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Abstract. We present a scenario in which extra dimensions are used to address the cosmological
constant problem. For a theory of gravity in 4 4+ 1 dimensions whose dynamics are governed
by an effective action that includes quadratic terms in the curvature and a compact scalar field,
the field equations admit solutions that are compact in one direction and Poincaré invariant in
the remaining directions. These solutions do not require any fine-tuning of the parameters in the
action—including the cosmological constant—only that they should satisfy some mild inequalities.
We further discuss several features of this picture, including an example of a metric that localizes
gravity to a hypersurface without including a brane as well as how to combine this approach with
the Randall-Sundrum model. 1

The old idea that the universe might contain more than the observed four space-time
dimensions has re-emerged recently in novel attempts to explain the weakness of gravity
compared to the other forces [1] and the hierarchy problem [2], but it was realized earlier
[3] that such theories might be able to address the cosmological constant problem [4].
The hope is that with extra dimensions, the metric might be able, through a non-trivial
dependence on the extra coordinates, both to accommodate an arbitrary value for the
cosmological constant and to maintain Poincaré invariance in 3+ 1 of the directions. If
this warping is accomplished with a metric that is both smooth and periodic in the extra
dimensions, the period provides a natural compactifaction size for the extra dimensions.

An explicit realization of this idea occurs in 4 + 1 dimensions [5] for an action with a
generic set of curvature invariants with up to four derivatives of the metric and a compact
scalar field. The 4D cosmological constant is determined by both the 5D cosmological
constant and the geometry of the extra dimension. Therefore, we can achieve 3+ 1
dimensional Poincaré invariance even when the 5D cosmological constant is not zero
by choosing the solution to the field equations with the appropriate behavior in the extra
dimension. Yet while no fine-tuning of the action is required, some further mechanism
is still required to explain why this particular solution should be preferred.

This approach can also be adapted to eliminate the fine-tuning present in the Randall-
Sundrum scenario [6]. Starting with an effective action for gravity in six dimensions
as well as two parallel 4-branes, with some mild bounds on the parameters in the
action, upon integrating out the compact sixth dimension we recover the action originally
considered by Randall and Sundrum [2].

1 This work was done in collaboration with Bob Holdom and was supported in part by the Natural
Sciences and Engineering Research Council of Canada.



A WARPED KALUZA-KLEIN MODEL

At energies approaching the Planck scale, corrections to the standard Einstein-Hilbert
action can play an important role in determining the geometry of space-time. Treating
gravity as an effective theory by expanded in powers of derivatives, an action that
includes a generic set of terms with up to four derivatives of the metric is

Sgravity = Mg/d4Xdy\/ -9 (—2/\‘|‘ R —aR? — bRapR® — CRapegR¥* ™ +--- > , (@
We also include a scalar field whose dynamics are determined by?

Sg=M3 [ d*dy v=g (~30:07%9— 2k(Da0 P2+ ). @

Here A and Ms are respectively the cosmological constant and the five dimensional
Planck constant. gap is the metric for the space-time. We denote the coordinates that
correspond to the usual space-time dimensions by x*, where y,v,---= 0,1, 2,3, and the
fifth coordinate by y, with a,b,c,...=0,1,2,3,y. We shall often set M5 = 1.

To produce a universe that resembles a flat, 3+ 1 dimensional universe at lengths
scales that have been observed, we consider a space-time metric with a warped Kaluza-
Klein form, ‘

ds? = gap dx3dx? = €AYy, dxHdx” 4 dy2. (3)
Since the extra dimension is to be small, we search for solutions in which A(y) is smooth,
periodic and non-singular. Unlike the usual Kaluza-Klein compactification, the metric
depends strongly on the fifth coordinate y. We find [5]-[7] that the parameters of the
higher-derivative terms in (1) determine a unique period for the extra dimension and
this picture, provided such periodic functions A(y) exist, does not suffer from any radius
stabilization problem. The metric (3) is conformally flat so we can parameterize the
effects of the R2 terms by

U= 16a+5b+4c A=5a+b+ c. 4)

The parameter A, in particular, represents the coefficient of the Gauss-Bonnet term.
Varying the action, we obtain for a warped Kaluza-Klein geometry
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Here the prime denotes a y-derivative. We can solve for
(G)? = (307H| -1 {1412k [2A+3(A)2+ A(A)] (6)

A

2 This choice for the scalar action is not necessary for the existence of periodic solutions. We also found
periodic metrics when we include a free scalar field and the effects of asymmetric Casimir effect [6].
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FIGURE 1. A periodic warp function A(y) (solid line) and ¢ (y) (dashed line) for A=1,A=0,p=0.1,

and k = —0.25. The initial condition is A" (0) = 23.77364592.

u

periodic

solutions

FIGURE 2. A plot of the parameter space {A,p} when A = 1. In the unshaded region, we have found
periodic numerical solutions for A(y) for arbitrarily chosen points. The curve depicts a set exact solutions
discussed in [5] while the darker part of the curve shows the location of the solutions in (7).

and substitute the result into (5) to obtain a differential equation for A(y).

A periodic solution for a generic set of values of A\, g, A, and k is found by numerically
integrating the resulting differential equation for A(y). The coordinate y does not explic-
itly appear in the equations (5)—(6) which moreover only depend on the warp function
A(y) through its derivatives. Thus, we can choose A(0) = A’(0) = 0 without any loss
of generality. We also chose A”'(0) = 0 for simplicity. The subsequent evolution of the
warp function away fromy = 0 then depended solely upon the initial value of the second
derivative, A”(0).

Numerically we find that there exists a precise value of A”(0) that produces a periodic
solution for each arbitrarily chosen set of parameters {A,y,A,k} within a region of
the parameter space with a non-zero volume. This result demonstrates the existence of
periodic solutions without finely tuning any of the parameters in the action. An example
of such a solutions has been sketched in Fig. 1 for A=1,A=0,u=0.1,and k = —0.25
and choosing the minus root in (6). Many further examples appear in [5] and [6].

A slice of the region in parameter space for which periodic metrics exist is shown
in Fig. 2, with A =1 and k — 0. The choice of the former is always possible by the
rescaling, y — oy, A — 02\, § — o2, A — o?A and k — 0%k, where o is a real
constant, which leaves (5) unchanged. We have found numerical solutions for arbitrarily
chosen points throughout the unshaded portion of Fig. 2.



Using gravity to localize gravity

The purely gravitational part of the action (1) can also generate a warp function that
is localized along a 3+ 1 dimensional hypersurface. The profile of the function A(y) for
these solutions superficially resembles that appearing in models in which a domain wall
is used to localize gravity,

2
Aly) = —yInf2cosh(ky)]. [@(y) =0 (7)
Here the width, k=1, and the asymptotic AdSs length, I, are respectively
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with 0 < Ap < %, A > 0 and p > 0. In this configuration the R? terms are in no sense
negligible. This metric does require one fine-tuning among A, A and |, given in [5] by

/\A:-(3-4\/ﬁ) (g_% 2/\p>, (9)

which can presumably be effected by adding a sixth dimension with an appropriately
warped compactification.

THE RANDALL-SUNDRUM SCENARIO ASAN EFFECTIVE
THEORY

Randall and Sundrum [2] proposed that if the universe were to consist of two 3-branes
bounding a bulk region of five dimensional anti-de Sitter (AdSs) space-time,

ds? = gap dx?dx? = =2/, dxHdx” + dr?, (10)

then the redshift induced by the bulk metric at one of the branes could generate an
exponential hierarchy between the Planck scale and the scale of electroweak symmetry
breaking. The bulk Einstein equations determine A = —6l~2 and the specific choice of
o = +6l~1 for the brane tensions is necessary for the low energy four dimensional theory
to be free of a cosmological constant.

As the cosmological constant and the surface tension appear in the action in [2], they
represent fundamental parameters of the theory and we have no reason a priori that
the fine-tuning condition is satisfied. If instead these quantities arise from some more
fundamental theory, then it might be possible for a dynamical mechanism to exist that
favors solutions in which the low energy, four dimensional theory is nearly flat.

We can adapt the picture developed above without branes to one which resembles the
Randall-Sundrum construction but where the AdSs length, |, is not uniquely determined
by the higher dimensional cosmological constant. The structure for such a model would
include two extra dimensions—one small periodic dimension to avoid fine-tuning the
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FIGURE 3. The geometry of a six dimensional model with two 4-branes. The small periodic coordinate
is y. The direction orthogonal to the 4-branes, r, becomes the extra coordinate of the Randall-Sundrum
model when we integrate out the y dimension. The model assumes an orbifold geometry about r = 0.

cosmological constant as before and a second to generate the electroweak-Planck hier-
archy, as shown in Fig. 3.

By generalizing the four derivative action of (1)—(2) to six dimensions and adding two
4-branes at r = 0 and r = r¢, we shall show that after integrating out the y-dependence,
we can recover the action of the Randall-Sundrum scenario [2]. The important new
feature is that the 6D cosmological constant, A, no longer needs to be finely tuned with
respect to the tensions on the branes, which we write as (% and (") respectively.

We begin with a metric of the form

dsg = Gun (<), r,y) dxMdxN = eAW g (P, 1) dx@dx® + dy? (11)

with the AdSs metric (10) for the (x*, r)-subspace. As in the 5D case earlier, when A(y)
is a periodic function of y, we can obtain a compact extra dimension with a very non-
trivial y-dependence without any singularities. However, unlike the previous example,
the (x*, r) subspace is not flat. The shape of A(y) determines the effective cosmological
constant of the ga, metric. The metric (11) with an AdSs subspace is still conformally
flat, but the definition of the coefficients of the linear combinations of &, b and € in the 6D
version of (1) orthogonal to the Weyl squared term depend on the number of dimensions.
In 5+ 1 dimensions we have [i = 204 + 6b+4¢and A = 155+ 3b + €.

The 6D curvature tensors R, Ry and RY,p are related to thelr counterparts, R, Rap
and R4 4 derived from the 5D metric gap in (11) and derivatives of the warp function.
We thus derive a 5D effective action by integrating out the small y dimension in this
background,

St = M3 / d*dr /=g (-2/\ +R—aR%— bR,R® — cRabcdRade)
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r=r¢
hap represents the metric induced on the branes by the metric gap. The new parameters
that appear in this effective action depend partially upon the “fundamental” parameters
of the original action but also upon the behavior of the warp function. Explicitly, the



parameters in the low energy 5D theory are (Mg is the 6D Planck mass)
MEA = ME [ dyeB A+ 3+ Bl - SN2+ GO BAGA
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In the weak 5D gravity limit, Msl > 1, the R? terms become negligible and the leading
behavior is governed by the Einstein-Hilbert terms in (12). Since A ~ 12, we require
the effective 5D cosmological constant to be small which can easily occur when the
contribution from the bulk cosmological constant is partially cancelled by effects from
the warp function in (13). Thus, we can recover the Randall-Sundrum action.

The fine-tunings of the effective tensions on the two branes in [2] are

—6A =00 = —¢("). (14)

Numerically, we find solutions [6] periodic in the y-direction provided that the effective
cosmological constant is of the same order or smaller than the full cosmological con-
stant, |A| < O(A). Using the desired value of the 5D A from (14) and applying (13), we
can thus find solutions that are periodic in'y and satisfy (14) without finely tuning any of
the fundamental parameters when (5(%)2 < O(A).

CONCLUDING REMARKS

A theory with an extra compact dimension and an action with a generic set of R? terms
and a compact scalar field contains sufficient freedom to admit periodic metrics with
a 3+ 1 dimensional Poincaré invariance without the need for finely tuning the action.
Yet for each choice of parameters that allows such a solution, a family of other periodic
solutions exists whose elements are specified by the value of the effective low energy
4D cosmological constant. We should further investigate whether a universe in a generic
initial state can relax into one in which the effective 4D theory is nearly flat.
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