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Abstract. We examine the evolution of a 3-brane that separates two regions of a
4 + 1 dimensional bulk space-time with potentially different cosmological constants.
We have included a term in the brane action for the scalar curvature. When one
or both of the regions has a zero cosmological constant, we find solutions for which
the cosmology on the brane has the same time-dependence as a standard radiation-
dominated universe, but which depends on a mass parameter in the bulk metric rather
than the radiation density on the brane. When a non-zero cosmological constant is
present in both bulk regions, it is possible to obtain a standard Robertson-Walker
evolution. We then extract the effective theory of gravity in the weak-field limit seen
by an observer on the brane in each of these scenarios.

I INTRODUCTION.

A remarkable feature of certain theories with more than the observed 3 + 1 di-
mensions is that while these extra dimensions can extend infinitely, the geometry
of the bulk space-time is nevertheless able to confine gravity to a three dimensional
surface within the larger space. Randall and Sundrum [3] first showed that by
attaching two semi-infinite slices of 4 + 1 dimensional anti-de Sitter space (AdSs)
along a three dimensional hypersurface, or ‘3-brane’, with orbifold conditions about
this 3-brane, gravity behaves as though it is confined to its vicinity. This 3-brane
is identified with our universe. In addition to reproducing ordinary Newtonian
gravity, any successful model should also be able to produce a realistic cosmologi-
cal evolution for the 3-brane. The dynamical evolution of the brane is determined
by Einstein’s equations for the combined bulk and brane system, but these equa-
tions might not produce the familiar Robertson-Walker cosmology along the brane.
Viewed locally, near the brane the surrounding bulk introduces a new element into
the field equations for gravity on the brane through a term for the change in the
extrinsic curvature across the brane, as originally derived by Israel [4]. While gen-
eralizations of the original Randall-Sundrum orbifold [3] have been shown to admit
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the usual open, flat and closed Robertson-Walker cosmologies [5], we shall examine
more asymmetric geometries for which the AdS curvature lengths on opposite sides
of the brane are not necessarily equal.

In this talk, we shall show that it is possible to obtain a standard cosmological
evolution on the brane even when the cosmological constants in the adjoining bulk
regions are very different. For example, when one of the regions has a vanishing
cosmological constant, a mass parameter in the bulk AdS-Schwarzschild metric can
produce an evolution with the same time dependence as a radiation-dominated
universe. When the cosmological constant in one or both of the bulk regions is
sufficiently small, deviations from the classical Newton’s law and Einstein’s equa-
tion appear at unacceptably large distances. This difficulty can be removed when
a curvature term is included in the brane action, and we shall study its role in the
classical theory of gravity on the brane. This term has been typically omitted in
previous studies [5-7] and represents the next natural term in an effective action
[10] on the brane ordered by powers of derivatives.

The material in this talk is described more fully in [1,2].

I THE ACTION FOR ADS; WITH A SURFACE.

We would like to derive the form of Einstein’s equations for a (3 + 1)—dimensional
hypersurface embedded in a (44 1)-dimensional bulk space-time. To be general, we
shall treat the bulk space-time as two regions, M; and M, that share a common
boundary given by the hypersurface, 5. Note that these bulk regions do not need
to have the same metric on either side of the brane but only need to satisfy the
Israel conditions derived below. Since the boundary corresponds to the observed
universe, we include an action on the brane containing, in addition to a surface
tension term, a term for the scalar curvature on the brane plus the contributions
from matter and gauge fields confined to the brane. At each point on the brane,

we define a space-like unit normal to the surface, N, = N,(z"), that satisfies
g**N,Ny = 1. gu is the bulk metric. We shall denote the coordinates along the
brane by z*, where u,v,--- = 0,1,2,3; we use r to denote the fifth coordinate and
let a,b,c,...=0,1,2,3,r. The bulk metric induces a metric on the brane,

hab = Gab — NaNb; (1)

while the bulk metric can be discontinuous across the brane, the induced metric on
the brane must be the same when calculated with the bulk metric for either region.

Combining all of these ingredients, the total action is the sum of the actions for
the two bulk regions,?
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and that of the boundary,
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Here (G is the bulk Newton’s constant and K is the trace of the extrinsic curvature

K, defined by
K = haCVCNb. (4)

o, R and Lgegs represent the brane tension, the scalar curvature of the induced
metric and the Lagrangian of fields confined to the brane. We normalize the brane
tension with respect to a critical tension, o. = 3/47G{, as will be useful later, and
we allow the two bulk regions to have potentially different curvature lengths, ¢,
and /5. This action is a generalization of that appearing in [5] and [9].

Varying the total action yields the usual Einstein equations in the bulk,
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where the appropriate AdS length is chosen for each region, plus the following
equation for the surface,
20
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where AK,, = K, ( ) [&U(Lb), tap 1s the energy-momentum tensor for the fields confined
to the brane,
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and R, is the Ricci tensor for the induced metric. This Israel condition (6) de-
scribes the effect of the bulk space-time on the brane Einstein equations through
the appearance of the extrinsic curvature term.

II COSMOLOGY ON THE SURFACE.

We shall now examine some specific solutions of the field equations for gravity
on an 3-brane between two 4 + 1 dimensional regions with negative cosmological
constants. The metrics for the interior r < R(7) and exterior r > R(7) regions
with respect to the brane can be written in the AdSs-Schwarzschild form [11].
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An AdSs bulk corresponds to setting m; = my = 0, but we have included the
—my 2/r? terms in the metric since they can have an important effect on the brane
cosmology. Their presence leads to black-hole horizons at some distance into the
bulk whose masses are determined by my and my [11,12].

The type of cosmology observed on the brane depends upon the value of k; when
k = 1,0,—1 the resulting evolution is respectively that of a closed, flat or open
Robertson-Walker universe:

dx? + sin? x(d0* +sin*0d¢?) k=1
d = 072 (da? + dy? + d2?) k=0 (9)
dx? + sinh? x(df? +sin* 0 d¢?) k= —1

Later, when extracting the effective theory of gravity on the brane, we shall set

k = 0 for convenience.
The location of the brane will generally evolve in the bulk, so we let

(t,r,x,0,0) = (T(7), B(T), X, 0, ) (10)

where 7 is the proper time for an observer at rest with respect to the brane. The
normal to the brane is then

(1 + u(R(r))"
u(R(r))

with a dot denoting differentiation with respect to 7. We have used g N, Ny =1 to
express 1" in terms of R in the interior. In the exterior region, u(R) is replaced by
v(R). With the normal in this form we find that the induced metric on the brane

is already in the standard Robertson-Walker form:

N, = (=R, T,0,0,0) T = (11)

ds? = hyy detdz” = —drt + RQ(T) dﬂg (12)

where p, v run over the coordinates on the brane. Both the interior and exterior
regions produce exactly the same induced metric.
In terms of the coordinate system defined by (12), the interior contribution to
the extrinsic curvature is
1 .1 du .
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the exterior region contributes an analogous expression with v(R(7)) replacing
u(R(T)).

When the matter on the brane is distributed as an isotropic perfect fluid, of
density p and pressure p so that ¢, = diag(—p, p,p,p), the spatial components of
the Israel condition (6) yield
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The temporal component of (6) does not give an independent equation once we
have imposed the conservation of energy on the brane [5,6] which demands that
% (pR?) = —p% R?. The choice of the relative sign between the extrinsic curvature
terms in (14) depends on the geometry of the bulk AdSs space that surrounds
the brane. In the original Randall-Sundrum universe, the orbifold is made of two
slices of AdSs attached so that the warp factor—the r?/¢? in the AdS metric (8)—
decreases as we move further from the brane in either direction. Thus for the
orbifold geometry, the plus sign is chosen. When the warp factor behaves differently
on opposite sides of the brane, as for a brane simply embedded in a single bulk
AdSs space, the minus sign is used.

For no scalar curvature term, b = 0, the Israel condition (14) can be rewritten
so that the evolution of R(7) is determined by a potential,

LR2 L V(R) = — 1k, (15)
where
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A similar result is implicit in [5]. For R > ¢ and for a generic tension, this potential
does not produce a standard Robertson-Walker cosmology. However, when the
brane tension is tuned to
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the leading R*/¢*, p-independent term drops out of the potential. The appropriate
signs in (17) again depend on the behavior of the AdS space to either side of the
brane.

IV THE EVOLUTION OF A VACUUM BUBBLE.

When a bubble nucleates in a region having a vacuum energy higher than that
in the bubble’s interior, the bubble will expand or contract depending upon the
surface tension of the bubble and the difference in the bulk vacuum energies. A
simple example of this behavior occurs when a bubble of AdSs is surrounded by
an asymptotically flat region. The 3-brane here is the surface of this bubble. The
purpose of this section is to introduce this bubble as an example of an acceptable



brane cosmology that is driven by one of the mass parameters in the bulk metric
in a relatively simple setting.

For a bubble surrounded by a region with zero cosmological constant, the metrics
for the interior and exterior regions are then given by (8) as one of the AdS lengths
becomes infinite. Let us choose {5 — o0, set my = m, m; = 0 and fine-tune
o = o./2 for simplicity. We can also set £; = £ without loss of generality. Although
the Israel equation (14) with the brane scalar curvature contribution becomes a
quartic polynomial in (R? + k), we still can extract the leading behavior in the
p L o, £ < R limit:
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The potential for the vacuum bubble (18) does not contain a pR?* term since
the same fine-tuning that removes the cosmological constant from the brane also
P 4

eliminates such a term. If we consider sufficiently late times when £ < & is

satisfied so that the p? R? term is small, then the leading term that determines the
cosmology on the brane is

) mo
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Although this equation seems quite different from the evolution in a Robertson-
Walker universe (22), the time dependence of its solution is exactly the same as
for a radiation-dominated universe in which p oc R™*. If the b-dependent terms are
not to overwhelm the m/R?* term we must also have bp/o. < 1. Comparing with
the condition already imposed by the requirement that the m/R? term and not the
p?R* term should drive the cosmology, we see that we can accommodate a b¢ up to
cosmological scales without imposing any new constraint.

As a more realistic variation, consider a vacuum bubble that expands into another
AdSs-Schwarzschild region, rather than a flat bulk. Unlike the standard Randall-
Sundrum picture we shall let the second AdS length, /5, have a large macroscopic
size but which is yet much smaller than the length associated with the brane curva-
ture: (1,0 < £y < bl. The leading behavior of the cosmology (14) for this universe
is then governed by
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Unlike (18), the pR? term is present:
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For the standard Robertson-Walker universe, the equation that determines R(7) is
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where (4 is the 3 + 1 dimensional Newton’s constant. Thus, provided my is not
too large, we recover a standard Robertson-Walker cosmology with an effective 4d
Newton’s constant, G4 = 2G//bl. What has happened for this bubble is that above
the AdS lengths we expect that the bulk space produces an effectively 4d theory
of gravity [13]. Since we have assumed that ¢;,/; < bf, when we probe distances
below ¢1,/5 we do not observe the extra dimensions of the bulk space since we
are in the regime in which the effect of the brane curvature term dominates. This
argument is borne out in next section where it is shown that the effective theory
of gravity is governed by a 4d Einstein equation at all scales when ¢y, ¢y < b{.

V GRAVITY ON THE SURFACE.

Thus far, we have studied the evolution of the bubble in the bulk space-time to de-
termine the resulting cosmology witnessed by an observer on its surface. However,
in addition to admitting an evolution that mimics the standard Robertson-Walker
cosmology, the form of gravity in the weak-field limit should approach that of an
effectively 3 + 1-dimensional theory. For the standard Randall-Sundrum scenario
in which the AdS lengths are equal, ¢; = ¢; = [, the weak-field behavior of the

Newtonian potential about a stationary mass M confined to the brane receives a

correction [3]
. GaM 0
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which becomes negligible at distances |Z| along the brane that are large compared
to £. In the case of the vacuum bubble, in which at least one of the AdS lengths
is larger than that millimeter limit to which classical gravity has been tested, the
presence of the scalar curvature term provides a source for a four dimensional
theory of gravity. Without such a term, the fact that the bubble borders either a
flat region or a region with a large AdS length, as in the two cases considered in
the previous section, the effective Newtonian potential is either 1/|Z|?
large 1/|Z|* correction respectively, revealing the presence of the 5d space-time.

In this section, we shall examine the behavior of gravity on the brane in the weak-
field limit. For simplicity, we shall restrict to the case of a flat & = 0 (9) brane
whose position is fixed at r = 0. The bulk space will be purely AdSs (m; = ms = 0)
although as before, the cosmological constants in the regions to either side of the
brane to not need to be equal.

or receives a



One of the difficulties in studying linearized gravity about a brane is that the
presence of matter on the brane generically distorts the apparent position of the
brane in the bulk coordinates [15,16]. Since it is important to express precisely
the boundary conditions at the brane, it is advantageous to work in a gauge in
which this ‘brane-bending’ does not occur. The problem of finding such a gauge in
order to study linearized gravity was addressed in [17]. There, the metric tensor is
written using the time-slicing formalism [18] as
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where

G = f(?”)(mw + 7#11)- (25)

n and n, are respectively called the lapse function and the shift vector. Here we
have written a more general warp factor, f(r), to allow configurations in which the
brane separates two regions of AdSs with different cosmological constants. In the
limit in which the perturbations about the background are small, we consider v,,,
n, and ¢ = n* — 1 all to be small quantities of roughly the same size.

The advantage of this metric is that it admits a foliation of the bulk space by
hypersurfaces where r is constant. The normal vector to any of these hypersurfaces
can be written as

1
N, =(0,0,0,0,n) N = —(=g""n,, 1) (26)

n

and the induced metric along the surface is given by
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To leading order in the perturbations, the extrinsic curvature is then
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The prime denotes differentiation with respect to r.
The behavior of gravity in the bulk is governed by the usual Einstein equation (5),
which we write in the Gauss-Codacci form by decomposing it into the transverse
and orthogonal components with respect to an arbitrary r = constant hypersurface,
R R 4
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Here R = 0*0"v,, — O~ + -+ is the scalar curvature associated with g,,. Away
from the brane, the zeroth order terms from (29) determine the warp factor which
appears in the unperturbed metric,
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The terms linear in the perturbations for the first two Gauss-Codacci equations
(29) impose constraints on the metric:
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The important feature of these expressions is the appearance of the f~! factors on
their left sides. For regions of anti-de Sitter space, f~! typically grows exponentially
as we move farther into the bulk so that at some distance away from the brane, the
assumption that v,, and ¢ are small breaks down, unless we use gauge freedom to
set the right sides of both expressions to zero. Therefore, in the bulk we choose,
similarly to [17],

1
f
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where 7, denotes the traceless part of v,,. For these equations, (31) constrains
the shift vector to be of the following form:
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Here A, is a free vector field (0A, = 0) with vanishing 4-divergence (0*A, = 0).
We shall henceforth use the gauge freedom to choose A, =0 [2].

For these choices of the gauge then, the behavior of 4,, in the bulk is determined
by the transverse components of the Einstein equation (29),

8.y + A, (33)
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where we have substituted the equations determining the warp factor (30).

At the brane, the behavior of quantities intrinsic to the brane are related to the
change in the extrinsic curvature across the brane by the Israel condition (6). For
simplicity, we set ¢ = o.. The unperturbed piece of the Israel condition requires
the usual fine-tuning of the brane tension,

4
f/|7“=0— - f/|7“=0+ = A[f/] - Zf (35)
The energy-momentum ¢, of the fields on the brane determines the behavior of
~uv so it should also be treated as a small quantity. The transverse components of
the Israel condition specify the boundary conditions at the brane,
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where we have imposed (35).

As in [17], we can eliminate the v from (36) by taking the trace of this expression
and solving for v by inverting the operator O to write formally

1
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For a universe with two regions of AdSs separated by a 3-brane at r = 0, the
value of the Fourier transform of the trace v at the brane is given by
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The solution to the bulk equation (34) that satisfies the new boundary condition
(37) has the form
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for r > 0. The solution for the r < 0 region is found by substituting r — —r and
ly < ly. Kq(z) and K3(z) are Bessel functions.

A possible source for a discrepancy between a purely four dimensional theory
of gravity and the effective low energy theory of gravity for an inhabitant of the
3-brane is in the appearance of deviations from the Finstein equation. The intrinsic
Einstein tensor is given by [17]
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As a first case, we look in the limit in which both of the lengths associated with
the bulk AdSs regions are small compared to the typical length scale probed on the
brane, {1|p|, l2|p| < 1. Using K3(2) & 227% and Ky(z) ~ z~! for small z, we have
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combining this with the trace (38), we recover the 4d Einstein equation:
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So at sufficiently large distances, we always recover a standard theory of gravity.



We also examine whether a stationary point mass M on the brane produces a
1/]Z] Newtonian potential. For a point source at rest on the brane, the energy-
momentum tensor has only one non-vanishing component: too(z) = G M §*(Z).
When the velocity of a test mass is small, the gravitational field is stationary and
weakly perturbed away from the background metric, we can extract the Newtonian
potential by following the motion of a test mass along a geodesic. The leading

piece of the geodesic equation in this Newtonian limit is d;t”gz = féo = —%62'700 from
which we can extract the ordinary Newtonian potential, j%:z;i = 0;U, which we

have written as U(Z) to avoid confusion with V(R) defined earlier (15).

The presence of the 4d curvature term in the action allows us to consider other
corners of the ¢y, {; parameter space as well. If we rewrite the expression for 7,
on the brane as

. 167 ! ] ] [1 Ki(talpl) | Ki(lalp))] ™
Yur (P, 0) = I’ [tuu -3 [mw T t] [§bflp| TG T Tl
we find that since 0 < K;(z)/K3(z) < 1 for z > 0, all that is needed to recover a
1/]Z| Newtonian potential is to have bf|p| > 1. In this limit, both 4,, and v have
a leading 1/p* behavior which automatically leads to a 1/|Z| potential:
GM 2 [4(4, + {3) + 3bL
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This equation is valid regardless of the scale of #; and /5, compared with either the
coeflicient of the 4d curvature, bf, or |¥|. However, when evaluating the Einstein

(43)
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equation, we find that for arbitrary values of /1 and ¢y that a term involving the
trace of the energy-momentum tensor for the brane fields appears:
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If b¢ > {,,0;, then the extra term can be neglected and the leading behavior is
that of a standard theory of four dimensional gravity, in agreement with (42).

We can also study what happens when one or both of the AdS lengths becomes
infinite, while keeping bf|p| > 1. These limits correspond respectively to universes
in which the brane is between a flat and an AdS region, as in section IV, or is
simply embedded in a flat bulk space-time. In either case, the effective theory is

. 1 ~ 167 1 d,0,
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The case of a brane embedded in a flat bulk was also investigated in [14] where the
effective theory on the brane was shown to contain a scalar graviton. From (46)
it would appear that a scalar graviton is a generic feature of branes embedded in
(partially) flat space-times.

In the remaining region of the ¢,/ parameter space, where bf|p| < 1 and
l|pl, L2|p| > 1, the dominant contribution from (43) leads to a five dimensional
Newtonian potential.



VI CONCLUSIONS.

In this talk, we have examined the cosmology seen on a brane embedded in a
bulk space-time with different cosmological constants in the two regions separated
by the brane. When one of these cosmological constants vanishes, it is possible
to obtain a cosmological evolution with the same time dependence as a radiation-
dominated universe. When a scalar curvature term is included in the brane action,
a 4d Newton’s law emerges in the effective theory of gravity on the brane; however,
the theory does contain a scalar graviton. This brane scalar curvature term also
allows us to consider scenarios in which one or both of the cosmological constants is
substantially smaller than that considered in the original Randall-Sundrum picture.
Such a brane universe admits a standard Robertson-Walker cosmology (21) and has
a 4d Newton’s law (44). The effective Einstein equation in this theory still contains
a non-standard correction (45) but which can be made to vanish with a mild tuning
of the coefficient of the curvature term in the brane action.
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