or decrease

what if there were an early phase when the comoving
Hubble horizon was decreasing?

Evading the horizon problem
(or how to move back $0)

the particle horizon (again)

the comoving Hubble scale should be increasing

$ = !            = !           
dt#

a(t#)

t

t0

da

a

a

0

1

a H(a)~~~

~

[ a H ] =         a         = a > 0
d

dt

a

a

.

[    ]d

dt

..



Inflation:

most of $ occurred very early in the universe

or
more of the universe was once in causal contact than we can

currently “see”

An accelerating (inflating) universe

ds2 = a2($) [d$2 – dx · dx]
particle horizons at $CMB

our past lightcone

us

$CMB

$now

$0

$
– " (?)



How do we get the universe to inflate (a > 0)?

A vacuum-energy phase

Try a scalar field:  %0(t)

The potential energy must be greater than the kinetic

=  –           (# + 3p)
4"G

3

a

a

..
Recall that (using normal time, t)

..

# =     %0
2 + V(%0)

1

2

.
p =     %0

2 – V(%0)
1

2

.

=            (V – %0
2)

8"G

3

a

a

..
.



Inflation allows us to evade the horizon problem

but it does something far more important too

A quantum field during inflation
(or, How to make structure)

Expand the quantum part in eigenmodes:

a quantum scalar field

A quantum field is fluctuating all the time,

but what happens when it is in an inflating space-time?

&($,x) = !       [&k($) eik·x ak + &k*($) e–ik·x ak
†]

d3k

(2")3

%($,x) = %0($) + &($,x)

classical zero mode

quantum fluctuation

&0'&($,x)&($,y)'0( #  0,



As the universe inflates, a random pattern of
fluctuations fills the universe

The power spectrum
(of the primordial perturbations)

Correlation functions:  how fluctuations
are correlated at different places

n-point function

Let us follow the evolution of a single mode, &k(t)

&0'&($,x)&($,y)'0( =                eik·(x – y)               Pk($)
d3k

(2")3

2"2

k3!

&0'&($,x1)&($,x2) … &($,xn)'0(

The simplest is the two-point function (power spectrum)

How do we characterize this pattern?



Following a mode through time
(in physical coordinates)

t0

mode:  &k(t) 

Hubble horizon:

Particle horizon:

1/H ! constant

Early during inflation

kphys > H

size of the
observable
universe

$ ! eH(t      – t  ) 

           –  eH(t      – t)

0end

end

'phys(t) = 2" a(t)/k

! eHt/k



Following a mode through time
(in physical coordinates)

t0

tleave

Hubble horizon:

Particle horizon:

1/H ! constant

mode
leaves

horizon

size of the
observable
universe

$ ! eH(t      – t  ) 

           –  eH(t      – t)

0end

end

Later during inflation

kphys = H

mode:  &k(t) 

'phys(t) = 2" a(t)/k

! eHt/k



Following a mode through time
(in physical coordinates)

t0

tend

tleave

Hubble horizon:

Particle horizon:

1/H ! constantfluctuation
frozen into

the background

$ ! eH(t      – t  ) 

           –  eH(t      – t)

0end

end

Inflation ends

kphys < H

mode:  &k(t) 

'phys(t) = 2" a(t)/k

! eHt/k



Following a mode through time
(in physical coordinates)

t0

tend

tleave

Hubble horizon:

Particle horizon:

1/H ! 2t

$ ! t1/2

fluctuation
still frozen into
the background

Radiation domination

kphys < H

mode:  &k(t) 

'phys(t) = 2" a(t)/k

! t1/2/k



Following a mode through time
(in physical coordinates)

t0

tend

treentry

tleave

Hubble horizon:

Particle horizon:

1/H ! — t

$ ! t1/3

tCMB

3

2

mode reenters

Matter domination

kphys > H (again)

mode:  &k(t) 

'phys(t) = 2" a(t)/k

! t2/3/k



Following a mode through time
(in physical coordinates)

t0

tend

treentry

tleave

Hubble horizon:

Particle horizon:

1/H ! — t

$ ! t1/3

tCMB

3

2

Matter domination

kphys > H (again)

mode:  &k(t) 

'phys(t) = 2" a(t)/k

! t2/3/k



Primordial Perturbations

t0 tend treentrytleave tCMB

Not only does inflation solve the horizon problem,

it also fills the universe with
small fluctuations in the space-time background
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inflationary era

era of radiation
domination

era of matter
domination
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t0 tend treentrytleave tCMB

Not only does inflation solve the horizon problem,

it also fills the universe with
small fluctuations in the space-time background
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(stretched beyond the horizon)
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matter & 
radiation



Primordial Perturbations

t0 tend tCMB

Not only does inflation solve the horizon problem,

it also fills the universe with
small fluctuations in the space-time background
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e

inflationary era

era of radiation
domination

era of matter
domination

Different modes leave and reenter at different times

reenter earlier " more time to influence matter
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Primordial Perturbations & the CMB

Let us look at how a particular mode influences
the distribution (and temperature) of matter

Start with k(t) < H(t)

more
curvature
(gravity)

observer’s
Hubble
horizon

matter is not able to sense the fluctuations

less
curvature
(gravity)



Primordial Perturbations & the CMB

Let us look at how a particular mode influences
the distribution (and temperature) of matter

k(t) = H(t)

more
curvature
(gravity)

observer’s
Hubble
horizon

matter begins to sense the fluctuations

less
curvature
(gravity)



Primordial Perturbations & the CMB

Let us look at how a particular mode influences
the distribution (and temperature) of matter

k(t) > H(t)

more
curvature
(gravity)

observer’s
Hubble
horizon

matter collapses into areas with more curvature

less
curvature
(gravity)



Primordial Perturbations & the CMB

At some point the condensing matter heats and
bounces back

k(t) > H(t)

pressure
pushes

outward

gravity
pulls

inward

acoustic oscillations



Primordial Perturbations

So inflation provides the “initial” input …

… that produces the pattern …

… in the cosmic microwave background (CMB) or

the large-scale structure (LSS)

Modes that entered earlier

underwent more acoustic oscillations

Perform an angular “Fourier transform”

cl = ! dk k2 Pk Tl(k)
"

0

“transfer function”
Einstein & Boltzmann 

equations

“initial input”
primordial

perturbations



Predictions from inflation

This basic picture produces several general
expectations:

1.  structures at all scales (even the largest)

2.  acoustic oscillations in CMB (and LSS)

3.  synchronized oscillations (phase)

4.  nearly Gaussian initial noise

5.  primordial gravity waves



Observations of the CMB

1.  structures at all scales 4.  nearly Gaussian initial noise
2.  acoustic oscillations in CMB 5.  primordial gravity waves
3.  synchronized oscillations
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Observations of the CMB

#  structures at all scales #  nearly Gaussian initial noise
#  acoustic oscillations in CMB ?  primordial gravity waves
#  synchronized oscillations
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Inflation (in a little more detail)

So far we have been explaining how inflation works
without mentioning its more unsettling properties

Let us sketch a simple inflationary model

begin with a quantum scalar field

%($,x) = %0($) + &($,x)

classical zero mode

quantum fluctuation

V(%0)

%0

“slowly rolling”

vacuum
energy
nearly

constant

%0 small
.

=           (V – %0
2)

8"G

3

a

a

.. .



Inflation (in a little more detail)

So far we have been explaining how inflation works
without mentioning its more unsettling properties

Let us sketch a simple inflationary model

=           (V – %0
2)

8"G

3

a

a

.. .

begin with a quantum scalar field

%($,x) = %0($) + &($,x)

classical zero mode

quantum fluctuation

V(%0)

%0

“slowly rolling”

vacuum
energy
nearly

constant

%0 small
.

What is this
scalar field?

cosmological
constant
problem

Why is this
potential
so flat?



The eigenmodes

The quantum side is important for producing
the primordial perturbations

expand the operator in eigenmodes

&($,x) = !         [&k($) eik·x ak + &k*($) e–ik·x ak
†]

dk

(2")3

In a conformally flat metric:  ds2 = a2($) [d$2 – dx · dx]

what are the eigenmodes?

in de Sitter space:  a($) = – 1/H$

–                 +    k2 +                &k = 0
m2

H2

1

$2

d&k

d$

2

$

d2&k

d$2 (                    )

&k($) = Ak $
3/2 H!

(2)(k$) + Bk $
3/2 H!

(1)(k$)

solution ( !2 = 9/4 – m /H  ):22



Choosing the initial conditions

How do we choose the initial state?

fixes the normalization

But what determines fk?

[ &($,x), "($,y) ] = i (3(x – y)

&k($) = Nk [          H$
3/2 H!

(2)(k$)

                          + fk          H$
3/2 H!

(1)(k$) ]

$ "

2
$ "

2

Possibilities:

1.  match flat modes at k >> H

2.  fix modes at $0 ) – "

3.  impose infinitesimal Lorentz symmetry



Choosing the initial conditions

How do we choose the initial state?

fixes the normalization

But what determines fk?

[ &($,x), "($,y) ] = i (3(x – y)

&k($) = Nk [          H$
3/2 H!

(2)(k$)

                          + fk          H$
3/2 H!

(1)(k$) ]

$ "

2
$ "

2

Possibilities:

1.  match flat modes at k >> H

2.  fix modes at $0 ) – "

3.  impose infinitesimal Lorentz symmetry

but is k * Mpl >> H ?

not asymptotically free?

assumes “particle” symmetries for k >> Mpl



The trans-Planckian problem

t0 treentrytleave tCMB

Unless just enough—and no more—inflation occurred,
we must fix the observable modes for

k >> Mpl
w
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inflationary era era of radiation
domination

era of
matter

domination

mode subject to
causal processes

mode frozen
(stretched beyond

the horizon)

mode
reenters

ttrans-Planckian

sub-Planckian
regime

trans-Planckian
regime

1/Mpl

1/Hinf

50–60 e-folds



Differing philosophies

Different theories lead to different expectations,

We choose different initial states (fk) for each case

&k($) = Nk [          H$
3/2 H!

(2)(k$)

                          + fk          H$
3/2 H!

(1)(k$) ]

$ "

2
$ "

2

1.  minimal:  point-like beyond Planck-scale

2.  finite resolution begins near Planck-scale

     – modified uncertainty relation

     – space-time non-commutativity

     – exited states too

1.  minimal case:  fk ) 0               (faster than 1/k4)

2.  finite resolution:  fk #  0 as k ) "



The standard picture

If we follow the usual reasoning, we would choose

fk = 0

which actually agrees well with experiment

in the massless limit:  ! ) 3/2

Recall that the power spectrum is

Pk($) =         [ 1 + (k$)2 ]
H2

4"2

when stretched outside the horizon:  k$ ) 0

&0'&($,x)&($,y)'0( =                eik·(x – y)               Pk($)
d3k

(2")3

2"2

k3!

So whatever we do,
this should be the ‘tree-level’ result

(fk ) 0 as k ) 0)



Observability

The most important question is
whether such effects can be observed

1.  minimal case:  n = 2

2.  finite resolution:  n = 1

Inflation seems to break decoupling rather strongly

So look for these effects in the relics left from inflation:
the primordial perturbations

Note that M might not be Mpl

Pk($) =           1 + slow-roll + OH2

4"2

Hn

Mn



Different models

1.  The minimal picture

     –  Lorentz-invariant, point-like, “vacuum state”
Kaloper, Kleban, Lawrence, Shenker, & Susskind, 2001–2003

     –  Adiabatic vacua
Anderson, Molina-Paris, Mottola, 2005

2.  Something new

     –  modified dispersion relation
Brandenberger & Martin, 2001–2003

     –  a stringy uncertainty relation
Easther, Greene, Kinney, &%Shiu, 2001–2004

     –  cut-off states
Niemeyer & Kempf, 2001–2006; Collins & M. Martin, 2004

     –  minimal length scale
Danielsson, 2002–2006

     –  coupling to an excited state
Burgess, Cline, Lemieux, & Holman, 2003

Is there a more general approach that simultaneously

incorporates all of these possibilities?
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Effective theory formulations

Let us be a little less ambitious,

but in the process say something much more general

Questions:

How large is the ‘trans-Planckian’ signal?

What is its typical shape?

1.  The effective initial state
Collins & Holman, 2005–

2.  Boundary operator formulation
Greene, Schalm, Shiu, & van der Schaar, 2004–2005

3.  Lorentz-breaking boundary operators
Collins & Holman, 2007–

Do not attempt to explain nature at all scales (times)
but only up to some initial time, $0



A subtle point

t0 tCMB

There is an important difference in how we set up the
modes in either case

which leads to a difference in the predictions
w
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inflationary era era of radiation
domination

era of
matter

domination

define each mode
as k(t) crosses Mpl

1/Mpl

1/Hinf

50–60 e-folds

or define all modes
at once, at some
“initial” time, t0

mode-by mode:  defined on a time-like surface (?)

initial state:  defined on a space-like surface



A partially addressed challenge:  loops

1.  The minimal picture

     –  no new ingredients

     –  Perturbative stability requires fk < k –4

2.  Something new

     –  very few approaches have considered loops
Greene, Schalm, Shiu, & van der Schaar, 2004–2005

Collins & Holman, 2005–

     –  inconsistencies between two-point function and

         the propagator?

     –  cut-offs make loops finite, but may give the

         wrong power counting
Porrati, 2004

To establish the consistency,

we must show renormalizability



Loops and perturbative stability

Write a Feynman propagator in its time-ordered form,

= +(t – t#)                    + +(t# – t)
ei)  (t – t#)

2)k

ke–i)  (t – t#)

2)k

kie–ik  (t – t#)

k0
2 – k2 – m2 + i*

0dk0

2"
!

+-functions keep the phases from canceling in the UV

k

p

p + k

k
t# t##



Loops and perturbative stability

Write a Feynman propagator in its time-ordered form,

The fk terms have the opposite phase —

modify the time-ordering to preserve the phase separation

= +(t – t#)                    + +(t# – t)
ei)  (t – t#)

2)k

ke–i)  (t – t#)

2)k

kie–ik  (t – t#)

k0
2 – k2 – m2 + i*

0dk0

2"
!

+-functions keep the phases from canceling in the UV

+(t# – t##)                    + +(t## – t#)
eip(t# – t##)

2p
e–ip(t# – t##)

2p

k

p

p + k

k
t# t##

+(t# – t##)                           + +(t## – t#)
ei(p+k)(t# – t##)

2(p+k)
e–i(p+k)(t# – t##)

2(p+k)



Interference in the propagator

The propagator for the effective theory has two terms,

point source + boundary influence

Gk($,$#) = Gk
F($,$#) + fk* Gk

F($I,$#)

In flat space, the second piece can be written as the

effect of a fictitious ‘image’ source

$I = 2$0 – $

space

$#

$

$0

$I

x y



Boundary renormalization

Consider a simple effective description of

the initial structure in the state (fk)
Collins & Holman, 2005–2006

We find a beautiful correspondence between

Loops create new divergences when

we sum over the UV behavior of the state

These occur only where the state is defined ($0)

fk =        dn
kn

(a($0)M)n

"

n = 1
,

UV structures
in the initial state

irrelevant 
boundary counterterms

&4, etc.



Boundary renormalization

Consider a simple effective description of

the initial structure in the state (fk)
Collins & Holman, 2005–2006

We find a beautiful correspondence between

Loops create new divergences when

we sum over the UV behavior of the state

These occur only where the state is defined ($0)

fk =        dn
kn

(a($0)M)n

"

n = 1
,

UV structures
in the initial state

irrelevant 
boundary counterterms

+        cn

(aH($0))
n

)k
n

"

n = 0
,

IR structures
in the initial state

relevant/marginal 
boundary counterterms

&4, etc.

&2, H&2, &&#, etc.



Primordial perturbations—corrections

As an example, examine the leading correction

This produces a correction to the power spectrum

Because we use a space-like surface to define the state,
k/k* terms arise naturally (counterterms " H/M too)

fk = d1                 + · · ·
k

a($0)M

Pk($) =            1 + d1      sin   2
H2

4"2

k

k*

M

H

k

k*

Pk($) =            1 + O(1)       sin  2        + %
H2

4"2

H

M

M

H

where k*/a($0) = M

States defined mode-by-mode (time-like surface)

more typically give H/M



Aside:  symmetry-breaking operators

Models with local Lorentz violation—and the usual

vacuum state—can produce the same signal

LLV =         & (–-·-)3/2& +           -& · -&
d1

aM

d2

(aM)2

Pk($) =            1 – d1      cos   2
H2

4"2

k

k*

M

H

k

k*

where k*/a($0) = M

This Lagrangian yields
Collins & Holman, 2007

Note that k* here is really defined at the beginning of

inflation (unlike the effective state)



Conclusions & Open Questions

Inflation provides a successful explanation for the

source of the primordial perturbations in the universe

but the picture still is very incomplete

e.g., the trans-Planckian problem

—

is there a way to circumvent

this apparent violation of decoupling?

—

observable signals (H/M or k/k*)

CMB precisions:  0.1%      LSS precisions:  0.001%

—

Much more to investigate:

initial state matrix elements,

non-Gaussianites,

detailed experimental fits, . . .



the end


